1
|
Neulen A, Molitor M, Kosterhon M, Pantel T, Holzbach E, Rudi WS, Karbach SH, Wenzel P, Ringel F, Thal SC. Correlation of cardiac function and cerebral perfusion in a murine model of subarachnoid hemorrhage. Sci Rep 2021; 11:3317. [PMID: 33558609 PMCID: PMC7870815 DOI: 10.1038/s41598-021-82583-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Cerebral hypoperfusion is a key factor for determining the outcome after subarachnoid hemorrhage (SAH). A subset of SAH patients develop neurogenic stress cardiomyopathy (NSC), but it is unclear to what extent cerebral hypoperfusion is influenced by cardiac dysfunction after SAH. The aims of this study were to examine the association between cardiac function and cerebral perfusion in a murine model of SAH and to identify electrocardiographic and echocardiographic signs indicative of NSC. We quantified cortical perfusion by laser SPECKLE contrast imaging, and myocardial function by serial high-frequency ultrasound imaging, for up to 7 days after experimental SAH induction in mice by endovascular filament perforation. Cortical perfusion decreased significantly whereas cardiac output and left ventricular ejection fraction increased significantly shortly post-SAH. Transient pathological ECG and echocardiographic abnormalities, indicating NSC (right bundle branch block, reduced left ventricular contractility), were observed up to 3 h post-SAH in a subset of model animals. Cerebral perfusion improved over time after SAH and correlated significantly with left ventricular end-diastolic volume at 3, 24, and 72 h. The murine SAH model is appropriate to experimentally investigate NSC. We conclude that in addition to cerebrovascular dysfunction, cardiac dysfunction may significantly influence cerebral perfusion, with LVEDV presenting a potential parameter for risk stratification.
Collapse
Affiliation(s)
- Axel Neulen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Michael Molitor
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner Site Rhine-Main, Mainz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Elisa Holzbach
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Wolf-Stephan Rudi
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner Site Rhine-Main, Mainz, Germany
| | - Susanne H Karbach
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner Site Rhine-Main, Mainz, Germany
| | - Philip Wenzel
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner Site Rhine-Main, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany. .,Center for Molecular Surgical Research (MFO), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Weyer V, Maros ME, Kronfeld A, Kirschner S, Groden C, Sommer C, Tanyildizi Y, Kramer M, Brockmann MA. Longitudinal imaging and evaluation of SAH-associated cerebral large artery vasospasm in mice using micro-CT and angiography. J Cereb Blood Flow Metab 2020; 40:2265-2277. [PMID: 31752586 PMCID: PMC7585924 DOI: 10.1177/0271678x19887052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 11/15/2022]
Abstract
Longitudinal in vivo imaging studies characterizing subarachnoid hemorrhage (SAH)-induced large artery vasospasm (LAV) in mice are lacking. We developed a SAH-scoring system to assess SAH severity in mice using micro CT and longitudinally analysed LAV by intravenous digital subtraction angiography (i.v. DSA). Thirty female C57Bl/6J-mice (7 sham, 23 SAH) were implanted with central venous ports for repetitive contrast agent administration. SAH was induced by filament perforation. LAV was assessed up to 14 days after induction of SAH by i.v. DSA. SAH-score and neuroscore showed a highly significant positive correlation (rsp = 0.803, p < 0.001). SAH-score and survival showed a negative significant correlation (rsp = -0.71, p < 0.001). LAV peaked between days 3-5 and normalized on days 7-15. Most severe LAV was observed in the internal carotid (Δmax = 30.5%, p < 0.001), anterior cerebral (Δmax = 21.2%, p = 0.014), middle cerebral (Δmax = 28.16%, p < 0.001) and basilar artery (Δmax = 23.49%, p < 0.001). Cerebral perfusion on day 5 correlated negatively with survival time (rPe = -0.54, p = 0.04). Arterial diameter of the left MCA correlated negatively with cerebral perfusion on day 3 (rPe = -0.72, p = 0.005). In addition, pseudoaneurysms arising from the filament perforation site were visualized in three mice using i.v. DSA. Thus, micro-CT and DSA are valuable tools to assess SAH severity and to longitudinally monitor LAV in living mice.
