1
|
Sasaki E, Fujita Y, Masago K, Iwakoshi A, Hanai N, Matsushita H. S100-positive stroma in salivary gland basal cell adenomas: a neoplastic component with CTNNB1 mutations. Virchows Arch 2024:10.1007/s00428-024-04021-1. [PMID: 39724428 DOI: 10.1007/s00428-024-04021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Basal cell adenomas (BCAs) are benign epithelial tumors of the salivary gland, characterized by the proliferation of basaloid and luminal cells. In addition, a distinctive spindle cell stroma, that is immunohistochemically-positive for S100, is often observed in BCAs. Based on the ultrastructural findings, the S100-positive stroma was presumed to originate from neoplastic myoepithelial cells. However, immunohistochemical studies do not provide strong evidence supporting a myoepithelial origin, and the true nature of this stroma remains elusive. The aim of this study was to determine whether the S100-positive stroma was neoplastic through a molecular analysis. We selected 2 cases involving BCAs with at least one S100-positive stromal area within the tumor, measuring ≥ 0.2 × 0.2 mm. CTNNB1 I35T mutations were detected in both tumors by Sanger sequencing. Two areas of S100-positive stroma from these two tumors were successfully dissected by manual microdissection using a stereomicroscope without contamination from the surrounding neoplastic bilayered epithelial cells. Because of the small number of dissected stromal cells, the mutation status of these two areas was analyzed using digital PCR, and CTNNB1 I35T mutations were detected in both. In conclusion, this study demonstrated that the S100-positive stroma of BCAs exhibits a neoplastic nature from a molecular perspective. While future studies are needed to confirm whether the S100-positive stroma originates from myoepithelial cells, BCAs morphologically display tricellular differentiation, with neoplastic spindle-shaped stromal cells along with a bilayered neoplastic epithelium.
Collapse
Affiliation(s)
- Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan.
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan.
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan.
| | - Yasuko Fujita
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Akari Iwakoshi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of Pathology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
2
|
Mansour Y, Boubaddi M, Odion T, Marty M, Belleannée G, Berger A, Subtil C, Laurent C, Dabernat S, Amintas S. Droplet digital polymerase chain reaction detection of KRAS mutations in pancreatic FNA samples: Technical and practical aspects for routine clinical implementation. Cancer Cytopathol 2024; 132:274-284. [PMID: 38308613 DOI: 10.1002/cncy.22795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PDAC) is associated with a 5-year survival rate of less than 6%, and current treatments have limited efficacy. The diagnosis of PDAC is mainly based on a cytologic analysis of endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) samples. However, the collected specimens may prove noncontributory in a significant number of cases, delaying patient management and treatment. The combination of EUS-FNA sample examination and KRAS mutation detection can improve the sensitivity for diagnosis. In this context, the material used for molecular analysis may condition performance. METHODS The authors prospectively compared the performance of cytologic analysis combined with a KRAS droplet digital polymerase chain reaction (ddPCR) assay for PDAC diagnosis using either conventional formalin-fixed, paraffin-embedded cytologic samples or needle-rinsing fluids. RESULTS Molecular testing of formalin-fixed, paraffin-embedded cytologic samples was easier to set up, but the authors observed that the treatment of preanalytic samples, in particular the fixation process, drastically reduced ddPCR sensitivity, increasing the risk of false-negative results. Conversely, the analysis of dedicated, fresh needle-rinsing fluid samples appeared to be ideal for ddPCR analysis; it had greater sensitivity and was easily to implement in clinical use. In particular, fluid collection by the endoscopist, transportation to the laboratory, and subsequent freezing did not affect DNA quantity or quality. Moreover, the addition of KRAS mutation detection to cytologic examination improved diagnosis performance, regardless of the source of the sample. CONCLUSIONS Considering all of these aspects, the authors propose the use of an integrated flowchart for the KRAS molecular testing of EUS-FNA samples in clinical routine.
Collapse
Affiliation(s)
- Yara Mansour
- Pathology Department, Bordeaux University Hospital Center (CHU Bordeaux), Bordeaux, France
| | - Mehdi Boubaddi
- Digestive Surgery Department, CHU Bordeaux, Pessac, France
- Bordeaux Institute of Oncology, UMR Unit 1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Typhaine Odion
- Pathology Department, Bordeaux University Hospital Center (CHU Bordeaux), Bordeaux, France
| | - Marion Marty
- Pathology Department, Bordeaux University Hospital Center (CHU Bordeaux), Bordeaux, France
| | - Geneviève Belleannée
- Pathology Department, Bordeaux University Hospital Center (CHU Bordeaux), Bordeaux, France
| | - Arthur Berger
- Gastroenterology and Hepatology Department, CHU Bordeaux, Pessac, France
| | - Clément Subtil
- Gastroenterology and Hepatology Department, CHU Bordeaux, Pessac, France
| | - Christophe Laurent
- Digestive Surgery Department, CHU Bordeaux, Pessac, France
- Bordeaux Institute of Oncology, UMR Unit 1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Sandrine Dabernat
- Bordeaux Institute of Oncology, UMR Unit 1312, INSERM, University of Bordeaux, Bordeaux, France
- Biochemistry Laboratory, CHU Bordeaux, Pessac, France
| | - Samuel Amintas
- Bordeaux Institute of Oncology, UMR Unit 1312, INSERM, University of Bordeaux, Bordeaux, France
- Tumor Biology and Tumor Bank Laboratory, CHU Bordeaux, Pessac, France
| |
Collapse
|
3
|
Matsumoto S, Uchiumi T, Noda N, Ueyanagi Y, Hotta T, Kang D. Droplet digital polymerase chain reaction to measure heteroplasmic m.3243A>G mitochondrial mutations. Lab Med 2024; 55:227-233. [PMID: 37478467 PMCID: PMC10920975 DOI: 10.1093/labmed/lmad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023] Open
Abstract
OBJECTIVE Different mitochondrial DNA genotypes can coexist in a cell population as well as in a single cell, a condition known as heteroplasmy. Here, we accurately determined the heteroplasmy levels of the m.3243A>G mutation, which is the most frequently identified mutation in patients with mitochondrial diseases, using droplet digital polymerase chain reaction (ddPCR). METHODS The m.3243A>G heteroplasmy levels in artificial heteroplasmy controls mixed with various proportions of wild-type and mutant plasmids were measured using ddPCR, PCR-restriction fragment length polymorphism, and Sanger sequencing. The m.3243A>G heteroplasmy levels in DNA, extracted from the peripheral blood of patients with suspected mitochondrial disease and healthy subjects, were determined using ddPCR. RESULTS The accuracy of the ddPCR method was high. The lower limit of detection was 0.1%, which indicated its higher sensitivity compared with other methods. The m.3243A>G heteroplasmy levels in peripheral blood, measured using ddPCR, correlated inversely with age at the time of analysis. The m.3243A>G mutation may be overlooked in the peripheral blood-derived DNA of elderly people, as patients >60 years of age have heteroplasmy levels <10%, which is difficult to detect using methods other than the highly sensitive ddPCR. CONCLUSION ddPCR may be considered an accurate and sensitive method for measuring m.3243 A>G heteroplasmy levels of mitochondrial DNA.
