1
|
Ramamurthy K, Thomas NP, Gopi S, Sudhakaran G, Haridevamuthu B, Namasivayam KR, Arockiaraj J. Is Laccase derived from Pleurotus ostreatus effective in microplastic degradation? A critical review of current progress, challenges, and future prospects. Int J Biol Macromol 2024; 276:133971. [PMID: 39032890 DOI: 10.1016/j.ijbiomac.2024.133971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Exploration of Pleurotus ostreatus as a biological agent in the degradation of persistent plastics like polyethylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate, revealing a promising avenue toward mitigating the environmental impacts of plastic pollution. Leveraging the intrinsic enzymatic capabilities of this fungus, mainly its production of laccase, presents a sustainable and eco-friendly approach to breaking down complex polymer chains into less harmful constituents. This review focused on enhancements in the strain's efficiency through genetic engineering, optimized culture conditions, and enzyme immobilization to underscore the potential for scalability and practical application of this bioremediation process. The utilization of laccase from P. ostreatus in plastic waste management demonstrates a vital step forward in pursuing sustainable environmental solutions. By using the potential of fungal bioremediation, researchers can move closer to a future in which the adverse effects of plastic pollution are significantly mitigated, benefiting the health of our planet and future generations.
Collapse
Affiliation(s)
- Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - N Paul Thomas
- Department of Biochemistry, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Sanjay Gopi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Instituite of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Instituite of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Wang P, Li Y, Gao L, Tang X, Zheng D, Wu K, Wang L, Guo P, Ye F. In vitro characterization and molecular epidemiology of Cryptococcus spp. isolates from non-HIV patients in Guangdong, China. Front Microbiol 2024; 14:1295363. [PMID: 38287960 PMCID: PMC10823435 DOI: 10.3389/fmicb.2023.1295363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Background The burden of cryptococcosis in mainland China is enormous. However, the in vitro characterization and molecular epidemiology in Guangdong, a key region with a high incidence of fungal infection in China, are not clear. Methods From January 1, 2010, to March 31, 2019, clinical strains of Cryptococcus were collected from six medical centres in Guangdong. The clinical information and characteristics of the strains were analysed. Furthermore, molecular types were determined. Results A total of 84 strains were collected, mostly from male and young or middle-aged adult patients. Pulmonary and cerebral infections (82.1%) were most common. All strains were Cryptococcus neoformans, grew well at 37°C and had capsules around their cells. One melanin- and urea- and one melanin+ and urea- variants were found. Although most strains exhibited a low minimum inhibitory concentration (MIC) value for voriconazole (mean: 0.04 μg/mL) and posaconazole (mean: 0.12 μg/mL), the results for these isolates showed a high degree of variation in the MIC values of fluconazole and 5-fluorocytosine, and resistance was observed for 4 out of 6 drugs. A significant proportion of these strains had MIC values near the ECV values, particularly in the case of amphotericin B. The proportion of strains near the clinical breakpoints was as follows: fluconazole: 3.66%; voriconazole: 3.66%; itraconazole: 6.10%; posaconazole: 13.41%; amphotericin B: 84.15%; 5-fluorocytosine: 2.44%. These strains were highly homogeneous and were dominated by the Grubii variant (95.2%), VNI (94.0%), α mating (100%), and ST5 (89.3%) genotypes. Other rare types, including ST4, 31, 278, 7, 57 and 106, were also found. Conclusion Phenotypically variant and non-wild-type strains were found in Guangdong, and a significant proportion of these strains had MIC values near the ECV values towards the 6 antifungal drugs, and resistance was observed for 4 out of 6 drugs. The molecular type was highly homogeneous but compositionally diverse, with rare types found. Enhanced surveillance of the aetiology and evolution and continuous monitoring of antifungal susceptibility are needed to provide references for decision-making in the health sector and optimization of disease prevention and control.
