1
|
Stöggl TL, Strepp T, Wiesinger HP, Haller N. A training goal-oriented categorization model of high-intensity interval training. Front Physiol 2024; 15:1414307. [PMID: 38957216 PMCID: PMC11218030 DOI: 10.3389/fphys.2024.1414307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
There are various categorization models of high-intensity interval training (HIIT) in the literature that need to be more consistent in definition, terminology, and concept completeness. In this review, we present a training goal-oriented categorization model of HIIT, aiming to find the best possible consensus among the various defined types of HIIT. This categorization concludes with six different types of HIIT derived from the literature, based on the interaction of interval duration, interval intensity and interval:recovery ratio. We discuss the science behind the defined types of HIIT and shed light on the possible effects of the various types of HIIT on aerobic, anaerobic, and neuromuscular systems and possible transfer effects into competition performance. We highlight various research gaps, discrepancies in findings and not yet proved know-how based on a lack of randomized controlled training studies, especially in well-trained to elite athlete cohorts. Our HIIT "toolbox" approach is designed to guide goal-oriented training. It is intended to lay the groundwork for future systematic reviews and serves as foundation for meta-analyses.
Collapse
Affiliation(s)
- Thomas L. Stöggl
- Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria
- Red Bull Athlete Performance Center, Thalgau, Austria
| | - Tilmann Strepp
- Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria
| | - Hans-Peter Wiesinger
- Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria
- Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria
- Institute of General Practice, Family Medicine and Preventive Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Nils Haller
- Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
2
|
Lundby C, Mazza O, Nielsen J, Haubro M, Kvorning T, Ørtenblad N, Gejl KD. Eight weeks of heavy strength training increases hemoglobin mass and V̇o 2peak in well-trained to elite female and male rowers. J Appl Physiol (1985) 2024; 136:1-12. [PMID: 37942530 DOI: 10.1152/japplphysiol.00587.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023] Open
Abstract
O2-transport and endurance exercise performance are greatly influenced by hemoglobin mass (Hbmass), which largely depends on lean body mass (LBM). This study investigated the effects of 8 wk with three weekly sessions of conventional (3-SET: 3 × 10 reps) or high-volume strength training (10-SET: 5-10 × 10 reps) on LBM, Hbmass, muscle strength, and exercise performance in female and male rowers. Hematological parameters were obtained through CO rebreathing and body composition by dual-energy X-ray absorptiometry (DEXA) scans before and after the training period. Concomitantly, V̇o2peak was determined during 2-km ergometer rowing and muscle strength by isometric midthigh pull. There were no differences in training responses between groups for any of the parameters. Pooled data revealed overall increments for Hbmass (10-SET: 882 ± 199 g to 897 ± 213 g; 3-SET: 936 ± 245 g to 962 ± 247 g, P = 0.02) and V̇o2peak (10-SET: 4.3 ± 1.0 to 4.4 ± 0.9 L·min-1; 3-SET: 4.5 ± 0.9 to 4.6 ± 0.9 L·min-1, P = 0.03), whereas LBM remained unchanged (10-SET: 58.7 ± 10.5 to 58.7 ± 10.1 kg; 3-SET: 64.1 ± 10.8 to 64.5 ± 10.6 kg, P = 0.42). Maximal isometric midthigh pull strength increased (10-SET: 224 ± 47 kg to 237 ± 55 kg; 3-SET: 256 ± 77 kg to 281 ± 83 kg, P = 0.001). Strong associations were observed between LBM and Hbmass and V̇o2peak (r2 = 0.88-0.90), entailing sex differences in Hbmass and V̇o2peak. Normalizing V̇o2peak to LBM reduced the sex difference to ∼10%, aligning with the sex difference in Hbmass·LBM-1. Strength training successfully increased Hbmass and V̇o2peak in elite female and male rowers, without an additional effect from increased training volume. Moreover, sex differences in V̇o2peak were mainly explained by differences in LBM, but likely also by differences in Hbmass·LBM-1.NEW & NOTEWORTHY This study in female and male rowers demonstrates that hemoglobin mass (Hbmass), V̇o2peak, and muscle strength increases with 8 wk of heavy strength training and that this response is not different between conventional (3 × 10 repetitions) and high-volume strength training (10 × 10 repetitions). Moreover, female rowers exhibited less hemoglobin per kilogram of lean body mass compared with their male counterparts, which likely contributes to sex differences in V̇o2peak and rowing performance.