Collapse
Affiliation(s)
- Shinya Matsumoto
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nozomi Noda
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yasushi Ueyanagi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Taeko Hotta
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Fang W, Liu X, Maiga M, Cao W, Mu Y, Yan Q, Zhu Q. Digital PCR for Single-Cell Analysis. BIOSENSORS 2024; 14:64. [PMID: 38391982 PMCID: PMC10886679 DOI: 10.3390/bios14020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Single-cell analysis provides an overwhelming strategy for revealing cellular heterogeneity and new perspectives for understanding the biological function and disease mechanism. Moreover, it promotes the basic and clinical research in many fields at a single-cell resolution. A digital polymerase chain reaction (dPCR) is an absolute quantitative analysis technology with high sensitivity and precision for DNA/RNA or protein. With the development of microfluidic technology, digital PCR has been used to achieve absolute quantification of single-cell gene expression and single-cell proteins. For single-cell specific-gene or -protein detection, digital PCR has shown great advantages. So, this review will introduce the significance and process of single-cell analysis, including single-cell isolation, single-cell lysis, and single-cell detection methods, mainly focusing on the microfluidic single-cell digital PCR technology and its biological application at a single-cell level. The challenges and opportunities for the development of single-cell digital PCR are also discussed.
Collapse
Affiliation(s)
- Weibo Fang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; (W.F.); (X.L.); (M.M.); (W.C.); (Y.M.)
| | - Xudong Liu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; (W.F.); (X.L.); (M.M.); (W.C.); (Y.M.)
| | - Mariam Maiga
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; (W.F.); (X.L.); (M.M.); (W.C.); (Y.M.)
| | - Wenjian Cao
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; (W.F.); (X.L.); (M.M.); (W.C.); (Y.M.)
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; (W.F.); (X.L.); (M.M.); (W.C.); (Y.M.)
| | - Qiang Yan
- Department of Hepatobiliary and Pancreatic Surgery, Huzhou Central Hospital, Huzhou Key Laboratory of Intelligent and Digital Precision Surgery, Department of General Surgery, Affiliated Huzhou Hospital, School of Medicine, Zhejiang University, Huzhou 313000, China
| | - Qiangyuan Zhu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; (W.F.); (X.L.); (M.M.); (W.C.); (Y.M.)
- Huzhou Institute of Zhejiang University, Huzhou 313002, China
| |
Collapse
|
5
|
Maeda C, Ono Y, Hayashi A, Takahashi K, Taniue K, Kakisaka R, Mori M, Ishii T, Sato H, Okada T, Kawabata H, Goto T, Tamamura N, Omori Y, Takahashi K, Katanuma A, Karasaki H, Liss AS, Mizukami Y. Multiplex Digital PCR Assay to Detect Multiple KRAS and GNAS Mutations Associated with Pancreatic Carcinogenesis from Minimal Specimen Amounts. J Mol Diagn 2023; 25:367-377. [PMID: 36965665 DOI: 10.1016/j.jmoldx.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/27/2023] Open
Abstract
Digital PCR (dPCR) allows for highly sensitive quantification of low-frequency mutations and facilitates early detection of cancer. However, low-throughput targeting of single hotspots in dPCR hinders variant specification when multiple probes are used. We developed a dPCR method to simultaneously identify major variants related to pancreatic carcinogenesis. Using a two-dimensional plot of droplet fluorescence under the optimized concentration of two fluorescent probe pools, the absolute quantification of different KRAS and GNAS variants was determined. Successful detection of the multiple driver mutations was verified in 24 surgically resected tumor samples from 19 patients and 22 fine-needle aspiration samples from patients with pancreatic ductal adenocarcinoma. Precise quantification of the variant allele frequency was optimized by using template DNA at a concentration as low as 1 to 10 ng. Furthermore, amplicons targeting multiple hotspots were successfully enriched with fewer false-positive findings using high-fidelity polymerase, allowing for the detection of various KRAS and GNAS mutations with high probability in small amount of cell/tissue specimens. Using this target enrichment, mutations at a rate of 90% in small residual tissues, such as the fine-needle aspiration needle flush and microscopic lesions in resected specimens, were successfully identified. The proposed method allows for low-cost, accurate detection of driver mutations to diagnose cancers, even with minimal tissue collection.
Collapse
Affiliation(s)
- Chiho Maeda
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan; Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.
| | - Akihiro Hayashi
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kenji Takahashi
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzui Taniue
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan; Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Rika Kakisaka
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Miyuki Mori
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Takahiro Ishii
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Hiroki Sato
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan; Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tetsuhiro Okada
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hidemasa Kawabata
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Takuma Goto
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Nobue Tamamura
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yuko Omori
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan; Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Akio Katanuma
- Center for Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Hidenori Karasaki
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Andrew Scott Liss
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yusuke Mizukami
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan; Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
6
|
Gentilini F, Palgrave CJ, Neta M, Tornago R, Furlanello T, McKay JS, Sacchini F, Turba ME. Validation of a Liquid Biopsy Protocol for Canine BRAFV595E Variant Detection in Dog Urine and Its Evaluation as a Diagnostic Test Complementary to Cytology. Front Vet Sci 2022; 9:909934. [PMID: 35711804 PMCID: PMC9195143 DOI: 10.3389/fvets.2022.909934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
A significant proportion of canine urothelial carcinomas carry the driver valine to glutamic acid variation (V595E) in BRAF kinase. The detection of V595E may prove suitable to guide molecularly targeted therapies and support non-invasive diagnosis of the urogenital system by means of a liquid biopsy approach using urine. Three cohorts and a control group were included in this multi-step validation study which included setting up a digital PCR assay. This was followed by investigation of preanalytical factors and two alternative PCR techniques on a liquid biopsy protocol. Finally, a blind study using urine as diagnostic sample has been carried out to verify its suitability as diagnostic test to complement cytology. The digital PCR (dPCR) assay proved consistently specific, sensitive, and linear. Using the dPCR assay, the prevalence of V595E in 22 urothelial carcinomas was 90.9%. When compared with histopathology as gold standard in the blind-label cases, the diagnostic accuracy of using the canine BRAF (cBRAF) variation as a surrogate assay against the histologic diagnosis was 85.7% with 92.3% positive predictive value and 80.0% negative predictive value. In all the cases, in which both biopsy tissue and the associated urine were assayed, the findings matched completely. Finally, when combined with urine sediment cytology examination in blind-label cases with clinical suspicion of malignancy, the dPCR assay significantly improved the overall diagnostic accuracy. A liquid biopsy approach on urine using the digital PCR may be a valuable breakthrough in the diagnostic of urothelial carcinomas in dogs.