Collapse
Affiliation(s)
- Penglei Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
- Department of Respiratory Medicine, Longgang Central Hospital, Shenzhen, China
| | - Yongming Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Lei Gao
- Microscopy Core Facility, Biomedical Research Core Facilities, Westlake University, Hangzhou, China
| | - Xiang Tang
- Intensive Care Unit, Guangzhou First People's Hospital, Guangzhou, China
| | - Dandian Zheng
- Department of Hematology Oncology, Jieyang City People's Hospital, Jieyang, China
| | - Kuihai Wu
- Clinical Medicine Laboratory, Foshan City First People's Hospital, Foshan, China
| | - Luxia Wang
- Clinical Medicine Laboratory, Southern Military Region General Hospital, Guangzhou, China
| | - Penghao Guo
- Clinical Medicine Laboratory, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| |
Collapse
|
3
|
Costa FDF, Souza RSCD, Voidaleski MF, Gomes RR, Reis GF, Lima BJFDS, Candido GZ, Geraldo MR, Soares JMB, Schneider GX, Trindade EDS, Bini IH, Moreno LF, Bombassaro A, Queiroz-Telles F, Raittz RT, Quan Y, Arruda P, Attili-Angelis D, de Hoog S, Vicente VA. Sugarcane: an unexpected habitat for black yeasts in Chaetothyriales. IMA Fungus 2023; 14:20. [PMID: 37794500 PMCID: PMC10552356 DOI: 10.1186/s43008-023-00124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
Sugarcane (Saccharum officinarum, Poaceae) is cultivated on a large scale in (sub)tropical regions such as Brazil and has considerable economic value for sugar and biofuel production. The plant is a rich substrate for endo- and epiphytic fungi. Black yeasts in the family Herpotrichiellaceae (Chaetothyriales) are colonizers of human-dominated habitats, particularly those rich in toxins and hydrocarbon pollutants, and may cause severe infections in susceptible human hosts. The present study assessed the diversity of Herpotrichiellaceae associated with sugarcane, using in silico identification and selective isolation. Using metagenomics, we identified 5833 fungal sequences, while 639 black yeast-like isolates were recovered in vitro. In both strategies, the latter fungi were identified as members of the genera Cladophialophora, Exophiala, and Rhinocladiella (Herpotrichiellaceae), Cyphellophora (Cyphellophoraceae), and Knufia (Trichomeriaceae). In addition, we discovered new species of Cladophialophora and Exophiala from sugarcane and its rhizosphere. The first environmental isolation of Cladophialophora bantiana is particularly noteworthy, because this species up to now is exclusively known from the human host where it mostly causes fatal brain disease in otherwise healthy patients.
Collapse
Affiliation(s)
- Flávia de F Costa
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Rafael S C de Souza
- Molecular Biology and Genetics Engineering Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Morgana F Voidaleski
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Guilherme F Reis
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Bruna J F de S Lima
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Giovanna Z Candido
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Marlon R Geraldo
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Jade M B Soares
- Biological Sciences Graduation, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Gabriela X Schneider
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Israel H Bini
- Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Leandro F Moreno
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Amanda Bombassaro
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Flávio Queiroz-Telles
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
- Clinical Hospital of the Federal University of Paraná, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Roberto T Raittz
- Laboratory of Bioinformatics, Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Brazil
| | - Yu Quan
- Center of Expertise in Mycology of Radboud, University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Paulo Arruda
- Molecular Biology and Genetics Engineering Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Genetics and Evolution Department, Biology Institute, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Derlene Attili-Angelis
- Division of Microbial Resources (DRM/CPQBA), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sybren de Hoog
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil.
- Center of Expertise in Mycology of Radboud, University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.
| | - Vania A Vicente
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil.
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
4
|
Ayodeji FD, Shava B, Iqbal HMN, Ashraf SS, Cui J, Franco M, Bilal M. Biocatalytic Versatilities and Biotechnological Prospects of Laccase for a Sustainable Industry. Catal Letters 2023; 153:1932-1956. [DOI: 10.1007/s10562-022-04134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
|
5
|
Wang J, Zhang R, Ding G, Wang L, Wang W, Zhang Y, Zhu G. Comparative genomic analysis of five coprinoid mushrooms species. Funct Integr Genomics 2023; 23:159. [PMID: 37178396 PMCID: PMC10182949 DOI: 10.1007/s10142-023-01094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Although coprinoid mushrooms are widely known for the phenomenon of deliquescence and production of fungal laccases and extracellular peroxygenases, the genome structure and genetic diversity of coprinoid mushroom species have not been extensively studied. To reveal the genomic structure and diversity in coprinoid mushroom species, the genomes of five coprinoid mushroom species were compared and analyzed. A total of 24,303 orthologous gene families, including 89,462 genes, were identified in the five species. The numbers of core, softcore, dispensable, and private genes were 5617 (25.6%), 1628 (7.4%), 2083 (9.5%), and 12,574 (57.4%), respectively. Differentiation time analysis revealed that Coprinellus micaceus and Coprinellus angulatus differentiated approximately 181.0 million years ago. Coprinopsis cinerea and Coprinopsis marcescibilis differentiated approximately 131.0 million years ago, and they were differentiated from Candolleomyces aberdarensis approximately 176.0 million years ago. Gene family contraction and expansion analyses showed that 1465 genes and 532 gene families were expanded, and 95 genes and 134 gene families were contracted. Ninety-five laccase-coding genes were detected in the five species, and the distribution of the laccase-coding genes in the five species was not uniform. These data provide a reference for a deeper understanding of the genetic structure of the genomes of coprinoid mushroom species. Furthermore, this study provides a reference for follow-up studies on the genome structure of coprinoid mushroom species and the diversity of specific functional genes.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Life Science, Hefei Normal University, Hefei, 230061, China
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei, 230061, China
- Department of Life Science, Anhui University, Hefei, 230601, China
| | - Ran Zhang
- Department of Life Science, Hefei Normal University, Hefei, 230061, China
- Department of Life Science, Anhui University, Hefei, 230601, China
| | - Guoao Ding
- Department of Life Science, Hefei Normal University, Hefei, 230061, China
- Department of Life Science, Anhui University, Hefei, 230601, China
| | - Lingling Wang
- Department of Life Science, Hefei Normal University, Hefei, 230061, China
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei, 230061, China
| | - Wei Wang
- Department of Life Science, Hefei Normal University, Hefei, 230061, China
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei, 230061, China
| | - Yan Zhang
- Department of Life Science, Hefei Normal University, Hefei, 230061, China.