Collapse
Affiliation(s)
- Carsten Lundby
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Oscar Mazza
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Mads Haubro
- The Danish Rowing Federation, Bagsvaerd, Denmark
| | - Thue Kvorning
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kasper Degn Gejl
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Stöggl T, Holmberg HC. A Systematic Review of the Effects of Strength and Power Training on Performance in Cross-Country Skiers. J Sports Sci Med 2022; 21:555-579. [PMID: 36523891 PMCID: PMC9741725 DOI: 10.52082/jssm.2022.555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
To identify and evaluate current scientific literature concerning the effect of strength, power and speed training on relevant physiological and biomechanical characteristics and performance of competitive cross-country skiers (XCS), the databases Scopus and PubMed were searched systematically for original articles in peer-reviewed journals. Of the 599 studies retrieved, 12 met the inclusion criteria (i.e., assessment of outcome measures with relevance for XCS performance; involvement of traditional resistance training; application of external resistance to the body; intervention longer than 4 weeks; randomized controlled trial). The methodological rigor of each study was assessed using the PEDro scale, which were mostly poor-to-fair, with good methodological quality in only two articles. All of the strength/power/speed interventions improved 1RM (0.8-6.8 ES), but findings with respect to jump performance, ability to generate force rapidly and body composition were mixed. Interventions demonstrated moderate-to-high ES on XCS specific performance compared with control (mean ES = 0.56), but the pattern observed was not consistent. None of the interventions changed anaerobic capacity, while in most studies VO2max was either unchanged or increased. Work economy or efficiency was enhanced by most of the interventions. In conclusion, present research indicates that strength training improves general strength, with moderate effects on XCS performance, and inconclusive effects on work economy and VO2max/VO2peak. Strength training with high loads, explosive strength training, or sprint interval training seem to be promising tools for modern XCS training. Future investigations should include long-term (e.g., >6 months) strength training to allow sufficient time for increased strength and speed to influence actual XCS performance. Moreover, they should include both sexes, as well as upper- and lower-body muscles (trained separately and together) and employ free weights and core training. Methodological differences and limitations highlighted here may explain discrepancies in findings and should be taken into consideration in future research in this area.
Collapse
Affiliation(s)
- Thomas Stöggl
- Department of Sport and Exercise Science, University of Salzburg, Hallein/Rif, Austria,Red Bull Athlete Performance Center– Salzburg – Austria, Department of Sport and Exercise Science, University of Salzburg, Schlossallee 49, 5400 Hallein/Rif, Austria
| | - Hans-Christer Holmberg
- Department of Health Sciences, Luleå University of Technology, Sweden, School of Kinesiology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Torvik PØ, Sandbakk Ø, van den Tillaar R, Talsnes RK, Danielsen J. A Comparison of Double Poling Physiology and Kinematics Between Long-Distance and All-Round Cross-Country Skiers. Front Sports Act Living 2022; 4:849731. [PMID: 35498513 PMCID: PMC9039168 DOI: 10.3389/fspor.2022.849731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The objective of this study was to compare physiological and kinematic responses to double poling (DP) between long-distance (LDS) and all-round (ARS) cross-country skiers. Methods A number of five world-class LDS (28.8 ± 5.1 years, maximal oxygen uptake (VO2max): 70.4 ± 2.9 ml·kg−1·min−1) and seven ARS (22.3 ± 2.8 years, VO2max: 69.1 ± 4.2 ml·kg−1·min−1) athletes having similar training volumes and VO2max performed three identical tests; (1) submaximal and incremental tests to exhaustion while treadmill DP to determine