Collapse
Affiliation(s)
- Fabio Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | | | - Michal Neta
- IDEXX Laboratories Ltd., Wetherby, West Yorkshire, United Kingdom
| | - Raimondo Tornago
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | | | - Jennifer S McKay
- IDEXX Laboratories Ltd., Wetherby, West Yorkshire, United Kingdom
| | | | | |
Collapse
|
7
|
Habib JR, Zhu Y, Yin L, Javed AA, Ding D, Tenior J, Wright M, Ali SZ, Burkhart RA, Burns W, Wolfgang CL, Shin E, Yu J, He J. Reliable Detection of Somatic Mutations for Pancreatic Cancer in Endoscopic Ultrasonography-Guided Fine Needle Aspirates with Next-Generation Sequencing: Implications from a Prospective Cohort Study. J Gastrointest Surg 2021; 25:3149-3159. [PMID: 34244950 DOI: 10.1007/s11605-021-05078-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND OR PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed by endoscopic ultrasound-guided fine needle aspiration (EUS-FNA). However, the diagnostic adequacy of EUS-FNA is often limited by low cellularity leading to inconclusive results. We aimed to investigate the feasibility and added utility of targeted next-generation sequencing (NGS) on PDAC EUS-FNAs. METHODS EUS-FNAs were prospectively performed on 59 patients with suspected PDAC (2014-2017) at a high-volume center. FNAs were analyzed for the presence of somatic mutations using NGS to supplement cytopathologic evaluations and were compared to surgical specimens and circulating tumor DNA (ctDNA). RESULTS Fifty-nine patients with suspected PDAC were evaluated, and 52 were diagnosed with PDAC on EUS-FNA. Four of the remaining seven patients had inconclusive EUS-FNAs and were ultimately diagnosed with PDAC after surgical resection. Of these 56 cases of PDAC, 48 (85.7%) and 18 (32.1%) harbored a KRAS and/or TP53 mutation on FNA NGS, respectively. Particularly, in the four inconclusive FNA PDAC diagnoses (false negatives), half harbored KRAS mutations on FNA. No KRAS/TP53 mutation was found in remaining three non-PDAC cases. All EUS-FNA detected KRAS mutations were detected in 16 patients that underwent primary tumor NGS (100% concordance), while 75% KRAS concordance was found between FNA and ctDNA NGS. CONCLUSION Targeted NGS can reliably detect KRAS mutations from EUS-FNA samples and exhibits high KRAS mutational concordance with primary tumor and ctDNA. This suggests targeted NGS of EUS-FNA samples may enable preoperative ctDNA prognostication using digital droplet PCR and supplement diagnoses in patients with inconclusive EUS-FNA.
Collapse
Affiliation(s)
- Joseph R Habib
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
| | - Yayun Zhu
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
| | - Lingdi Yin
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
| | - Ammar A Javed
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
| | - Ding Ding
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
| | - Jonathan Tenior
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
| | - Michael Wright
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
| | - Syed Z Ali
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Richard A Burkhart
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - William Burns
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher L Wolfgang
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Eunji Shin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jun Yu
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA.
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
8
|
Visani M, Acquaviva G, De Leo A, Sanza V, Merlo L, Maloberti T, Brandes AA, Franceschi E, Di Battista M, Masetti M, Jovine E, Fiorino S, Pession A, Tallini G, de Biase D. Molecular alterations in pancreatic tumors. World J Gastroenterol 2021; 27:2710-2726. [PMID: 34135550 PMCID: PMC8173386 DOI: 10.3748/wjg.v27.i21.2710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/25/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Genetic alterations in pancreatic tumors can usually be classified in: (1) Mutational activation of oncogenes; (2) Inactivation of tumor suppressor genes; and (3) Inactivation of genome maintenance genes controlling the repair of DNA damage. Endoscopic ultrasound-guided fine-needle aspiration has improved pre-operative diagnosis, but the management of patients with a pancreatic lesion is still challenging. Molecular testing could help mainly in solving these "inconclusive" specimens. The introduction of multi-gene analysis approaches, such as next-generation sequencing, has provided a lot of useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic tumors (e.g., pancreatic ductal adenocarcinomas, intraductal papillary mucinous neoplasms, solid pseudopapillary tumors) are characterized by specific molecular alterations. The aim of this review is to summarize the main molecular alterations found in pancreatic tumors.
Collapse
Affiliation(s)
- Michela Visani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna–Molecular Diagnostic Unit, Azienda USL di Bologna, Bologna 40138, Italy
| | - Giorgia Acquaviva
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna–Molecular Diagnostic Unit, Azienda USL di Bologna, Bologna 40138, Italy
| | - Antonio De Leo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna–Molecular Diagnostic Unit, Azienda USL di Bologna, Bologna 40138, Italy
- Division of Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Viviana Sanza
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna–Molecular Diagnostic Unit, Azienda USL di Bologna, Bologna 40138, Italy
| | - Lidia Merlo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna–Molecular Diagnostic Unit, Azienda USL di Bologna, Bologna 40138, Italy
| | - Thais Maloberti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna–Molecular Diagnostic Unit, Azienda USL di Bologna, Bologna 40138, Italy
| | - Alba A Brandes
- Medical Oncology Department, Azienda USL/IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
| | - Enrico Franceschi
- Medical Oncology Department, Azienda USL/IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
| | - Monica Di Battista
- Medical Oncology Department, Azienda USL/IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
| | - Michele Masetti
- Division of Surgery, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40133, Italy
| | - Elio Jovine
- Division of Surgery, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40133, Italy
| | - Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna 40133, Italy
| | - Annalisa Pession
- Division of Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40138, Italy
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna–Molecular Diagnostic Unit, Azienda USL di Bologna, Bologna 40138, Italy
- Division of Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Dario de Biase
- Division of Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
9
|
Cazacu IM, Semaan A, Stephens B, Swartzlander DB, Guerrero PA, Singh BS, Lungulescu CV, Danciulescu MM, Cherciu Harbiyeli IF, Streata I, Popescu C, Saftoiu A, Roy-Chowdhuri S, Maitra A, Bhutani MS. Diagnostic value of digital droplet polymerase chain reaction and digital multiplexed detection of single-nucleotide variants in pancreatic cytology specimens collected by EUS-guided FNA. Gastrointest Endosc 2021; 93:1142-1151.e2. [PMID: 33058885 DOI: 10.1016/j.gie.2020.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS EUS-guided FNA is recommended as a first-line procedure for the histopathologic diagnosis of pancreatic cancer. Molecular analysis of EUS-FNA samples might be used as an auxiliary tool to strengthen the diagnosis. The current study aimed to evaluate the diagnostic performances of K-ras testing using droplet digital polymerase chain reaction (ddPCR) and a novel single-nucleotide variant (SNV) assay performed on pancreatic EUS-FNA samples. METHODS EUS-FNA specimens from 31 patients with pancreatic masses (22 pancreatic ductal adenocarcinomas, 7 chronic pancreatitis, and 2 pancreatic neuroendocrine tumors) were included in the study. K-ras testing was initially performed by ddPCR. In addition, mutational status was evaluated using an SNV assay by NanoString technology, using digital enumeration of unique barcoded probes to detect 97 SNVs from 24 genes of clinical significance. RESULTS The overall specificity and sensitivity of cytologic examination were 100% and 63%, respectively. K-ras mutation testing was performed using ddPCR, and the sensitivity increased to 87% with specificity 90%. The SNV assay detected at least 1 variant in 90% of pancreatic ductal adenocarcinoma samples; the test was able to detect 2 K-ras codon 61 mutations in 2 cases of pancreatic ductal adenocarcinoma, which were missed by ddPCR. The overall diagnostic accuracy of the cytologic examination alone was 74%, and it increased to 91% when the results of both molecular tests were considered for the cases with negative and inconclusive results. CONCLUSIONS The current study illustrated that integration of K-ras analysis with cytologic evaluation, especially in inconclusive cases, can enhance the diagnostic accuracy of EUS-FNA for pancreatic lesions.