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei, 230061, China.
- Department of Life Science, Anhui University, Hefei, 230601, China.
| | - GuiLan Zhu
- Department of Life Science, Hefei Normal University, Hefei, 230061, China.
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei, 230061, China.
- Department of Life Science, Anhui University, Hefei, 230601, China.
| |
Collapse
|
6
|
The origin of human pathogenicity and biological interactions in Chaetothyriales. FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
AbstractFungi in the order Chaetothyriales are renowned for their ability to cause human infections. Nevertheless, they are not regarded as primary pathogens, but rather as opportunists with a natural habitat in the environment. Extremotolerance is a major trend in the order, but quite different from black yeasts in Capnodiales which focus on endurance, an important additional parameter is advancing toxin management. In the ancestral ecology of rock colonization, the association with metabolite-producing lichens is significant. Ant-association, dealing with pheromones and repellents, is another mainstay in the order. The phylogenetically derived family, Herpotrichiellaceae, shows dual ecology in monoaromatic hydrocarbon assimilation and the ability to cause disease in humans and cold-blooded vertebrates. In this study, data on ecology, phylogeny, and genomics were collected and analyzed in order to support this hypothesis on the evolutionary route of the species of Chaetothyriales. Comparing the ribosomal tree with that of enzymes involved in toluene degradation, a significant expansion of cytochromes is observed and the toluene catabolism is found to be complete in some of the Herpotrichiellaceae. This might enhance human systemic infection. However, since most species have to be traumatically inoculated in order to cause disease, their invasive potential is categorized as opportunism. Only in chromoblastomycosis, true pathogenicity might be surmised. The criterion would be the possible escape of agents of vertebrate disease from the host, enabling dispersal of adapted genotypes to subsequent generations.
Collapse
|
7
|
Singh G, Kumar S, Afreen S, Bhalla A, Khurana J, Chandel S, Aggarwal A, Arya SK. Laccase mediated delignification of wasted and non-food agricultural biomass: Recent developments and challenges. Int J Biol Macromol 2023; 235:123840. [PMID: 36849073 DOI: 10.1016/j.ijbiomac.2023.123840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Utilization of microbial laccases is considered as the cleaner and target specific biocatalytic mechanism for the recovery of cellulose and hemicelluloses from nonfood and wasted agricultural, lignocellulosic biomass (LCB). The extent of lignin removal by laccase depends on the biochemical composition of biomass and the redox potential (E0) of the biocatalyst. Intensive research efforts are going on all over the world for the recognition of appropriate and easily available agricultural lignocellulosic feedstocks to exploit maximally for the production of value-added bioproducts and biofuels. In such circumstances, laccase can play a major role as a leading biocatalyst and potent substitute for chemical based deconstruction of the lignocellulosic materials. The limited commercialization of laccase at an industrial scale has been feasible due to its full working efficiency mostly expressed in the presence of cost intensive redox mediators only. Although, recently there are some reports that came on the mediator free biocatalysis of enzyme but still not considerably explored and neither understood in depth. The present review will address the various research gaps and shortcomings that acted as the big hurdles before the complete exploitation of laccases at an industrial scale. Further, this article also reveals insights on different microbial laccases and their diverse functional environmental conditions that affect the deconstruction process of LCB.
