1
|
Balthazart J. Steroid-dependent plasticity in the song control system: Perineuronal nets and HVC neurogenesis. Front Neuroendocrinol 2023; 71:101097. [PMID: 37611808 PMCID: PMC10841294 DOI: 10.1016/j.yfrne.2023.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The vocal control nucleus HVC in songbirds has emerged as a widespread model system to study adult brain plasticity in response to changes in the hormonal and social environment. I review here studies completed in my laboratory during the last decade that concern two aspects of this plasticity: changes in aggregations of extracellular matrix components surrounding the soma of inhibitory parvalbumin-positive neurons called perineuronal nets (PNN) and the production/incorporation of new neurons. Both features are modulated by the season, age, sex and endocrine status of the birds in correlation with changes in song structure and stability. Causal studies have also investigated the role of PNN and of new neurons in the control of song. Dissolving PNN with chondroitinase sulfate, a specific enzyme applied directly on HVC or depletion of new neurons by focalized X-ray irradiation both affected song structure but the amplitude of changes was limited and deserves further investigations.
Collapse
|
2
|
Dos Santos EB, Logue DM, Ball GF, Cornil CA, Balthazart J. Does the syrinx, a peripheral structure, constrain effects of sex steroids on behavioral sex reversal in adult canaries? Horm Behav 2023; 154:105394. [PMID: 37343444 PMCID: PMC10527430 DOI: 10.1016/j.yhbeh.2023.105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
We previously confirmed that effects of testosterone (T) on singing activity and on the volume of brain song control nuclei are sexually differentiated in adult canaries: females are limited in their ability to respond to T as males do. Here we expand on these results by focusing on sex differences in the production and performance of trills, i.e., rapid repetitions of song elements. We analyzed >42,000 trills recorded over a period of 6 weeks from 3 groups of castrated males and 3 groups of photoregressed females that received Silastic™ implants filled with T, T plus estradiol or left empty as control. Effects of T on the number of trills, trill duration and percent of time spent trilling were all stronger in males than females. Irrespective of endocrine treatment, trill performance assessed by vocal deviations from the trill rate versus trill bandwidth trade-off was also higher in males than in females. Finally, inter-individual differences in syrinx mass were positively correlated with specific features of trills in males but not in females. Given that T increases syrinx mass and syrinx fiber diameter in males but not in females, these data indicate that sex differences in trilling behavior are related to sex differences in syrinx mass and syrinx muscle fiber diameter that cannot be fully suppressed by sex steroids in adulthood. Sexual differentiation of behavior thus reflects organization not only of the brain but also of peripheral structures.
Collapse
Affiliation(s)
- Ednei B Dos Santos
- GIGA Neurosciences, Laboratory of Behavioral Neuroendocrinology, University of Liege, Belgium
| | - David M Logue
- Department of Psychology, University of Lethbridge, Lethbridge, AB, Canada
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Charlotte A Cornil
- GIGA Neurosciences, Laboratory of Behavioral Neuroendocrinology, University of Liege, Belgium
| | - Jacques Balthazart
- GIGA Neurosciences, Laboratory of Behavioral Neuroendocrinology, University of Liege, Belgium.
| |
Collapse
|
3
|
Dos Santos EB, Logue DM, Ball GF, Cornil CA, Balthazart J. Does the syrinx, a peripheral structure, constrain effects of sex steroids on behavioral sex reversal in adult canaries? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537462. [PMID: 37131795 PMCID: PMC10153355 DOI: 10.1101/2023.04.19.537462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We previously confirmed that effects of testosterone (T) on singing activity and on the volume of brain song control nuclei are sexually differentiated in adult canaries: females are limited in their ability to respond to T as males do. Here we expand on these results by focusing on sex differences in the production and performance of trills, i.e., rapid repetitions of song elements. We analyzed more than 42,000 trills recorded over a period of 6 weeks from 3 groups of castrated males and 3 groups of photoregressed females that received Silasticâ"¢ implants filled with T, T plus estradiol or left empty as control. Effects of T on the number of trills, trill duration and percent of time spent trilling were all stronger in males than females. Irrespective of endocrine treatment, trill performance assessed by vocal deviations from the trill rate versus trill bandwidth trade-off was also higher in males than in females. Finally, inter-individual differences in syrinx mass were positively correlated with trill production in males but not in females. Given that T increases syrinx mass and syrinx fiber diameter in males but not in females, these data indicate that sex differences in trilling behavior are related to sex differences in syrinx mass and syrinx muscle fiber diameter that cannot be fully reversed by sex steroids in adulthood. Sexual differentiation of behavior thus reflects organization not only of the brain but also of peripheral structures.