Collapse
Affiliation(s)
- Irina M Cazacu
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA; Research Center of Gastroenterology and Hepatology, Craiova, Romania
| | - Alexander Semaan
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Bret Stephens
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel B Swartzlander
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Paola A Guerrero
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Ben S Singh
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | - Ioana Streata
- Research Center of Gastroenterology and Hepatology, Craiova, Romania
| | - Carmen Popescu
- Research Center of Gastroenterology and Hepatology, Craiova, Romania
| | - Adrian Saftoiu
- Research Center of Gastroenterology and Hepatology, Craiova, Romania
| | - Sinchita Roy-Chowdhuri
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anirban Maitra
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Manoop S Bhutani
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Keller BA, Laight BJ, Varette O, Broom A, Wedge MÈ, McSweeney B, Cemeus C, Petryk J, Lo B, Burns B, Nessim C, Ong M, Chica RA, Atkins HL, Diallo JS, Ilkow CS, Bell JC. Personalized oncology and BRAF K601N melanoma: model development, drug discovery, and clinical correlation. J Cancer Res Clin Oncol 2021; 147:1365-1378. [PMID: 33555379 DOI: 10.1007/s00432-021-03545-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Mutations in BRAF are the most prominent activating mutations in melanoma and are increasingly recognized in other cancers. There is currently no accepted treatment regimen for patients with mutant BRAFK601N melanoma, and the study of melanoma driven by BRAF mutations at the 601 locus is lacking due to a paucity of cellular model systems. Therefore, we sought to better understand the treatment and clinical approach to patients with mutant BRAFK601N melanoma and subsequently develop a novel personalized oncology platform for rare or treatment-refractory cancers. METHODS We developed and characterized the first patient-derived, naturally occurring BRAFK601N melanoma model, described herein as OHRI-MEL-13, and assessed efficacy using the Prestwick Chemical Library and select targeted therapeutics. RESULTS OHRI-MEL-13 exhibits loss of heterozygosity of BRAF, closely mimics the original tumor's gene expression profile, is tumorigenic in immune-deficient murine models, and is available for public accession through American Type Culture Collection. We present in silico modeling data, which illustrates the therapeutic failure of BRAFV600E-targeted therapies in BRAFK601N mutants. Our platform elucidated a unique role for MEK inhibition with cobimetinib, which resulted in short-term clinical success by reducing the metastatic burden. CONCLUSION Our model of BRAFK601N-activated melanoma was developed, thoroughly characterized, and made available for public accession. This model served to demonstrate the feasibility of a novel personalized oncology platform that could be optimized at an institutional level for rare variant or treatment-refractory cancers. We also demonstrate the clinical utility of monotherapy MEK inhibition in a case of BRAFK601N melanoma.
Collapse
Affiliation(s)
- Brian A Keller
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada.
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada.
| | - Brian J Laight
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Oliver Varette
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
| | - Aron Broom
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa, K1N 6N5, Canada
| | - Marie-Ève Wedge
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
| | - Benjamin McSweeney
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Catia Cemeus
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Julia Petryk
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Bryan Lo
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Molecular Oncology Diagnostics Laboratory, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Bruce Burns
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Carolyn Nessim
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Division of General Surgery, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Michael Ong
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Division of Medical Oncology, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Roberto A Chica
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa, K1N 6N5, Canada
| | - Harold L Atkins
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
- The Ottawa Hospital Blood and Marrow Transplant Program, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
| | - John C Bell
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
| |
Collapse
|
11
|
Otsuji K, Sasaki T, Tanabe M, Seto Y. Droplet-digital PCR reveals frequent mutations in TERT promoter region in breast fibroadenomas and phyllodes tumours, irrespective of the presence of MED12 mutations. Br J Cancer 2020; 124:466-473. [PMID: 33046803 PMCID: PMC7852881 DOI: 10.1038/s41416-020-01109-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Breast fibroadenoma (FA) and phyllodes tumour (PT) often have variations of gene mediator complex subunit 12 (MED12) and mutations in the telomerase reverse transcriptase promoter region (TERTp). TERTp mutation is usually tested by Sanger sequencing. In this study, we compared Sanger sequencing and droplet-digital PCR (ddPCR) to measure TERTp mutations in FA and PT samples. METHODS FA and PT samples were collected from 82 patients who underwent surgery at our institution from 2005 to 2016. MED12 mutations for all cases and TERTp mutations for 17 tumours were detected by Sanger sequencing. ddPCR was performed to analyse TERTp mutation in all cases. RESULTS A total of 75 samples were eligible for analysis. Sanger sequencing detected MED12 mutations in 19/44 FA (42%) and 21/31 PT (68%). Among 17 Sanger sequencing-tested samples, 2/17 (12%) were TERTp mutation-positive. In ddPCR analyses, a significantly greater percentage of PT (19/31, 61%) was TERTp mutation-positive than was FA (13/44, 30%; P = 0.0046). The mutation positivity of TERTp and MED12 did not correlate, in either FA or PT. CONCLUSIONS ddPCR was more sensitive for detecting TERTp mutation than Sanger sequencing, being able to elucidate tumorigenesis in FA and PT.