Collapse
Affiliation(s)
- Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Shiv Kumar
- Department of Microbiology, Guru Gobind Singh Medical College and Hospital, Baba Farid University of Health Sciences, Faridkot 151203, Punjab, India
| | - Sumbul Afreen
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India
| | - Aditya Bhalla
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | - Jyoti Khurana
- Biotechnology Department, Arka Jain University, Jamshedpur, Jharkhand, India
| | - Sanjeev Chandel
- GHG College of Pharmacy, Raikot Road, Ludhiana, -141109, India
| | | | | |
Collapse
|
8
|
Zhan J, Sun H, Dai Z, Zhang Y, Yang X. Loops constructing the substrate-binding site controlled the catalytic efficiency of Thermus thermophilus SG0.5JP17-16 laccase. Biochimie 2022; 200:60-67. [DOI: 10.1016/j.biochi.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
|
9
|
Tavares MP, Dutra TR, Morgan T, Ventorim RZ, de Souza Ladeira Ázar RI, Varela EM, Ferreira RC, de Oliveira Mendes TA, de Rezende ST, Guimarães VM. Multicopper oxidase enzymes from Chrysoporthe cubensis improve the saccharification yield of sugarcane bagasse. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Gcorn fungi: A Web Tool for Detecting Biases between Gene Evolution and Speciation in Fungi. J Fungi (Basel) 2021; 7:jof7110959. [PMID: 34829248 PMCID: PMC8624827 DOI: 10.3390/jof7110959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Fungi contain several millions of species, and the diversification of fungal genes has been achieved by speciation, gene duplication, and horizontal gene transfer. Although several databases provide information on orthologous and paralogous events, these databases show no information on biases between gene mutation and speciation. Here, we designed the Gcorn fungi database to better understand such biases. (2) Methods: Amino acid sequences of fungal genes in 249 species, which contain 2,345,743 sequences, were used for this database. Homologous genes were grouped at various thresholds of the homology index, which was based on the percentages of gene mutations. By grouping genes that showed highly similar homology indices to each other, we showed functional and evolutionary traits in the phylogenetic tree depicted for the gene of interest. (3) Results: Gcorn fungi provides well-summarized information on the evolution of a gene lineage and on the biases between gene evolution and speciation, which are quantitatively identified by the Robinson–Foulds metric. The database helps users visualize these traits using various depictions. (4) Conclusions: Gcorn fungi is an open access database that provides a variety of information with which to understand gene function and evolution.
Collapse
|
11
|
Majumdar S, Bhowal J. Studies on production and evaluation of biopigment and synthetic dye decolorization capacity of laccase produced by A. oryzae cultivated on agro-waste. Bioprocess Biosyst Eng 2021; 45:45-60. [PMID: 34591164 DOI: 10.1007/s00449-021-02638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
The present study investigated the screening of mono and co-culture fungal cultivations for laccase production using extracted lignin as the substrate obtained from cauliflower wastes by two different pretreatment methods. Amongst mono and mixed culture fungal cultivations, monoculture of Aspergillus oryzae exhibited the highest enzymatic activity of 29.7 ± 0.6 U mL-1 under submerged conditions and using alkali extracted lignin as substrate. Under the optimal conditions (pH 4.5, 30 °C, 12 days, 1% (w/v) lignin and 0.5 mM Cu2+ concentration) the maximum laccase activity was estimated to be 41.3 ± 2.8 U mL-1 and production yield of 153.3 ± 2.4 mg L-1. Maximum decolorization of pigment extracted from Aspergillus heteromorphus CBS 117.55 cultivated culture media was achieved by administration of 40 U g-1 of crude enzyme concentration. Thermal and pH stability of crude laccase was observed over wide ranges. The dye decolorization efficiency of crude A. oryzae laccase was studied and Congo Red exhibited maximum decolorization percentage (64 ± 1.3%) at 15 µM, 50 °C and pH 4.5. The kinetic study of different dye (Congo Red) concentrations obtained Vmax and Km values of 0.123 × 10-3 M and 0.724 mol L-1 min-1, respectively.
Collapse
Affiliation(s)
- Sayari Majumdar
- School of Community Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Jayati Bhowal
- School of Community Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India.