Collapse
Affiliation(s)
- Vanessa Weyer
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
- Medical Faculty Mannheim, Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Máté E Maros
- Medical Faculty Mannheim, Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| | - Stefanie Kirschner
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
- Medical Faculty Mannheim, Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - Christoph Groden
- Medical Faculty Mannheim, Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center Mainz, Mainz, Germany
| | - Yasemin Tanyildizi
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| | - Martin Kramer
- Department of Veterinary Clinical Sciences, Small Animal Clinic, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
3
|
Neulen A, Kunzelmann S, Kosterhon M, Pantel T, Stein M, Berres M, Ringel F, Brockmann MA, Brockmann C, Kantelhardt SR. Automated Grading of Cerebral Vasospasm to Standardize Computed Tomography Angiography Examinations After Subarachnoid Hemorrhage. Front Neurol 2020; 11:13. [PMID: 32082241 PMCID: PMC7002561 DOI: 10.3389/fneur.2020.00013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Computed tomography angiography (CTA) is frequently used with computed tomography perfusion imaging (CTP) to evaluate whether endovascular vasospasm treatment is indicated for subarachnoid hemorrhage patients with delayed cerebral ischemia. However, objective parameters for CTA evaluation are lacking. In this study, we used an automated, investigator-independent, digital method to detect vasospasm, and we evaluated whether the method could predict the need for subsequent endovascular vasospasm treatment. Methods: We retrospectively reviewed the charts and analyzed imaging data for 40 consecutive patients with subarachnoid hemorrhages. The cerebrovascular trees were digitally reconstructed from CTA data, and vessel volume and the length of the arteries of the circle of Willis and their peripheral branches were determined. Receiver operating characteristic curve analysis based on a comparison with digital subtraction angiographies was used to determine volumetric thresholds that indicated severe vasospasm for each vessel segment. Results: The automated threshold-based volumetric evaluation of CTA data was able to detect severe vasospasm with high sensitivity and negative predictive value for predicting cerebral hypoperfusion on CTP, although the specificity and positive predictive value were low. Combining the automated detection of vasospasm on CTA and cerebral hypoperfusion on CTP was superior to CTP or CTA alone in predicting endovascular vasospasm treatment within 24 h after the examination. Conclusions: This digital volumetric analysis of the cerebrovascular tree allowed the objective, investigator-independent detection and quantification of vasospasms. This method could be used to standardize diagnostics and the selection of subarachnoid hemorrhage patients with delayed cerebral ischemia for endovascular diagnostics and possible interventions.
Collapse
Affiliation(s)
- Axel Neulen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Svenja Kunzelmann
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Maximilian Stein
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Manfred Berres
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Carolin Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Sven R Kantelhardt
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
4
|
Neutrophils mediate early cerebral cortical hypoperfusion in a murine model of subarachnoid haemorrhage. Sci Rep 2019; 9:8460. [PMID: 31186479 PMCID: PMC6560094 DOI: 10.1038/s41598-019-44906-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Cerebral hypoperfusion in the first hours after subarachnoid haemorrhage (SAH) is a major determinant of poor neurological outcome. However, the underlying pathophysiology is only partly understood. Here we induced neutropenia in C57BL/6N mice by anti-Ly6G antibody injection, induced SAH by endovascular filament perforation, and analysed cerebral cortical perfusion with laser SPECKLE contrast imaging to investigate the role of neutrophils in mediating cerebral hypoperfusion during the first 24 h post-SAH. SAH induction significantly increased the intracranial pressure (ICP), and significantly reduced the cerebral perfusion pressure (CPP). At 3 h after SAH, ICP had returned to baseline and CPP was similar between SAH and sham mice. However, in SAH mice with normal neutrophil counts cortical hypoperfusion persisted. Conversely, despite similar CPP, cortical perfusion was significantly higher at 3 h after SAH in mice with neutropenia. The levels of 8-iso-prostaglandin-F2α in the subarachnoid haematoma increased significantly at 3 h after SAH in animals with normal neutrophil counts indicating oxidative stress, which was not the case in neutropenic SAH animals. These results suggest that neutrophils are important mediators of cortical hypoperfusion and oxidative stress early after SAH. Targeting neutrophil function and neutrophil-induced oxidative stress could be a promising new approach to mitigate cerebral hypoperfusion early after SAH.