Collapse
Affiliation(s)
- Kazutaka Otsuji
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Sasaki
- Department of Next-Generation Pathology Information and Networking, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Masahiko Tanabe
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Matsumoto K, Kato H, Nouso K, Ako S, Kinugasa H, Horiguchi S, Saragai Y, Takada S, Yabe S, Muro S, Uchida D, Tomoda T, Okada H. Evaluation of Local Recurrence of Pancreatic Cancer by KRAS Mutation Analysis Using Washes from Endoscopic Ultrasound-Guided Fine-Needle Aspiration. Dig Dis Sci 2020; 65:2907-2913. [PMID: 31897893 DOI: 10.1007/s10620-019-06006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS The sensitivity of endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) for diagnosing the recurrence of pancreatic cancer is usually low because of difficulties in obtaining adequate samples for pathological examinations. We evaluated the efficacy of highly sensitive KRAS mutation analysis using EUS-FNA washes to detect cancer recurrence. METHODS Nineteen consecutive patients with suspected pancreatic cancer recurrence after surgical resection were enrolled. All underwent EUS-FNA, and samples were obtained for pathological examination. After the first session, the inside of the FNA needle was washed with saline for DNA extraction. KRAS mutations were examined using digital droplet PCR (dPCR). RESULTS The median needle puncture number used to obtain adequate pathological samples was two (range 1-6). In ten patients pathologically diagnosed with malignant pancreatic cancer, nine patients tested positive for a KRAS mutation. All patients who were not diagnosed with a malignant pancreatic cancer tested negative for a KRAS mutation. About half of surgically resected primary cancers (9/19) showed double KRAS mutations (G12V and G12D); however, all but one wash sample showed a single KRAS mutation, G12D. After including one patient who showed a malignant recurrence during follow-up, the sensitivities of a pathological diagnosis and KRAS analysis to detect recurrence were 90.9% and 81.8%, respectively. CONCLUSIONS KRAS mutation analysis of needle wash samples using dPCR is a new methodology for the diagnosis of the local recurrence of pancreatic cancer. The diagnostic ability of dPCR with a one-time needle wash sample was comparable to a pathological diagnosis with multiple samplings.
Collapse
Affiliation(s)
- Kazuyuki Matsumoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Hironari Kato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan.
| | - Soichiro Ako
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Yosuke Saragai
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Saimon Takada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Shuntaro Yabe
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Shinichiro Muro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Takeshi Tomoda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| |
Collapse
|
13
|
Matsumoto K, Kato H, Horiguchi S, Tomoda T, Matsumi A, Ishihara Y, Saragai Y, Takada S, Muro S, Uchida D, Okada H. Utility of Endoscopic Ultrasound-Guided Fine Needle Aspiration in the Diagnosis of Local Recurrence of Pancreaticobiliary Cancer after Surgical Resection. Gut Liver 2020; 14:652-658. [PMID: 31818050 PMCID: PMC7492494 DOI: 10.5009/gnl19200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/17/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Background/Aims Endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA; EUS-FNA) allows for diagnostic tissue specimens from various regions to be analyzed. However, diagnosing recurrent pancreaticobiliary cancer after surgery is sometimes difficult. We evaluated the efficacy of EUS-FNA in the diagnosis of local recurrence of pancreaticobiliary cancer and analyzed the factors associated with falsenegative results. Methods Fifty-one consecutive patients who underwent EUS-FNA due to suspected recurrence of pancreaticobiliary cancer after surgery in an academic center were retrospectively analyzed. The criteria for EUS-FNA were a resected margin or remnant pancreas mass, round swollen lymph node (≥10 mm in diameter), and soft-tissue enhancement around a major artery. Patients with suspected liver metastasis or malignant ascites were excluded. Results Thirty-nine of the 51 patients had pancreatic cancer; the remaining 12 had biliary cancer. The target sites for EUS-FNA were the soft tissue around a major artery (n=22, 43%), the resected margin or remnant pancreas (n=12, 24%), and the lymph nodes (n=17, 33%). The median size of the suspected recurrent lesions was 15 mm (range, 8 to 40 mm). The overall sensitivity, specificity and accuracy of EUS-FNA for the diagnosis of recurrence was 84% (32/38), 100% (13/13), and 88% (45/51), respectively. FNA of the soft tissue around major arteries (odds ratio, 8.23; 95% confidence interval, 1.2 to 166.7; p=0.033) was significantly associated with a falsenegative diagnosis in the multivariate analysis. Conclusions EUS-FNA is useful for diagnosing recurrent cancer, even after pancreaticobiliary surgery. The diagnoses of recurrence at soft-tissue sites should be interpreted with caution.
Collapse
Affiliation(s)
- Kazuyuki Matsumoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Hironari Kato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Takeshi Tomoda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Akihiro Matsumi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Yuki Ishihara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Yosuke Saragai
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Saimon Takada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Shinichiro Muro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| |
Collapse
|
14
|
Ono Y, Hayashi A, Maeda C, Suzuki M, Wada R, Sato H, Kawabata H, Okada T, Goto T, Karasaki H, Mizukami Y, Okumura T. Time-saving method for directly amplifying and capturing a minimal amount of pancreatic tumor-derived mutations from fine-needle aspirates using digital PCR. Sci Rep 2020; 10:12332. [PMID: 32704002 PMCID: PMC7378187 DOI: 10.1038/s41598-020-69221-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
It is challenging to secure a cytopathologic diagnosis using minute amounts of tumor fluids and tissue fragments. Hence, we developed a rapid, accurate, low-cost method for detecting tumor cell-derived DNA from limited amounts of specimens and samples with a low tumor cellularity, to detect KRAS mutations in pancreatic ductal carcinomas (PDA) using digital PCR (dPCR). The core invention is based on the suspension of tumor samples in pure water, which causes an osmotic burst; the crude suspension could be directly subjected to emulsion PCR in the platform. We examined the feasibility of this process using needle aspirates from surgically resected pancreatic tumor specimens (n = 12). We successfully amplified and detected mutant KRAS in 11 of 12 tumor samples harboring the mutation; the positive mutation frequency was as low as 0.8%. We used residual specimens from fine-needle aspiration/biopsy and needle flush processes (n = 10) for method validation. In 9 of 10 oncogenic KRAS pancreatic tumor samples, the "water-burst" method resulted in a positive mutation call. We describe a dPCR-based, super-sensitive screening protocol for determining KRAS mutation availability using tiny needle aspirates from PDAs processed using simple steps. This method might enable pathologists to secure a more accurate, minimally invasive diagnosis using minute tissue fragments.