Collapse
|
4
|
Dos Santos EB, Ball GF, Cornil CA, Balthazart J. Treatment with androgens plus estrogens cannot reverse sex differences in song and the song control nuclei in adult canaries. Horm Behav 2022; 143:105197. [PMID: 35597055 DOI: 10.1016/j.yhbeh.2022.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022]
Abstract
Adult treatments with testosterone (T) do not activate singing behavior nor promote growth of song control nuclei to the same extent in male and female canaries (Serinus canaria). Because T acts in part via aromatization into an estrogen and brain aromatase activity is lower in females than in males in many vertebrates, we hypothesized that this enzymatic difference might explain the sex differences seen even after exposure to the same amount of T. Three groups of castrated males and 3 groups of photoregressed females (i.e., with quiescent ovaries following exposure to short days) received either 2 empty 10 mm silastic implants, one empty implant and one implant filled with T or one implant filled with T plus one with estradiol (E2). Songs were recorded for 3 h each week for 6 weeks before brains were collected and song control nuclei volumes were measured in Nissl-stained sections. Multiple measures of song were still different in males and females following treatment with T. Co-administration of E2 did not improve these measures and even tended to inhibit some measures such as song rate and song duration. The volume of forebrain song control nuclei (HVC, RA, Area X) and the rate of neurogenesis in HVC was increased by the two steroid treatments, but remained significantly smaller in females than in males irrespective of the endocrine condition. These sex differences are thus not caused by a lower aromatization of the steroid; sex differences in canaries are probably organized either by early steroid action or by sex-specific gene regulation directly in the brain.
Collapse
Affiliation(s)
- Ednei Barros Dos Santos
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Charlotte A Cornil
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium.
| |
Collapse
|
5
|
Chiver I, Ball GF, Lallemand F, Vandries LM, Plumier JP, Cornil CA, Balthazart J. Photoperiodic control of singing behavior and reproductive physiology in male Fife fancy canaries. Horm Behav 2022; 143:105194. [PMID: 35561543 DOI: 10.1016/j.yhbeh.2022.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
Temperate-zone birds display marked seasonal changes in reproductive behaviors and the underlying hormonal and neural mechanisms. These changes were extensively studied in canaries (Serinus canaria) but differ between strains. Fife fancy male canaries change their reproductive physiology in response to variations in day length but it remains unclear whether they become photorefractory (PR) when exposed to long days and what the consequences are for gonadal activity, singing behavior and the associated neural plasticity. Photosensitive (PS) male birds that had become reproductively competent (high song output, large testes) after being maintained on short days (SD, 8 L:16D) for 6 months were divided into two groups: control birds remained on SD (SD-PS group) and experimental birds were switched to long days (16 L:8D) and progressively developed photorefractoriness (LD-PR group). During the following 12 weeks, singing behavior (quantitatively analyzed for 3 × 2 hours every week) and gonadal size (repeatedly measured by CT X-ray scans) remained similar in both groups but there was an increase in plasma testosterone and trill numbers in the LD-PR group. Day length was then decreased back to 8 L:16D for LD-PR birds, which immediately induced a cessation of song, a decrease in plasma testosterone concentration, in the volume of song control nuclei (HVC, RA and Area X), in HVC neurogenesis and in aromatase expression in the medial preoptic area. These data demonstrate that Fife fancy canaries readily respond to changes in photoperiod and display a pattern of photorefractoriness following exposure to long days that is associated with marked changes in brain and behavior.
