1
|
Dai X, Jin J, Jia Y, Yang K, Han J, Zhang Z, Ding X, Yao C, Sun T, Zhu C, Liu H. A non-retinol RAR-γ selective agonist-tectorigenin can effectively inhibit the UVA-induced skin damage. Br J Pharmacol 2022; 179:4722-4737. [PMID: 35731978 DOI: 10.1111/bph.15902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Long-term ultraviolet (UV) exposure can cause inflammation, pigmentation, and photoaging. All-trans-retinoic acid (ATRA) is a commonly used retinoic acid receptor (RAR) agonist in the clinical treatment of UV-induced skin problems; however, the use of such drugs is often accompanied by systemic adverse reactions caused by nonspecific activation of RARs. Therefore, this study is expected to screen for a novel RAR-γ-selective agonist with high safety. EXPERIMENTAL APPROACH Molecular docking, dynamic simulation, and Biacore were used to screen and obtain novel RAR-γ-selective agonists. RT-PCR, ELISA, western blotting, immunofluorescence staining, flow cytometry, and proteomic analysis were used to detect the effects of novel RAR-γ selective agonists on UVA-induced inflammation and photoaging cell models. UVA-induced mouse models were used to evaluate the effects of tectorigenin (TEC) on skin repair, aging, and inflammation. KEY RESULTS TEC is a novel RAR-γ-selective agonist. TEC inhibits UV-induced oxidative damage, inflammatory factor release, and matrix metalloproteinase (MMP) production. TEC can also reverse the UVA-induced loss of collagen. The results of the signalling pathway research showed that TEC mainly affects the MAPK/JNK/AP-1 pathway. In animal experiments, TEC showed better anti-inflammatory and anti-photoaging effects and caused less skin irritation than ATRA. Nano-particle loaded TEC, which significantly improved the utilization of TEC, is also presented. CONCLUSIONS AND IMPLICATIONS TEC is a non-retinol RAR-γ-selective agonist that can inhibit UV-induced skin damage and may be developed as a safe pharmaceutical component for the prevention of photoaging and skin inflammation.
Collapse
Affiliation(s)
- Xintong Dai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jing Jin
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Yan Jia
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Kai Yang
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhiyuan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiujuan Ding
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Cheng Yao
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Caibin Zhu
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Ligands and DNA in the allosteric control of retinoid receptors function. Essays Biochem 2021; 65:887-899. [PMID: 34296739 DOI: 10.1042/ebc20200168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/26/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Retinoids are a family of compounds that include both vitamin A (all-trans retinol) and its naturally occurring metabolites such as retinoic acids (e.g. all-trans retinoic acid) as well as synthetic analogs. They are critically involved in the regulation of a wide variety of essential biological processes, such as embryogenesis and organogenesis, apoptosis, reproduction, vision, and the growth and differentiation of normal and neoplastic cells in vertebrates. The ability of these small molecules to control the expression of several hundred genes through binding to nuclear ligand-dependent transcription factors accounts for most of their functions. Three retinoic acid receptor (RARα,β,γ) and three retinoid X receptor (RXRα,β,γ) subtypes form a variety of RXR-RAR heterodimers that have been shown to mediate the pleiotropic effects of retinoids through the recruitment of high-molecular weight co-regulatory complexes to response-element DNA sequences found in the promoter region of their target genes. Hence, heterodimeric retinoid receptors are multidomain entities that respond to various incoming signals, such as ligand and DNA binding, by allosteric structural alterations which are the basis of further signal propagation. Here, we provide an overview of the current state of knowledge with regard to the structural mechanisms by which retinoids and DNA response elements act as allosteric effectors that may combine to finely tune RXR-RAR heterodimers activity.
Collapse
|
3
|
Carazo A, Macáková K, Matoušová K, Krčmová LK, Protti M, Mladěnka P. Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients 2021; 13:1703. [PMID: 34069881 PMCID: PMC8157347 DOI: 10.3390/nu13051703] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin A is a group of vital micronutrients widely present in the human diet. Animal-based products are a rich source of the retinyl ester form of the vitamin, while vegetables and fruits contain carotenoids, most of which are provitamin A. Vitamin A plays a key role in the correct functioning of multiple physiological functions. The human organism can metabolize natural forms of vitamin A and provitamin A into biologically active forms (retinol, retinal, retinoic acid), which interact with multiple molecular targets, including nuclear receptors, opsin in the retina and, according to the latest research, also some enzymes. In this review, we aim to provide a complex view on the present knowledge about vitamin A ranging from its sources through its physiological functions to consequences of its deficiency and metabolic fate up to possible pharmacological administration and potential toxicity. Current analytical methods used for its detection in real samples are included as well.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (K.M.); (L.K.K.)