Collapse
Affiliation(s)
- Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
- Division of Gastroenterology and Hepatology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Akihiro Hayashi
- Division of Gastroenterology and Hepatology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Chiho Maeda
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Mayumi Suzuki
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Reona Wada
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Hiroki Sato
- Division of Gastroenterology and Hepatology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hidemasa Kawabata
- Division of Gastroenterology and Hepatology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Tetsuhiro Okada
- Division of Gastroenterology and Hepatology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Takuma Goto
- Division of Gastroenterology and Hepatology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hidenori Karasaki
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Yusuke Mizukami
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan.
- Division of Gastroenterology and Hepatology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hepatology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
15
|
Ciernikova S, Earl J, García Bermejo ML, Stevurkova V, Carrato A, Smolkova B. Epigenetic Landscape in Pancreatic Ductal Adenocarcinoma: On the Way to Overcoming Drug Resistance? Int J Mol Sci 2020; 21:ijms21114091. [PMID: 32521716 PMCID: PMC7311973 DOI: 10.3390/ijms21114091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies due to the rapid rate of metastasis and high resistance to currently applied cancer therapies. The complex mechanism underlying the development and progression of PDAC includes interactions between genomic, epigenomic, and signaling pathway alterations. In this review, we summarize the current research findings on the deregulation of epigenetic mechanisms in PDAC and the influence of the epigenome on the dynamics of the gene expression changes underlying epithelial–mesenchymal transition (EMT), which is responsible for the invasive phenotype of cancer cells and, therefore, their metastatic potential. More importantly, we provide an overview of the studies that uncover potentially actionable pathways. These studies provide a scientific basis to test epigenetic drug efficacy in synergy with other anticancer therapies in future clinical trials, in order to reverse acquired therapy resistance. Thus, epigenomics has the potential to generate relevant new knowledge of both a biological and clinical impact. Moreover, the potential, hurdles, and challenges of predictive biomarker discoveries will be discussed, with a special focus on the promise of liquid biopsies.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
- Correspondence: ; Tel.: +421-2-3229-5198
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (A.C.)
| | - María Laura García Bermejo
- Biomarkers and Therapeutic Targets Group, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain;
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (A.C.)
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| |
Collapse
|
16
|
Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol 2020; 17:153-168. [PMID: 32005945 DOI: 10.1038/s41575-019-0245-4] [Citation(s) in RCA: 443] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to be the second most common cause of death within the next 10 years. The prognosis for this disease is poor despite diagnostic progress and new chemotherapeutic regimens. The oncogenic KRAS mutation is the major event in pancreatic cancer; it confers permanent activation of the KRAS protein, which acts as a molecular switch to activate various intracellular signalling pathways and transcription factors inducing cell proliferation, migration, transformation and survival. Several laboratory methods have been developed to detect KRAS mutations in biological samples, including digital droplet PCR (which displays high sensitivity). Clinical studies have revealed that a KRAS mutation assay in fine-needle aspiration material combined with cytopathology increases the sensitivity, accuracy and negative predictive value of cytopathology for a positive diagnosis of pancreatic cancer. In addition, the presence of KRAS mutations in serum and plasma (liquid biopsies) correlates with a worse prognosis. The presence of mutated KRAS can also have therapeutic implications, whether at the gene level per se, during its post-translational maturation, interaction with nucleotides and after activation of the various oncogenic signals. Further pharmacokinetic and toxicological studies on new molecules are required, especially small synthetic molecules, before they can be used in the therapeutic arsenal for pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Louis Buscail
- Department of Gastroenterology, University of Toulouse III, Rangueil Hospital, Toulouse, France. .,INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France.
| | - Barbara Bournet
- Department of Gastroenterology, University of Toulouse III, Rangueil Hospital, Toulouse, France.,INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France
| | - Pierre Cordelier
- INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France
| |
Collapse
|
17
|
Sugimori M, Sugimori K, Tsuchiya H, Suzuki Y, Tsuyuki S, Kaneta Y, Hirotani A, Sanga K, Tozuka Y, Komiyama S, Sato T, Tezuka S, Goda Y, Irie K, Miwa H, Miura Y, Ishii T, Kaneko T, Nagahama M, Shibata W, Nozaki A, Maeda S. Quantitative monitoring of circulating tumor DNA in patients with advanced pancreatic cancer undergoing chemotherapy. Cancer Sci 2020; 111:266-278. [PMID: 31746520 PMCID: PMC6942439 DOI: 10.1111/cas.14245] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
According to cancer genome sequences, more than 90% of cases of pancreatic ductal adenocarcinoma (PDAC) harbor active KRAS mutations. Digital PCR (dPCR) enables accurate detection and quantification of rare mutations. We assessed the dynamics of circulating tumor DNA (ct-DNA) in patients with advanced PDAC undergoing chemotherapy using dPCR. KRAS G12/13 mutation was assayed by dPCR in 47 paired tissue- and ct-DNA samples. The 21 patients were subjected to quantitative ct-DNA monitoring at 4 to 8-week intervals during chemotherapy. KRAS mutation was detected in 45 of those 47 patients using tissue DNA. In the KRAS mutation-negative cases, next-generation sequencing revealed KRAS Q61K and NRAS Q61R mutations. KRAS mutation was detected in 23/45 cases using ct-DNA (liver or lung metastasis, 18/19; mutation allele frequency [MAF], 0.1%-31.7%; peritoneal metastasis, 3/9 [0.1%], locally advanced, 2/17 [0.1%-0.2%]). In the ct-DNA monitoring, the MAF value changed in concordance with the disease state. In the 6 locally advanced cases, KRAS mutation appeared concurrently with liver metastasis. Among the 6 cases with liver metastasis, KRAS mutation disappeared during the duration of stable disease or a partial response, and reappeared at the time of progressive disease. The median progression-free survival was longer in cases in which KRAS mutation disappeared after an initial course of chemotherapy than in those in which it was continuously detected (248.5 vs 50 days, P < .001). Therefore, ct-DNA monitoring enables continuous assessment of disease state and could have prognostic utility during chemotherapy.