Collapse
Affiliation(s)
- Ioana Chiver
- GIGA Neurosciences, University of Liege, Belgium
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA
| | | | | | | | | | | |
Collapse
|
6
|
Orije JEMJ, Raymaekers SR, Majumdar G, De Groof G, Jonckers E, Ball GF, Verhoye M, Darras VM, Van der Linden A. Unraveling the Role of Thyroid Hormones in Seasonal Neuroplasticity in European Starlings ( Sturnus vulgaris). Front Mol Neurosci 2022; 15:897039. [PMID: 35836548 PMCID: PMC9275473 DOI: 10.3389/fnmol.2022.897039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Thyroid hormones clearly play a role in the seasonal regulation of reproduction, but any role they might play in song behavior and the associated seasonal neuroplasticity in songbirds remains to be elucidated. To pursue this question, we first established seasonal patterns in the expression of thyroid hormone regulating genes in male European starlings employing in situ hybridization methods. Thyroid hormone transporter LAT1 expression in the song nucleus HVC was elevated during the photosensitive phase, pointing toward an active role of thyroid hormones during this window of possible neuroplasticity. In contrast, DIO3 expression was high in HVC during the photostimulated phase, limiting the possible effect of thyroid hormones to maintain song stability during the breeding season. Next, we studied the effect of hypothyroidism on song behavior and neuroplasticity using in vivo MRI. Both under natural conditions as with methimazole treatment, circulating thyroid hormone levels decreased during the photosensitive period, which coincided with the onset of neuroplasticity. This inverse relationship between thyroid hormones and neuroplasticity was further demonstrated by the negative correlation between plasma T3 and the microstructural changes in several song control nuclei and cerebellum. Furthermore, maintaining hypothyroidism during the photostimulated period inhibited the increase in testosterone, confirming the role of thyroid hormones in activating the hypothalamic-pituitary-gonadal (HPG) axis. The lack of high testosterone levels influenced the song behavior of hypothyroid starlings, while the lack of high plasma T4 during photostimulation affected the myelination of several tracts. Potentially, a global reduction of circulating thyroid hormones during the photosensitive period is necessary to lift the brake on neuroplasticity imposed by the photorefractory period, whereas local fine-tuning of thyroid hormone concentrations through LAT1 could activate underlying neuroplasticity mechanisms. Whereas, an increase in circulating T4 during the photostimulated period potentially influences the myelination of several white matter tracts, which stabilizes the neuroplastic changes. Given the complexity of thyroid hormone effects, this study is a steppingstone to disentangle the influence of thyroid hormones on seasonal neuroplasticity.
Collapse
Affiliation(s)
- Jasmien E. M. J. Orije
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sander R. Raymaekers
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
| | - Gaurav Majumdar
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Geert De Groof
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Gregory F. Ball
- Department of Psychology, Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
| | - Marleen Verhoye
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Veerle M. Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Ivanova A, Gruzova O, Ermolaeva E, Astakhova O, Itaman S, Enikolopov G, Lazutkin A. Synthetic Thymidine Analog Labeling without Misconceptions. Cells 2022; 11:cells11121888. [PMID: 35741018 PMCID: PMC9220989 DOI: 10.3390/cells11121888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Tagging proliferating cells with thymidine analogs is an indispensable research tool; however, the issue of the potential in vivo cytotoxicity of these compounds remains unresolved. Here, we address these concerns by examining the effects of BrdU and EdU on adult hippocampal neurogenesis and EdU on the perinatal somatic development of mice. We show that, in a wide range of doses, EdU and BrdU label similar numbers of cells in the dentate gyrus shortly after administration. Furthermore, whereas the administration of EdU does not affect the division and survival of neural progenitor within 48 h after injection, it does affect cell survival, as evaluated 6 weeks later. We also show that a single injection of various doses of EdU on the first postnatal day does not lead to noticeable changes in a panel of morphometric criteria within the first week; however, higher doses of EdU adversely affect the subsequent somatic maturation and brain growth of the mouse pups. Our results indicate the potential caveats in labeling the replicating DNA using thymidine analogs and suggest guidelines for applying this approach.
Collapse
Affiliation(s)
- Anna Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (A.I.); (O.G.); (E.E.); (O.A.)
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Olesya Gruzova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (A.I.); (O.G.); (E.E.); (O.A.)
| | - Elizaveta Ermolaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (A.I.); (O.G.); (E.E.); (O.A.)
| | - Olga Astakhova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (A.I.); (O.G.); (E.E.); (O.A.)
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sheed Itaman
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
- Graduate Program in Neurobiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Grigori Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (G.E.); (A.L.)
| | - Alexander Lazutkin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (A.I.); (O.G.); (E.E.); (O.A.)