| |
Collapse
|
12
|
Nikolaivits E, Siaperas R, Agrafiotis A, Ouazzani J, Magoulas A, Gioti Α, Topakas E. Functional and transcriptomic investigation of laccase activity in the presence of PCB29 identifies two novel enzymes and the multicopper oxidase repertoire of a marine-derived fungus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145818. [PMID: 33631558 DOI: 10.1016/j.scitotenv.2021.145818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs), that can be detected in a variety of environments including the human body, adversely affecting global health. Bioremediation is an emerging field for the detoxification and removal of environmental pollutants, with novel biocatalysts appropriate for this task being in high demand. In this study, a biobank of novel fungal strains isolated as symbionts of marine invertebrates was screened for their ability to remove 2,4,5-trichlorobiphenyl (PCB29). The most efficient strains were studied further for their ability to express laccase activity, the most commonly associated extracellular activity involved in the removal of aromatic pollutants and encoded in fungi by the enzymatic class of multicopper oxidases (MCOs). The strain expressing the highest laccase activity, Cladosporium sp. TM138-S3, was cultivated in the presence of copper ions in a 12 L bioreactor and two enzymes exhibiting laccase activity were isolated from the culture broth through ion-exchange chromatography. The two enzymes, Lac1 and Lac2, were biochemically characterized and showed similar characteristics, although an improved ability to remove PCB29 (up to 71.2%) was observed for Lac2 in the presence of mediators. In parallel, we performed RNAseq of the strain growing in presence and absence of PCB29 and reconstructed its transcriptome assembly. Functional annotation allowed identifying the MCO repertoire of the fungus, consisting of 13 enzymes. Phylogenetic analysis of Ascomycete MCOs further allowed classifying these enzymes, revealing the diversity of laccase activities in Cladosporium sp. TM138-S3.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Romanos Siaperas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Andreas Agrafiotis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles, ICSN, CNRS, Gif sur Yvette, France
| | - Antonios Magoulas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Αnastasia Gioti
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
13
|
Álvarez-Barragán J, Cravo-Laureau C, Wick LY, Duran R. Fungi in PAH-contaminated marine sediments: Cultivable diversity and tolerance capacity towards PAH. MARINE POLLUTION BULLETIN 2021; 164:112082. [PMID: 33524832 DOI: 10.1016/j.marpolbul.2021.112082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
The cultivable fungal diversity from PAH-contaminated sediments was examined for the tolerance to polycyclic aromatic hydrocarbon (PAH). The 85 fungal strains, isolated in non-selective media, revealed a large diversity by ribosomal internal transcribed spacer (ITS) sequencing, even including possible new species. Most strains (64%) exhibited PAH-tolerance, indicating that sediments retain diverse cultivable PAH-tolerant fungi. The PAH-tolerance was linked neither to a specific taxon nor to the peroxidase genes (LiP, MnP and Lac). Examining the PAH-removal (degradation and/or sorption), Alternaria destruens F10.81 showed the best capacity with above 80% removal for phenanthrene, pyrene and fluoranthene, and around 65% for benzo[a]pyrene. A. destruens F10.81 internalized pyrene homogenously into the hyphae that contrasted with Fusarium pseudoygamai F5.76 in which PAH-vacuoles were observed but PAH removal was below 20%. Thus, our study paves the way for the exploitation of fungi in remediation strategies to mitigate the effect of PAH in coastal marine sediments.
Collapse
Affiliation(s)
- Joyce Álvarez-Barragán
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM UMR CNRS 5254, Bat. IBEAS, Pau, France
| | - Cristiana Cravo-Laureau
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM UMR CNRS 5254, Bat. IBEAS, Pau, France
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Leipzig, 04318, Germany
| | - Robert Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM UMR CNRS 5254, Bat. IBEAS, Pau, France.
| |
Collapse
|
14
|
Assunção CB, de Aguiar EL, Al-Hatmi AMS, Silva Vieira VC, Machado AS, Junta C, de Hoog S, Caligiorne RB. New molecular marker for phylogenetic reconstruction of black yeast-like fungi (Chaetothyriales) with hypothetical EIF2AK2 kinase gene. Fungal Biol 2020; 124:1032-1038. [PMID: 33213783 DOI: 10.1016/j.funbio.2020.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/27/2022]
Abstract
In eukaryotes, phosphorylation of the α-subunit of eIF2 is a mechanism to adjust cellular gene expression profiles in response to specific signals. The eIF2α kinases are a group of serine-threonine kinases that perform important functions in response to infection, proteotoxicity, and nutrient scavenging. The conserved nature of eIF2α kinases among fungi makes them potential evolutionary markers, which may contribute to deeper understanding of taxonomy and evolution. To date, only few studies are available of eIF2α kinases in black yeasts, which are members of Chaetothyriales containing potential agents of a gamut of major human diseases, such as chromoblastomycosis, phaeohyphomycosis and mycetoma. To establish the phylogenetic validity of sequences of eIF2α kinases hypothetical genes, we compared these genes between members of different classes of fungi, including black yeasts and allies, aiming at evaluation of the phylogeny of this group using an alternative molecular marker, compared to standard ribosomal genes. Trees generated with eIF2α kinase sequences of fungi were compared with those generated by ribosomal internal transcribed spacers (ITS rDNA) sequences from the same species. Sequences used were obtained from the protein Non-redundant database of NCBI, were aligned using CLUSTALX v1.8 and alignments were analyzed with RAxML v8.2.9 on the CIPRES Science Gateway portal. The trees generated had similar topologies, demonstrating that eIF2α kinases hypothetical gene sequences present a coherent reflection of evolution among fungi, compared to trees reconstructed by the use of ribosomal sequences. Our preliminary findings with a limited dataset strongly suggest that the evolution of kinases among black yeasts follows a similar path as revealed by ribosomal data, which underlines the validity of current taxonomy of black yeasts and relatives.