Collapse
Affiliation(s)
- Makoto Sugimori
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kazuya Sugimori
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Hiromi Tsuchiya
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Yoshimasa Suzuki
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Sho Tsuyuki
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yoshihiro Kaneta
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Akane Hirotani
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Katsuyuki Sanga
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yuichiro Tozuka
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Satoshi Komiyama
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Takeshi Sato
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Shun Tezuka
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Yoshihiro Goda
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Kuniyasu Irie
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Haruo Miwa
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Yuuki Miura
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Tomohiro Ishii
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Takashi Kaneko
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Masatsugu Nagahama
- Department of GastroenterologyShowa University Fujigaoka HospitalYokohamaJapan
| | - Wataru Shibata
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
- Division of Translational ResearchAdvanced Medical Research CenterYokohama City UniversityYokohamaJapan
| | - Akito Nozaki
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Shin Maeda
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
18
|
Buscail E, Maulat C, Muscari F, Chiche L, Cordelier P, Dabernat S, Alix-Panabières C, Buscail L. Liquid Biopsy Approach for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11060852. [PMID: 31248203 PMCID: PMC6627808 DOI: 10.3390/cancers11060852] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is a public health problem because of its increasing incidence, the absence of early diagnostic tools, and its aggressiveness. Despite recent progress in chemotherapy, the 5-year survival rate remains below 5%. Liquid biopsies are of particular interest from a clinical point of view because they are non-invasive biomarkers released by primary tumours and metastases, remotely reflecting disease burden. Pilot studies have been conducted in pancreatic cancer patients evaluating the detection of circulating tumour cells, cell-free circulating tumour DNA, exosomes, and tumour-educated platelets. There is heterogeneity between the methods used to isolate circulating tumour elements as well as the targets used for their identification. Performances for the diagnosis of pancreatic cancer vary depending of the technique but also the stage of the disease: 30–50% of resectable tumours are positive and 50–100% are positive in locally advanced and/or metastatic cases. A significant prognostic value is demonstrated in 50–70% of clinical studies, irrespective of the type of liquid biopsy. Large prospective studies of homogeneous cohorts of patients are lacking. One way to improve diagnostic and prognostic performances would be to use a combined technological approach for the detection of circulating tumour cells, exosomes, and DNA.
Collapse
Affiliation(s)
- Etienne Buscail
- INSERM U1035, Bordeaux University, 33000 Bordeaux, France.
- Department of Digestive Surgery, Bordeaux University Hospital, 33600 Pessac, France.
| | - Charlotte Maulat
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Digestive Surgery, Toulouse University Hospital, 31059 Toulouse, France.
| | - Fabrice Muscari
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Digestive Surgery, Toulouse University Hospital, 31059 Toulouse, France.
| | - Laurence Chiche
- INSERM U1035, Bordeaux University, 33000 Bordeaux, France.
- Department of Digestive Surgery, Bordeaux University Hospital, 33600 Pessac, France.
| | - Pierre Cordelier
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), Montpellier Hospital and University of Montpellier, 34295 Montpellier, France.
| | - Louis Buscail
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Gastroenterology and Pancreatology, Toulouse University Hospital, 31059 Toulouse, France.
| |
Collapse
|
19
|
Pratt ED, Cowan RW, Manning SL, Qiao E, Cameron H, Schradle K, Simeone DM, Zhen DB. Multiplex Enrichment and Detection of Rare KRAS Mutations in Liquid Biopsy Samples using Digital Droplet Pre-Amplification. Anal Chem 2019; 91:7516-7523. [DOI: 10.1021/acs.analchem.8b01605] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Erica D. Pratt
- Ahmed Center for Pancreatic Cancer Research, Department of Gastroenterology, Hepatology and Nutrition, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Robert W. Cowan
- Ahmed Center for Pancreatic Cancer Research, Department of Gastroenterology, Hepatology and Nutrition, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Sara L. Manning
- Ahmed Center for Pancreatic Cancer Research, Department of Gastroenterology, Hepatology and Nutrition, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | | | | | | | | | | |
Collapse
|
20
|
Detection of BRAF V600E mutation in fine-needle aspiration fluid of papillary thyroid carcinoma by droplet digital PCR. Clin Chim Acta 2019; 491:91-96. [PMID: 30682328 DOI: 10.1016/j.cca.2019.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/06/2019] [Accepted: 01/17/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Papillary thyroid carcinoma (PTC) accounts for 85% of thyroid carcinoma, which is the most common endocrine tumor. For the diagnosis of PTC, ultrasound-guided fine needle aspiration (FNA) with pathological evaluation is the standard test and BRAF V600E mutation is the most common molecular marker associated with the occurrence, progression and poor clinicopathological characteristics of PTC. However, because of the small amount of the tumor cells obtained by FNA for pathological evaluation or BRAF V600E mutation detection, more sensitive and accurate methods are required. Our study aimed to investigate the performance of droplet digital PCR (ddPCR) in detecting BRAF V600E mutation in FNA samples from PTC patients. METHODS One hundred and sixty suspected thyroid cancer patients were enrolled, including 146 PTC patients, 2 follicular thyroid carcinoma (FTC) and 12 benign patients, identified by FNA biopsy according to the NCCN clinical practice guidelines of Thyroid Carcinoma. ddPCR and amplification-refractory mutation system (ARMS, AmoyDx) were used to detect BRAFV600E mutation and the results were compared. RESULTS ddPCR had high reproducibility (CV0.1% = 22.82% and CV10% = 4.85%) and the detection sensitivity can reach 1–2 copies/μl (0.01%). Among the 160 patients, 128 BRAF V600E mutations were detected, including 4 ARMS negative patients and 3 benign cases [corrected]. CONCLUSIONS Our results demonstrated that ddPCR could be used in detecting BRAF V600E mutation from FNA fluid samples with higher sensitivity and accuracy than ARMS.
Collapse
|
21
|
DiPardo BJ, Winograd P, Court CM, Tomlinson JS. Pancreatic cancer circulating tumor cells: applications for personalized oncology. Expert Rev Mol Diagn 2018; 18:809-820. [PMID: 30099926 DOI: 10.1080/14737159.2018.1511429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pancreatic cancer (PC) is a highly lethal disease, in part because of early metastasis, late diagnosis, and limited treatment options. Circulating tumor cells (CTCs) are cancer cells that have achieved the metastatic step of intravasation, and are thus a unique source of biomarkers with potential applications in the staging, prognostication, and treatment of PC. Areas covered: This review describes the use of CTCs in PC, including isolation methods, the significance of CTC enumeration, and studies examining phenotypic and molecular characteristics of CTCs. We also speculate on future directions for PC CTC research such as single-cell analysis and CTC culture. Expert commentary: CTCs represent a potential unique serial source of cancer tissue via a convenient and minimally invasive blood draw. Recent development of isolation methods that allow for the release of viable CTCs with unaltered molecular characteristics has set the stage for single-cell analysis and ex vivo culture. Although there is significant potential for CTCs as a biomarker to impact PC from diagnosis to therapy, there still remain a number of challenges to the routine implementation of CTCs in the clinical management of PC.