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow 119991, Russia
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (G.E.); (A.L.)
| |
Collapse
|
8
|
Aronowitz JV, Kirn JR, Pytte CL, Aaron GB. DARPP-32 distinguishes a subset of adult-born neurons in zebra finch HVC. J Comp Neurol 2021; 530:792-803. [PMID: 34545948 DOI: 10.1002/cne.25245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/05/2022]
Abstract
Adult male zebra finches (Taeniopygia guttata) continually incorporate adult-born neurons into HVC, a telencephalic brain region necessary for the production of learned song. These neurons express activity-dependent immediate early genes (e.g., zenk and c-fos) following song production, suggesting that these neurons are active during song production. Half of these adult-born HVC neurons (HVC NNs) can be backfilled from the robust nucleus of the arcopallium (RA) and are a part of the vocal motor pathway underlying learned song production, but the other half do not backfill from RA, and they remain to be characterized. Here, we used cell birth-dating, retrograde tract tracing, and immunofluorescence to demonstrate that half of all HVC NNs express the phosphoprotein DARPP-32, a protein associated with dopamine receptor expression. We also demonstrate that DARPP-32+ HVC NNs are contacted by tyrosine hydroxylase immunoreactive fibers, suggesting that they receive catecholaminergic input, have transiently larger nuclei than DARPP-32-neg HVC NNs, and do not backfill from RA. Taken together, these findings help characterize a group of HVC NNs that have no apparent projections to RA and so far have eluded positive identification other than HVC NN status.
Collapse
Affiliation(s)
- Jake V Aronowitz
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - John R Kirn
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA.,Program in Neuroscience and Behavior, Wesleyan University, Middletown, Connecticut, USA
| | - Carolyn L Pytte
- Department of Psychology, Queens College and The Graduate Center, City University of New York, Flushing, New York, USA
| | - Gloster B Aaron
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA.,Program in Neuroscience and Behavior, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
9
|
Aronowitz JV, Perez A, O’Brien C, Aziz S, Rodriguez E, Wasner K, Ribeiro S, Green D, Faruk F, Pytte CL. Unilateral vocal nerve resection alters neurogenesis in the avian song system in a region-specific manner. PLoS One 2021; 16:e0256709. [PMID: 34464400 PMCID: PMC8407570 DOI: 10.1371/journal.pone.0256709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
New neurons born in the adult brain undergo a critical period soon after migration to their site of incorporation. During this time, the behavior of the animal may influence the survival or culling of these cells. In the songbird song system, earlier work suggested that adult-born neurons may be retained in the song motor pathway nucleus HVC with respect to motor progression toward a target song during juvenile song learning, seasonal song restructuring, and experimentally manipulated song variability. However, it is not known whether the quality of song per se, without progressive improvement, may also influence new neuron survival. To test this idea, we experimentally altered song acoustic structure by unilateral denervation of the syrinx, causing a poor quality song. We found no effect of aberrant song on numbers of new neurons in HVC, suggesting that song quality does not influence new neuron culling in this region. However, aberrant song resulted in the loss of left-side dominance in new neurons in the auditory region caudomedial nidopallium (NCM), and a bilateral decrease in new neurons in the basal ganglia nucleus Area X. Thus new neuron culling may be influenced by behavioral feedback in accordance with the function of new neurons within that region. We propose that studying the effects of singing behaviors on new neurons across multiple brain regions that differentially subserve singing may give rise to general rules underlying the regulation of new neuron survival across taxa and brain regions more broadly.