Collapse
|
5
|
Neulen A, Pantel T, Dieter A, Kosterhon M, Berres M, Thal SC, Brockmann MA, Kantelhardt SR. Volumetric analysis of intracranial vessels: a novel tool for evaluation of cerebral vasospasm. Int J Comput Assist Radiol Surg 2018; 14:157-167. [PMID: 30097958 DOI: 10.1007/s11548-018-1844-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/31/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE Together with other diagnostic modalities, computed tomography angiography (CTA) is commonly used to indicate endovascular vasospasm treatment after subarachnoid hemorrhage (SAH), despite the fact that objective, user-independent parameters for evaluation of CTA are lacking. This exploratory study was designed to investigate whether quantification of vasospasm by automated volumetric analysis of the middle cerebral artery M1 segment from CTA data could be used as an objective parameter to indicate endovascular vasospasm treatment. METHODS We retrospectively identified SAH patients who underwent transcranial Doppler sonography (TCD), CTA, and CT perfusion (CTP), with or without subsequent endovascular treatment. We determined vessel volume/vessel length of the M1 segments from CTA data and used receiver operating characteristic curve analysis to determine the optimal threshold of vessel volume to predict vasospasm requiring endovascular treatment. In addition, blinded investigators independently analyzed TCD, CTA, and CTP data. RESULTS Of 45 CTA examinations with corresponding CTP and TCD examinations (24 SAH patients), nine indicated the need for endovascular vasospasm treatment during examination. In our patients, vessel volume < 5.8 µL/mm was moderately sensitive but fairly specific to detect vasospasm requiring endovascular treatment (sensitivity, 67%; specificity, 78%; negative predictive value (NPV), 89%; positive predictive value (PPV), 46%). For CTA, CTP, and TCD, we found NPVs of 96%, 92%, and 89%, PPVs of 40%, 35%, and 35%, sensitivities of 89%, 78%, and 67%, and specificities of 67%, 64%, and 69%, respectively. CONCLUSION Vessel volumes could provide a new objective parameter for the interpretation of CTA data and could thereby improve multimodal assessment of vasospasm in SAH patients.
Collapse
Affiliation(s)
- Axel Neulen
- Department of Neurosurgery, University Medical Center of Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Dieter
- Department of Neuroradiology, University Medical Center of Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Center of Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Manfred Berres
- Institute of Medical Biometry, Epidemiology and Informatics, University Medical Center of Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.,Department of Mathematics and Technology, University of Applied Sciences Koblenz, Joseph-Rovan-Allee 2, 53424, Remagen, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center of Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Sven R Kantelhardt
- Department of Neurosurgery, University Medical Center of Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
6
|
Neulen A, Kosterhon M, Pantel T, Kirschner S, Goetz H, Brockmann MA, Kantelhardt SR, Thal SC. A Volumetric Method for Quantification of Cerebral Vasospasm in a Murine Model of Subarachnoid Hemorrhage. J Vis Exp 2018. [PMID: 30102288 PMCID: PMC6126573 DOI: 10.3791/57997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a subtype of hemorrhagic stroke. Cerebral vasospasm that occurs in the aftermath of the bleeding is an important factor determining patient outcome and is therefore frequently taken as a study endpoint. However, in small animal studies on SAH, quantification of cerebral vasospasm is a major challenge. Here, an ex vivo method is presented that allows quantification of volumes of entire vessel segments, which can be used as an objective measure to quantify cerebral vasospasm. In a first step, endovascular casting of the cerebral vasculature is performed using a radiopaque casting agent. Then, cross-sectional imaging data are acquired by micro computed tomography. The final step involves 3-dimensional reconstruction of the virtual vascular tree, followed by an algorithm to calculate center lines and volumes of the selected vessel segments. The method resulted in a highly accurate virtual reconstruction of the cerebrovascular tree shown by a diameter-based comparison of anatomical samples with their virtual reconstructions. Compared with vessel diameters alone, the vessel volumes highlight the differences between vasospastic and non-vasospastic vessels shown in a series of SAH and sham-operated mice.