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (K.M.); (L.K.K.)
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Michele Protti
- The Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum–University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| |
Collapse
|
4
|
A structural signature motif enlightens the origin and diversification of nuclear receptors. PLoS Genet 2021; 17:e1009492. [PMID: 33882063 PMCID: PMC8092661 DOI: 10.1371/journal.pgen.1009492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the α-helix, called π-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the π-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the π-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the π-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the π-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the π-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors. The origin of novelties is a central topic in evolutionary biology. A fundamental question is how organisms constrained by natural selection can divert from existing schemes to set up novel structures or pathways. Among the most important strategies are exaptations, which represent pre-adaptation strategies. Many examples exist in biology, at both morphological and molecular levels, such as the one reported here that focuses on an unusual structural feature called the π-turn. It is found in the structure of the most ancestral nuclear receptors RXR and HNF4. The analyses trace back the complex evolutionary history of the π-turn to more than 500 million years ago, before the Cambrian explosion and show that this feature was essential for the heterodimerization capacity of RXR. Nuclear receptor lineages that emerged later in evolution lost the π-turn. We demonstrate here that this loss in nuclear receptors that heterodimerize with RXR was critical for the emergence of high affinity receptors, such as the vitamin D and the thyroid hormone receptors. On the other hand, the conserved π-turn in RXR allowed it to accommodate multiple heterodimer interfaces with numerous partners. This structural exaptation allowed for the remarkable diversification of nuclear receptors.
Collapse
|
5
|
Wodak SJ, Paci E, Dokholyan NV, Berezovsky IN, Horovitz A, Li J, Hilser VJ, Bahar I, Karanicolas J, Stock G, Hamm P, Stote RH, Eberhardt J, Chebaro Y, Dejaegere A, Cecchini M, Changeux JP, Bolhuis PG, Vreede J, Faccioli P, Orioli S, Ravasio R, Yan L, Brito C, Wyart M, Gkeka P, Rivalta I, Palermo G, McCammon JA, Panecka-Hofman J, Wade RC, Di Pizio A, Niv MY, Nussinov R, Tsai CJ, Jang H, Padhorny D, Kozakov D, McLeish T. Allostery in Its Many Disguises: From Theory to Applications. Structure 2019; 27:566-578. [PMID: 30744993 PMCID: PMC6688844 DOI: 10.1016/j.str.2019.01.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
Allosteric regulation plays an important role in many biological processes, such as signal transduction, transcriptional regulation, and metabolism. Allostery is rooted in the fundamental physical properties of macromolecular systems, but its underlying mechanisms are still poorly understood. A collection of contributions to a recent interdisciplinary CECAM (Center Européen de Calcul Atomique et Moléculaire) workshop is used here to provide an overview of the progress and remaining limitations in the understanding of the mechanistic foundations of allostery gained from computational and experimental analyses of real protein systems and model systems. The main conceptual frameworks instrumental in driving the field are discussed. We illustrate the role of these frameworks in illuminating molecular mechanisms and explaining cellular processes, and describe some of their promising practical applications in engineering molecular sensors and informing drug design efforts.
Collapse
Affiliation(s)
| | | | - Nikolay V Dokholyan
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Departments of Pharmacology and Biochemistry & Molecular Biology, Penn State Medical Center, Hershey, PA, USA
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jing Li
- Departments of Biology and T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, USA
| | - Vincent J Hilser
- Departments of Biology and T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, USA
| | - Ivet Bahar
- School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | | | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, Freiburg, Germany
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Roland H Stote
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Jerome Eberhardt
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Yassmine Chebaro
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Annick Dejaegere
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177 CNRS & Université de Strasbourg, Strasbourg, France
| | | | - Peter G Bolhuis
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Jocelyne Vreede
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Pietro Faccioli
- Physics Department, Università di Trento and INFN-TIFPA, Trento, Italy
| | - Simone Orioli
- Physics Department, Università di Trento and INFN-TIFPA, Trento, Italy
| | - Riccardo Ravasio
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Le Yan
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
| | - Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Matthieu Wyart
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Paraskevi Gkeka
- Structure Design and Informatics, Sanofi R&D, Chilly-Mazarin, France
| | - Ivan Rivalta
- École Normale Supérieure de Lyon, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| | - Giulia Palermo
- Department of Chemistry and Biochemistry, University of California, San Diego, USA; Department of Bioengineering, University of California Riverside, CA 92507, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, USA
| | - Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS) and Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Munich, Germany
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, Robert H Smith Faculty of Agriculture Food and Environment, The Hebrew University, Jerusalem, Israel
| | - Ruth Nussinov
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, USA; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, USA
| | - Hyunbum Jang
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, USA
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tom McLeish
- Department of Physics, University of York, York, UK
| |
Collapse
|