Collapse
Affiliation(s)
- Jake V. Aronowitz
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Alice Perez
- Psychology Department, The Graduate Center, City University of New York, New York, NY, United States of America
| | - Christopher O’Brien
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Siaresh Aziz
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Erica Rodriguez
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Kobi Wasner
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Sissi Ribeiro
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Dovounnae Green
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Farhana Faruk
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Carolyn L. Pytte
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
- Psychology Department, The Graduate Center, City University of New York, New York, NY, United States of America
- Biology Department, The Graduate Center, City University of New York, New York, NY, United States of America
| |
Collapse
|
10
|
Kubikova L, Polomova J, Mikulaskova V, Lukacova K. Effectivity of Two Cell Proliferation Markers in Brain of a Songbird Zebra Finch. BIOLOGY 2020; 9:biology9110356. [PMID: 33113793 PMCID: PMC7694046 DOI: 10.3390/biology9110356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary The present study compared the effectivity of two cell proliferation markers, BrdU and EdU, in the brain neurogenic zone of the songbird zebra finch. It shows their saturation doses, that BrdU labels more cells than the equimolar dose of EdU, and that both markers can be reliably detected in the same brain. Abstract There are two most heavily used markers of cell proliferation, thymidine analogues 5-bromo-2′-deoxyuridine (BrdU) and 5-ethynyl-2′-deoxyuridine (EdU) that are incorporated into the DNA during its synthesis. In neurosciences, they are often used consecutively in the same animal to detect neuronal populations arising at multiple time points, their migration and incorporation. The effectivity of these markers, however, is not well established. Here, we studied the effectivity of equimolar doses of BrdU and EdU to label new cells and looked for the dose that will label the highest number of proliferating cells in the neurogenic ventricular zone (VZ) of adult songbirds. We found that, in male zebra finches (Taeniopygia guttata), the equimolar doses of BrdU and EdU did not label the same number of cells, with BrdU being more effective than EdU. Similarly, in liver, BrdU was more effective. The saturation of the detected brain cells occurred at 50 mg/kg BrdU and above 41 mg/kg EdU. Higher dose of 225 mg/kg BrdU or the equimolar dose of EdU did not result in any further significant increases. These results show that both markers are reliable for the detection of proliferating cells in birds, but the numbers obtained with BrdU and EdU should not be compared.
Collapse
Affiliation(s)
- Lubica Kubikova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
- Correspondence:
| | - Justina Polomova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
| | - Viktoria Mikulaskova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Kristina Lukacova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
| |
Collapse
|
11
|
Lumineau S, Pawluski JL, Charlier TD, Beylard A, Aigueperse N, Bertin A, Lévy F. High social motivation induces deficits in maternal behaviour but not plasticity of the subventricular zone in Japanese quail (Coturnix japonica). J Neuroendocrinol 2019; 31:e12716. [PMID: 30927275 DOI: 10.1111/jne.12716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/15/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Maternal behaviour develops differently depending on the characteristics of an individual, such as age or emotional reactivity. Social motivation, defined as the propensity to establish social contact, has received little attention in relation to maternal behaviour in birds. In addition, the transition to motherhood is a time of plasticity in the brain of the new mother in mammals. However, it remains to be determined how maternal brain plasticity is affected in avian species. The present study investigated how a the social motivation of a mother alters maternal behaviour and brain plasticity of the Japanese quail (Coturnix japonica). Adult females from lines selected for high and low social motivation were exposed to chicks for 11 days. After maternal care testing, and at matched time points in controls, the brains of females were perfused for assessment of doublecortin-immunoreactive staining, a marker of neurogenesis, in the subventricular zone (SVZ), a neurogenic niche. The results obtained showed that high socially motivated female quail spent significantly less time performing maternal behaviour when exposed to chicks compared to low socially motivated females. Moreover, the warming of chicks by high socially motivated females involved less covering postures and mothers were more rejecting of chicks. Interestingly, the plasticity indicators in the SVZ did not differ between low and high socially motivated females and were not associated with differences in maternal caregiving when using doublecortin-immunoreactive staining. Thus, high social motivation in this avian species does not favour maternal behaviour and this level of motivation to the mother is not related to changes in neuroplasticity in the SVZ of the female quail.
Collapse
Affiliation(s)
- Sophie Lumineau
- CNRS, Ethos (Ethologie animale et humaine), UMR 6552, Univ Rennes, Normandie Univ, Rennes, France
| | - Jodi L Pawluski
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Univ Rennes, Rennes, France
| | - Thierry D Charlier
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Univ Rennes, Rennes, France
| | - Amandine Beylard
- CNRS, Ethos (Ethologie animale et humaine), UMR 6552, Univ Rennes, Normandie Univ, Rennes, France
| | - Nadège Aigueperse
- CNRS, Ethos (Ethologie animale et humaine), UMR 6552, Univ Rennes, Normandie Univ, Rennes, France
| | - Aline Bertin
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Univ Rennes, Rennes, France
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, CNRS, UMR 7247, IFCE, Université F. Rabelais, Nouzilly, France
| | - Frédéric Lévy
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Univ Rennes, Rennes, France
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, CNRS, UMR 7247, IFCE, Université F. Rabelais, Nouzilly, France
| |
Collapse
|
12
|
Xu AK, Gong Z, He YZ, Xia KS, Tao HM. Comprehensive therapeutics targeting the corticospinal tract following spinal cord injury. J Zhejiang Univ Sci B 2019; 20:205-218. [PMID: 30829009 DOI: 10.1631/jzus.b1800280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI), which is much in the public eye, is still a refractory disease compromising the well-being of both patients and society. In spite of there being many methods dealing with the lesion, there is still a deficiency in comprehensive strategies covering all facets of this damage. Further, we should also mention the structure called the corticospinal tract (CST) which plays a crucial role in the motor responses of organisms, and it will be the focal point of our attention. In this review, we discuss a variety of strategies targeting different dimensions following SCI and some treatments that are especially efficacious to the CST are emphasized. Over recent decades, researchers have developed many effective tactics involving five approaches: (1) tackle more extensive regions; (2) provide a regenerative microenvironment; (3) provide a glial microenvironment; (4) transplantation; and (5) other auxiliary methods, for instance, rehabilitation training and electrical stimulation. We review the basic knowledge on this disease and correlative treatments. In addition, some well-formulated perspectives and hypotheses have been delineated. We emphasize that such a multifaceted problem needs combinatorial approaches, and we analyze some discrepancies in past studies. Finally, for the future, we present numerous brand-new latent tactics which have great promise for curbing SCI.