Collapse
Affiliation(s)
- Axel Neulen
- Department of Neurosurgery, Medical Center of the Johannes Gutenberg - University;
| | - Michael Kosterhon
- Department of Neurosurgery, Medical Center of the Johannes Gutenberg - University
| | - Tobias Pantel
- Department of Neurosurgery, Medical Center of the Johannes Gutenberg - University
| | - Stefanie Kirschner
- Department of Neuroradiology, Medical Center of the Johannes Gutenberg - University
| | - Hermann Goetz
- Platform for Biomaterial Research, Medical Center of the Johannes Gutenberg - University
| | - Marc A Brockmann
- Department of Neuroradiology, Medical Center of the Johannes Gutenberg - University
| | - Sven R Kantelhardt
- Department of Neurosurgery, Medical Center of the Johannes Gutenberg - University
| | - Serge C Thal
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg - University;
| |
Collapse
|
7
|
Neulen A, Meyer S, Kramer A, Pantel T, Kosterhon M, Kunzelmann S, Goetz H, Thal SC. Large Vessel Vasospasm Is Not Associated with Cerebral Cortical Hypoperfusion in a Murine Model of Subarachnoid Hemorrhage. Transl Stroke Res 2018; 10:10.1007/s12975-018-0647-6. [PMID: 30003500 PMCID: PMC6526146 DOI: 10.1007/s12975-018-0647-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023]
Abstract
Clinical studies on subarachnoid hemorrhage (SAH) have shown discrepancies between large vessel vasospasm, cerebral perfusion, and clinical outcome. We set out to analyze the contribution of large vessel vasospasm to impaired cerebral perfusion and neurological impairment in a murine model of SAH. SAH was induced in C57BL/6 mice by endovascular filament perforation. Vasospasm was analyzed with microcomputed tomography, cortical perfusion by laser SPECKLE contrast imaging, and functional impairment with a quantitative neuroscore. SAH animals developed large vessel vasospasm, as shown by significantly lower vessel volumes of a 2.5-mm segment of the left middle cerebral artery (MCA) (SAH 5.6 ± 0.6 nL, sham 8.3 ± 0.5 nL, p < 0.01). Induction of SAH significantly reduced cerebral perfusion of the corresponding left MCA territory compared to values before SAH, which only recovered partly (SAH vs. sham, 15 min 35.7 ± 3.1 vs. 101.4 ± 10.2%, p < 0.01; 3 h, 85.0 ± 8.6 vs. 121.9 ± 13.4, p < 0.05; 24 h, 75.3 ± 4.6 vs. 110.6 ± 11.4%, p < 0.01; 72 h, 81.8 ± 4.8 vs. 108.5 ± 14.5%, n.s.). MCA vessel volume did not correlate significantly with MCA perfusion after 72 h (r = 0.34, p = 0.25). Perfusion correlated moderately with neuroscore (24 h: r = - 0.58, p < 0.05; 72 h: r = - 0.44, p = 0.14). There was no significant correlation between vessel volume and neuroscore after 72 h (r = - 0.21, p = 0.50). In the murine SAH model, cerebral hypoperfusion occurs independently of large vessel vasospasm. Neurological outcome is associated with cortical hypoperfusion rather than large vessel vasospasm.
Collapse
Affiliation(s)
- Axel Neulen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Simon Meyer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Andreas Kramer
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Svenja Kunzelmann
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Hermann Goetz
- Platform for Biomaterial Research, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|