Collapse
Affiliation(s)
- Benjamin J DiPardo
- a Department of Surgery , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Surgery , Greater Los Angeles Veterans Health Administration , Los Angeles , CA , USA
| | - Paul Winograd
- a Department of Surgery , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Surgery , Greater Los Angeles Veterans Health Administration , Los Angeles , CA , USA
| | - Colin M Court
- a Department of Surgery , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Surgery , Greater Los Angeles Veterans Health Administration , Los Angeles , CA , USA
| | - James S Tomlinson
- a Department of Surgery , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Surgery , Greater Los Angeles Veterans Health Administration , Los Angeles , CA , USA
| |
Collapse
|
22
|
Chen X, Roozbahani GM, Ye Z, Zhang Y, Ma R, Xiang J, Guan X. Label-Free Detection of DNA Mutations by Nanopore Analysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11519-11528. [PMID: 29537824 PMCID: PMC6760912 DOI: 10.1021/acsami.7b19774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cancers are caused by mutations to genes that regulate cell normal functions. The capability to rapid and reliable detection of specific target gene variations can facilitate early disease detection and diagnosis and also enables personalized treatment of cancer. Most of the currently available methods for DNA mutation detection are time-consuming and/or require the use of labels or sophisticated instruments. In this work, we reported a label-free enzymatic reaction-based nanopore sensing strategy to detect DNA mutations, including base substitution, deletion, and insertion. The method was rapid and highly sensitive with a detection limit of 4.8 nM in a 10 min electrical recording. Furthermore, the nanopore assay could differentiate among perfect match, one mismatch, and two mismatches. In addition, simulated serum samples were successfully analyzed. Our developed nanopore-based DNA mutation detection strategy should find useful application in genetic diagnosis.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
| | - Golbarg M Roozbahani
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
| | - Zijing Ye
- Department of Biology, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
| | - Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
| | - Rui Ma
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
| | - Jialing Xiang
- Department of Biology, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
- Corresponding author: Tel: 312-567-8922. Fax: 312-567-3494.
| |
Collapse
|
23
|
Molinari C, Abou Khouzam R, Salvi S, Rossi T, Ranzani GN, Calistri D. Detection of a CDH1 Rare Transcript Variant in Fresh-frozen Gastric Cancer Tissues by Chip-based Digital PCR. J Vis Exp 2018. [PMID: 29443099 DOI: 10.3791/57066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
CDH1a, a non-canonical transcript of the CDH1 gene, has been found to be expressed in some gastric cancer (GC) cell lines, whereas it is absent in normal gastric mucosa. Recently, we detected CDH1a transcript variant in fresh-frozen tumor tissues obtained from patients with GC. The expression of this variant in tissue samples was investigated by the chip-based digital PCR (dPCR) approach presented here. dPCR offers the potential for an accurate, robust, and highly sensitive measurement of nucleic acids and is increasingly utilized for many applications in different fields. dPCR is capable of detecting rare targets; in addition, dPCR offers the possibility for absolute and precise quantification of nucleic acids without the need for calibrators and standard curves. In fact, the reaction partitioning enriches the target from the background, which improves amplification efficiency and tolerance to inhibitors. Such characteristics make dPCR an optimal tool for the detection of the CDH1a rare transcript.
Collapse
Affiliation(s)
- Chiara Molinari
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS;
| | | | - Samanta Salvi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS
| | - Tania Rossi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS
| | | | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS
| |
Collapse
|
24
|
Nystrand CF, Ghanima W, Waage A, Jonassen CM. JAK2 V617F mutation can be reliably detected in serum using droplet digital PCR. Int J Lab Hematol 2017; 40:181-186. [PMID: 29150911 DOI: 10.1111/ijlh.12762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Detection of the JAK2 V617F mutation is a key step in the diagnosis of myeloproliferative neoplasms (MPN). Sensitive real-time quantitative PCR (qPCR) detection on peripheral blood (PB) is the most widely used method. The main objective of this study was to determine whether serum, the most common material available in archival biobanks, is a good liquid biopsy for detecting and quantifying the JAK2 V617F mutation using droplet digital PCR (ddPCR). METHODS Paired PB and serum samples from 66 patients with MPN were used. Serum samples were frozen at -25°C before analysis. DNA was extracted from 200 μL PB and 400 μL serum, and ddPCR analysis was performed. RESULTS Among the 47 patients with detectable mutation in their PB samples, the overall sensitivity for the detection of JAK2 mutation in serum was of 96% (45 of 47); V617F was detected in all cases where mutation load was above 1%. Our results showed very strong correlation between PB and serum (Spearman r: 0.989, P < .0001). Significantly higher allele burden was detected in serum compared to PB (Wilcoxon signed ranks test, Z = -5.672, P < .0001). CONCLUSION In our study, JAK2 V617F mutation load as low as 1% was reliably detected in serum using ddPCR.
Collapse
Affiliation(s)
- C F Nystrand
- Centre for Laboratory medicine, Østfold Hospital Trust, Kalnes, Norway
| | - W Ghanima
- Department of Oncology, Østfold Hospital Trust, Kalnes, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - A Waage
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Haematology, St. Olavs Hospital, Trondheim, Norway
| | - C M Jonassen
- Centre for Laboratory medicine, Østfold Hospital Trust, Kalnes, Norway.,Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
25
|
Bevilacqua C, Ducos B. Laser microdissection: A powerful tool for genomics at cell level. Mol Aspects Med 2017; 59:5-27. [PMID: 28927943 DOI: 10.1016/j.mam.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
Laser microdissection (LM) has become widely democratized over the last fifteen years. Instruments have evolved to offer more powerful and efficient lasers as well as new options for sample collection and preparation. Technological evolutions have also focused on the post-microdissection analysis capabilities, opening up investigations in all disciplines of experimental and clinical biology, thanks to the advent of new high-throughput methods of genome analysis, including RNAseq and proteomics, now globally known as microgenomics, i.e. analysis of biomolecules at the cell level. In spite of the advances these rapidly developing methods have allowed, the workflow for sampling and collection by LM remains a critical step in insuring sample integrity in terms of histology (accurate cell identification) and biochemistry (reliable analyzes of biomolecules). In this review, we describe the sample processing as well as the strengths and limiting factors of LM applied to the specific selection of one or more cells of interest from a heterogeneous tissue. We will see how the latest developments in protocols and methods have made LM a powerful and sometimes essential tool for genomic and proteomic analyzes of tiny amounts of biomolecules extracted from few cells isolated from a complex tissue, in their physiological context, thus offering new opportunities for understanding fundamental physiological and/or patho-physiological processes.
Collapse
Affiliation(s)
- Claudia Bevilacqua
- GABI, Plateforme @BRIDGE, INRA, AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy en Josas, France.
| | - Bertrand Ducos
- LPS-ENS, CNRS UMR 8550, UPMC, Université Denis Diderot, PSL Research University, 24 Rue Lhomond, 75005 Paris France; High Throughput qPCR Core Facility, IBENS, 46 Rue d'Ulm, 75005 Paris France; Laser Microdissection Facility of Montagne Sainte Geneviève, CIRB Collège de France, Place Marcellin Berthelot, 75005 Paris France.
| |
Collapse
|