Collapse
Affiliation(s)
- An-Kai Xu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
| | - Zhe Gong
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
| | - Yu-Zhe He
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
| | - Kai-Shun Xia
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
| | - Hui-Min Tao
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
13
|
Testosterone or Estradiol When Implanted in the Medial Preoptic Nucleus Trigger Short Low-Amplitude Songs in Female Canaries. eNeuro 2019; 6:ENEURO.0502-18.2019. [PMID: 31068363 PMCID: PMC6506820 DOI: 10.1523/eneuro.0502-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 11/21/2022] Open
Abstract
In male songbirds, the motivation to sing is largely regulated by testosterone (T) action in the medial preoptic area, whereas T acts on song control nuclei to modulate aspects of song quality. Stereotaxic implantation of T in the medial preoptic nucleus (POM) of castrated male canaries activates a high rate of singing activity, albeit with a longer latency than after systemic T treatment. Systemic T also increases the occurrence of male-like song in female canaries. We hypothesized that this effect is also mediated by T action in the POM. Females were stereotaxically implanted with either T or with 17β-estradiol (E2) targeted at the POM and their singing activity was recorded daily during 2 h for 28 d until brains were collected for histological analyses. Following identification of implant localizations, three groups of subjects were constituted that had either T or E2 implanted in the POM or had an implant that had missed the POM (Out). T and E2 in POM significantly increased the number of songs produced and the percentage of time spent singing as compared with the Out group. The songs produced were in general of a short duration and of poor quality. This effect was not associated with an increase in HVC volume as observed in males, but T in POM enhanced neurogenesis in HVC, as reflected by an increased density of doublecortin-immunoreactive (DCX-ir) multipolar neurons. These data indicate that, in female canaries, T acting in the POM plays a significant role in hormone-induced increases in the motivation to sing.
Collapse
|
14
|
Shevchouk OT, Ball GF, Cornil CA, Balthazart J. Rapid testosterone-induced growth of the medial preoptic nucleus in male canaries. Physiol Behav 2019; 204:20-26. [PMID: 30738033 DOI: 10.1016/j.physbeh.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/30/2023]
Abstract
Testosterone activates singing within days in castrated male songbirds but full song quality only develops after a few weeks. Lesions of the medial preoptic nucleus (POM) inhibit while stereotaxic testosterone implants into this nucleus increase singing rate suggesting that this site plays a key role in the regulation of singing motivation. Testosterone action in the song control system works in parallel to control song quality. Accordingly, systemic testosterone increases POM volume within 1-2 days in female canaries, while the increase in volume of song control nuclei takes at least 2 weeks. The current study tested whether testosterone action is associated with similar differences in latencies in males. Photosensitive castrated male canaries were implanted with testosterone-filled Silastic™ implants and control castrates received empty implants, while simultaneously the photoperiod was switched from short- to long-days. Brains were collected from all subjects two days later. Plasma testosterone was elevated in testosterone-treated but not in controls. HVC volumes were not affected, but testosterone significantly increased the POM volume as identified by the dense group of aromatase-immunoreactive neurons, the number and somal area of these neurons and the fractional area they cover in POM. Testosterone-treated females from a previous experiment had a smaller POM volume in similar conditions suggesting the existence of a stable sex difference potentially affecting singing behavior. Thus testosterone induces male POM growth and aromatase expression in this nucleus within two days without affecting HVC size, further supporting the notion that testosterone increases singing motivation via its action in POM.