Collapse
Affiliation(s)
| | | | - Abdullah M S Al-Hatmi
- Ministry of Health, Directorate General of Health Services, Ibri, Oman; Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Vanessa Cristina Silva Vieira
- Instituto de Investigação em Ciências da Vida e Saúde (ICVS), Escola de Ciências da Saúde, Universidade do Minho, Braga, Portugal
| | - Amanda Sanchez Machado
- Núcleo de Pós-Graduação, Ensino e Pesquisa, Hospital Santa Casa de Belo Horizonte, Brazil
| | - Cristina Junta
- Núcleo de Pós-Graduação, Ensino e Pesquisa, Hospital Santa Casa de Belo Horizonte, Brazil
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | | |
Collapse
|
15
|
Rueda AM, López de los Santos Y, Vincent AT, Létourneau M, Hernández I, Sánchez CI, Molina V. D, Ospina SA, Veyrier FJ, Doucet N. Genome sequencing and functional characterization of a Dictyopanus pusillus fungal enzymatic extract offers a promising alternative for lignocellulose pretreatment of oil palm residues. PLoS One 2020; 15:e0227529. [PMID: 32730337 PMCID: PMC7392265 DOI: 10.1371/journal.pone.0227529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
The pretreatment of biomass remains a critical requirement for bio-renewable fuel production from lignocellulose. Although current processes primarily involve chemical and physical approaches, the biological breakdown of lignin using enzymes and microorganisms is quickly becoming an interesting eco-friendly alternative to classical processes. As a result, bioprospection of wild fungi from naturally occurring lignin-rich sources remains a suitable method to uncover and isolate new species exhibiting ligninolytic activity. In this study, wild species of white rot fungi were collected from Colombian forests based on their natural wood decay ability and high capacity to secrete oxidoreductases with high affinity for phenolic polymers such as lignin. Based on high activity obtained from solid-state fermentation using a lignocellulose source from oil palm as matrix, we describe the isolation and whole-genome sequencing of Dictyopanus pusillus, a wild basidiomycete fungus exhibiting ABTS oxidation as an indication of laccase activity. Functional characterization of a crude enzymatic extract identified laccase activity as the main enzymatic contributor to fungal extracts, an observation supported by the identification of 13 putative genes encoding for homologous laccases in the genome. To the best of our knowledge, this represents the first report of an enzymatic extract exhibiting laccase activity in the Dictyopanus genera, offering means to exploit this species and its enzymes for the delignification process of lignocellulosic by-products from oil palm.
Collapse
Affiliation(s)
- Andrés M. Rueda
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
- Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
- Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Yossef López de los Santos
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Antony T. Vincent
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Inés Hernández
- Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Clara I. Sánchez
- Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Daniel Molina V.