Collapse
Affiliation(s)
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
15
|
Polomova J, Lukacova K, Bilcik B, Kubikova L. Is neurogenesis in two songbird species related to their song sequence variability? Proc Biol Sci 2019; 286:20182872. [PMID: 30963944 DOI: 10.1098/rspb.2018.2872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Neurogenesis takes part in the adult songbird brain and new neurons are integrated into the forebrain including defined areas involved in the control of song learning and production. It has been suggested that the new neurons in the song system might enable vocal variability. Here, we examined the basal levels of neurogenesis in two songbird species, zebra finch ( Taeniopygia guttata) and Bengalese finch ( Lonchura striata var. domestica), which do not learn new song elements as adults but differ in the level of song sequence variability. We found that Bengalese finches had less linear and stereotyped song sequence and a higher number of newborn cells in the neurogenic subventricular zone (SVZ) as well as the number of newly born neurons incorporated into the vocal nucleus HVC (used as a proper name) in comparison to zebra finches. Importantly, this vocal sequence variability in Bengalese finches correlated with the number of new neurons in the vocal nucleus HVC and more plastic song was associated with higher neuronal incorporation. In summary, our data support the hypothesis that newly generated neurons facilitate behavioural variability.
Collapse
Affiliation(s)
- Justina Polomova
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Kristina Lukacova
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Boris Bilcik
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Lubica Kubikova
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences , Bratislava , Slovakia
| |
Collapse
|
16
|
Narita Y, Tsutiya A, Nakano Y, Ashitomi M, Sato K, Hosono K, Kaneko T, Chen RD, Lee JR, Tseng YC, Hwang PP, Ohtani-Kaneko R. Androgen induced cellular proliferation, neurogenesis, and generation of GnRH3 neurons in the brain of mature female Mozambique tilapia. Sci Rep 2018; 8:16855. [PMID: 30442908 PMCID: PMC6237963 DOI: 10.1038/s41598-018-35303-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023] Open
Abstract
The neuroplastic mechanisms in the fish brain that underlie sex reversal remain unknown. Gonadotropin-releasing hormone 3 (GnRH3) neurons control male reproductive behaviours in Mozambique tilapia and show sexual dimorphism, with males having a greater number of GnRH3 neurons. Treatment with androgens such as 11-ketotestosterone (KT), but not 17β-estradiol, increases the number of GnRH3 neurons in mature females to a level similar to that observed in mature males. Compared with oestrogen, the effect of androgen on neurogenesis remains less clear. The present study examined the effects of 11-KT, a non-aromatizable androgen, on cellular proliferation, neurogenesis, generation of GnRH3 neurons and expression of cell cycle-related genes in mature females. The number of proliferating cell nuclear antigen-positive cells was increased by 11-KT. Simultaneous injection of bromodeoxyuridine and 11-KT significantly increased the number of newly-generated (newly-proliferated) neurons, but did not affect radial glial cells, and also resulted in newly-generated GnRH3 neurons. Transcriptome analysis showed that 11-KT modulates the expression of genes related to the cell cycle process. These findings suggest that tilapia could serve as a good animal model to elucidate the effects of androgen on adult neurogenesis and the mechanisms for sex reversal in the fish brain.
Collapse
Affiliation(s)
- Yasuto Narita
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Atsuhiro Tsutiya
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Yui Nakano
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Moe Ashitomi
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Kenjiro Sato
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Kohei Hosono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Ruo-Dong Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Jay-Ron Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Yung-Che Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Ritsuko Ohtani-Kaneko
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan.
| |
Collapse
|
17
|
Shevchouk OT, Ghorbanpoor S, Ball GF, Cornil CA, Balthazart J. Testosterone-induced neuroendocrine changes in the medial preoptic area precede song activation and plasticity in song control nuclei of female canaries. Eur J Neurosci 2017; 45:886-900. [DOI: 10.1111/ejn.13530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/26/2016] [Accepted: 01/24/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Olesya T. Shevchouk
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Samar Ghorbanpoor
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Gregory F. Ball
- Department of Psychology; University of Maryland; College Park MD USA
| | - Charlotte A. Cornil
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Jacques Balthazart
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| |
Collapse
|