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Sonia A. Ospina
- Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Frédéric J. Veyrier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
- PROTEO, Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| |
Collapse
|
16
|
Zhu Y, Zhan J, Zhang Y, Lin Y, Yang X. The K428 residue from Thermus thermophilus SG0.5JP17-16 laccase plays the substantial role in substrate binding and oxidation. J Biomol Struct Dyn 2020; 39:1312-1320. [DOI: 10.1080/07391102.2020.1729864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanyun Zhu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People’s Republic Of China
| | - Jiangbo Zhan
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People’s Republic Of China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People’s Republic Of China
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People’s Republic Of China
| | - Xiaorong Yang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People’s Republic Of China
| |
Collapse
|
17
|
Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A. Laccase Properties, Physiological Functions, and Evolution. Int J Mol Sci 2020; 21:ijms21030966. [PMID: 32024019 PMCID: PMC7036934 DOI: 10.3390/ijms21030966] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/16/2023] Open
Abstract
Discovered in 1883, laccase is one of the first enzymes ever described. Now, after almost 140 years of research, it seems that this copper-containing protein with a number of unique catalytic properties is widely distributed across all kingdoms of life. Laccase belongs to the superfamily of multicopper oxidases (MCOs)—a group of enzymes comprising many proteins with different substrate specificities and diverse biological functions. The presence of cupredoxin-like domains allows all MCOs to reduce oxygen to water without producing harmful byproducts. This review describes structural characteristics and plausible evolution of laccase in different taxonomic groups. The remarkable catalytic abilities and broad substrate specificity of laccases are described in relation to other copper-containing MCOs. Through an exhaustive analysis of laccase roles in different taxa, we find that this enzyme evolved to serve an important, common, and protective function in living systems.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
- Correspondence: ; Tel.: +48-81-537-5521
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Urszula Świderska-Burek
- Department of Botany, Mycology and Ecology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Justyna Sulej
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Andrzej Paszczyński
- Professor Emeritus, School of Food Science, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
18
|
Laccase isoform diversity in basidiomycete Lentinus strigosus 1566: Potential for phenylpropanoid polymerization. Int J Biol Macromol 2019; 137:1199-1210. [DOI: 10.1016/j.ijbiomac.2019.07.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 07/07/2019] [Indexed: 11/17/2022]
|
19
|
Zhu Y, Zhang Y, Zhan J, Lin Y, Yang X. Axial bonds at the T1 Cu site of Thermus thermophilus SG0.5JP17-16 laccase influence enzymatic properties. FEBS Open Bio 2019; 9:986-995. [PMID: 30964606 PMCID: PMC6487685 DOI: 10.1002/2211-5463.12633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 11/24/2022] Open
Abstract
Laccase is a multi‐copper oxidase which oxidizes substrate at the type 1 copper site, simultaneously coupling the reduction of dioxygen to water at the trinuclear copper center. In this study, we used site‐directed mutagenesis to study the effect of axial bonds between the metal and amino acid residue side chains in lacTT. Our kinetic and spectral data showed that the replacement of the axial residue with non‐coordinating residues resulted in higher efficiency (kcat/Km) and a lower Cu2+ population at the type 1 copper site, while substitution with strongly coordinating residues resulted in lower efficiency and a higher Cu2+ population, as compared with the wild‐type. The redox potentials of mutants with hydrophobic axial residues (Ala and Phe) were higher than that of the wild‐type. In conclusion, these insights into the catalytic mechanism of laccase may be of use in protein engineering to fine‐tune its enzymatic properties for industrial application.
Collapse
Affiliation(s)
- Yanyun Zhu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Jiangbo Zhan
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Xiaorong Yang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
20
|
Extracellular Fungal Peroxidases and Laccases for Waste Treatment: Recent Improvement. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-25506-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Abstract
Rhinocladiella mackenziei accounts for the majority of fungal brain infections in the Middle East, and is restricted to the arid climate zone between Saudi Arabia and Pakistan. Neurotropic dissemination caused by this fungus has been reported in immunocompromised, but also immunocompetent individuals. If untreated, the infection is fatal. Outside of humans, the environmental niche of R. mackenziei is unknown, and the fungus has been only cultured from brain biopsies. In this paper, we describe the whole-genome resequencing of two R. mackenziei strains from patients in Saudi Arabia and Qatar. We assessed intraspecies variation and genetic signatures to uncover the genomic basis of the pathogenesis, and potential niche adaptations. We found that the duplicated genes (paralogs) are more susceptible to accumulating significant mutations. Comparative genomics with other filamentous ascomycetes revealed a diverse arsenal of genes likely engaged in pathogenicity, such as the degradation of aromatic compounds and iron acquisition. In addition, intracellular accumulation of trehalose and choline suggests possible adaptations to the conditions of an arid climate region. Specifically, protein family contractions were found, including short-chain dehydrogenase/reductase SDR, the cytochrome P450 (CYP) (E-class), and the G-protein β WD-40 repeat. Gene composition and metabolic potential indicate extremotolerance and hydrocarbon assimilation, suggesting a possible environmental habitat of oil-polluted desert soil.
Collapse
|
22
|
Song Y, Laureijssen-van de Sande WWJ, Moreno LF, Gerrits van den Ende B, Li R, de Hoog S. Comparative Ecology of Capsular Exophiala Species Causing Disseminated Infection in Humans. Front Microbiol 2017; 8:2514. [PMID: 29312215 PMCID: PMC5742258 DOI: 10.3389/fmicb.2017.02514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Exophiala spinifera and Exophiala dermatitidis (Fungi: Chaetothyriales) are black yeast agents potentially causing disseminated infection in apparently healthy humans. They are the only Exophiala species producing extracellular polysaccharides around yeast cells. In order to gain understanding of eventual differences in intrinsic virulence of the species, their clinical profiles were compared and found to be different, suggesting pathogenic strategies rather than coincidental opportunism. Ecologically relevant factors were compared in a model set of strains of both species, and significant differences were found in clinical and environmental preferences, but virulence, tested in Galleria mellonella larvae, yielded nearly identical results. Virulence factors, i.e., melanin, capsule and muriform cells responded in opposite direction under hydrogen peroxide and temperature stress and thus were inconsistent with their hypothesized role in survival of phagocytosis. On the basis of physiological profiles, possible natural habitats of both species were extrapolated, which proved to be environmental rather than animal-associated. Using comparative genomic analyses we found differences in gene content related to lipid metabolism, cell wall modification and polysaccharide capsule production. Despite the fact that both species cause disseminated infections in apparently healthy humans, it is concluded that they are opportunists rather than pathogens.
Collapse
Affiliation(s)
- Yinggai Song
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China.,Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | | | | | | | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| |
Collapse
|
23
|
Vicente VA, Weiss VA, Bombassaro A, Moreno LF, Costa FF, Raittz RT, Leão AC, Gomes RR, Bocca AL, Fornari G, de Castro RJA, Sun J, Faoro H, Tadra-Sfeir MZ, Baura V, Balsanelli E, Almeida SR, Dos Santos SS, Teixeira MDM, Soares Felipe MS, do Nascimento MMF, Pedrosa FO, Steffens MB, Attili-Angelis D, Najafzadeh MJ, Queiroz-Telles F, Souza EM, De Hoog S. Comparative Genomics of Sibling Species of Fonsecaea Associated with Human Chromoblastomycosis. Front Microbiol 2017; 8:1924. [PMID: 29062304 PMCID: PMC5640708 DOI: 10.3389/fmicb.2017.01924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/21/2017] [Indexed: 01/16/2023] Open
Abstract
Fonsecaea and Cladophialophora are genera of black yeast-like fungi harboring agents of a mutilating implantation disease in humans, along with strictly environmental species. The current hypothesis suggests that those species reside in somewhat adverse microhabitats, and pathogenic siblings share virulence factors enabling survival in mammal tissue after coincidental inoculation driven by pathogenic adaptation. A comparative genomic analysis of environmental and pathogenic siblings of Fonsecaea and Cladophialophora was undertaken, including de novo assembly of F. erecta from plant material. The genome size of Fonsecaea species varied between 33.39 and 35.23 Mb, and the core genomes of those species comprises almost 70% of the genes. Expansions of protein domains such as glyoxalases and peptidases suggested ability for pathogenicity in clinical agents, while the use of nitrogen and degradation of phenolic compounds was enriched in environmental species. The similarity of carbohydrate-active vs. protein-degrading enzymes associated with the occurrence of virulence factors suggested a general tolerance to extreme conditions, which might explain the opportunistic tendency of Fonsecaea sibling species. Virulence was tested in the Galleria mellonella model and immunological assays were performed in order to support this hypothesis. Larvae infected by environmental F. erecta had a lower survival. Fungal macrophage murine co-culture showed that F. erecta induced high levels of TNF-α contributing to macrophage activation that could increase the ability to control intracellular fungal growth although hyphal death were not observed, suggesting a higher level of extremotolerance of environmental species.
Collapse
Affiliation(s)
- Vania A Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Vinícius A Weiss
- Laboratory of Bioinformatics, Sector of Technological and Professional Education, Federal University of Paraná, Curitiba, Brazil.,Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Amanda Bombassaro
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Leandro F Moreno
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Flávia F Costa
- Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Roberto T Raittz
- Laboratory of Bioinformatics, Sector of Technological and Professional Education, Federal University of Paraná, Curitiba, Brazil
| | - Aniele C Leão
- Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil.,Laboratory of Bioinformatics, Sector of Technological and Professional Education, Federal University of Paraná, Curitiba, Brazil.,Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Anamelia L Bocca
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - Gheniffer Fornari
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Helisson Faoro
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | | | - Valter Baura
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Eduardo Balsanelli
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Sandro R Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Suelen S Dos Santos
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcus de Melo Teixeira
- Department of Cell Biology, University of Brasília, Brasilia, Brazil.,Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Maria S Soares Felipe
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasilia, Brazil
| | | | - Fabio O Pedrosa
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Maria B Steffens
- Laboratory of Bioinformatics, Sector of Technological and Professional Education, Federal University of Paraná, Curitiba, Brazil.,Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | | | - Mohammad J Najafzadeh
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Flávio Queiroz-Telles
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,Clinical Hospital of the Federal University of Paraná, Curitiba, Brazil
| | - Emanuel M Souza
- Laboratory of Bioinformatics, Sector of Technological and Professional Education, Federal University of Paraná, Curitiba, Brazil.,Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Sybren De Hoog
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|