gross efficiency (GE), peak oxygen uptake (DP-VO2peak), and peak speed; (2) submaximal and incremental running tests to exhaustion to determine GE, VO2max (RUN-VO2max), and peak speed; and (3) an upper-body pull-down exercise to determine one repetition maximum (1RM) and peak power. Physiological responses were determined during both DP and running, together with the assessments of kinematic responses and electromyography (EMG) of selected muscles during DP. Results Compared to ARS, LDS reached higher peak speed (22.1 ± 1.0 vs. 20.7 ± 0.9 km·h−1, p = 0.030), DP-VO2peak (68.3 ± 2.1 vs. 65.1 ± 2.7 ml·kg−1·min−1, p = 0.050), and DP-VO2peak/RUN-VO2max ratio (97 vs. 94%, p = 0.075) during incremental DP to exhaustion, as well as higher GE (17.2 vs. 15.9%, p = 0.029) during submaximal DP. There were no significant differences in cycle length or cycle rate between the groups during submaximal DP, although LDS displayed longer relative poling times (~2.4% points) at most speeds compared to ARS (p = 0.015). However, group × speed interaction effects (p < 0.05) were found for pole angle and vertical fluctuation of body center of mass, with LDS maintaining a more upright body position and more vertical pole angles at touchdown and lift-off at faster speeds. ARS displayed slightly higher normalized EMG amplitude than LDS in the muscles rectus abdominis (p = 0.074) and biceps femoris (p = 0.027). LDS performed slightly better on 1RM upper-body strength (122 vs. 114 kg, p = 0.198), with no group differences in power in the pull-down exercise. Conclusions The combination of better DP-specific aerobic energy delivery capacity, efficiency, and technical solutions seems to contribute to the superior DP performance found among specialized LDS in comparison with ARS.
Collapse
Affiliation(s)
- Per-Øyvind Torvik
- Department of Sports Science and Physical Education, Nord University, Meråker, Norway
| | - Øyvind Sandbakk
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Rune Kjøsen Talsnes
- Department of Sports Science and Physical Education, Nord University, Meråker, Norway
- Meråker High School, Trøndelag County Council, Steinkjer, Norway
| | - Jørgen Danielsen
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Jørgen Danielsen
| |
Collapse
|
5
|
Hansen LM, Sandbakk Ø, Ettema G, Baumgart JK. Upper- vs. Lower-Body Exercise Performance in Female and Male Cross-Country Skiers. Front Sports Act Living 2021; 3:762794. [PMID: 34993468 PMCID: PMC8724206 DOI: 10.3389/fspor.2021.762794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To investigate the interaction between exercise modality (i.e., upper- and lower-body exercise) and sex in physiological responses and power output (PO) across the entire intensity spectrum (i.e., from low to maximal intensity).Methods: Ten male and 10 female cross-country (XC) skiers performed a stepwise incremental test to exhaustion consisting of 5 min stages with increasing workload employing upper-body poling (UP) and running (RUN) on two separate days. Mixed measures ANOVA were performed to investigate the interactions between exercise modalities (i.e., UP and RUN) and sex in physiological responses and PO across the entire exercise intensity spectrum.Results: The difference between UP and RUN (ΔUP−RUN), was not different in the female compared with the male XC skiers for peak oxygen uptake (18 ± 6 vs. 18 ± 6 mL·kg−1·min−1, p = 0.843) and peak PO (84 ± 18 vs. 91 ± 22 W, p = 0.207). At most given blood lactate and rating of perceived exertion values, ΔUP−RUN was larger in the male compared with the female skiers for oxygen uptake and PO, but these differences disappeared when the responses were expressed as % of the modality-specific peak.Conclusion: Modality-differences (i.e., ΔUP−RUN) in peak physiological responses and PO did not differ between the female and male XC skiers. This indicates that increased focus on upper-body strength and endurance training in female skiers in recent years may have closed the gap between upper- and lower-body endurance capacity compared with male XC skiers. In addition, no sex-related considerations need to be made when using relative physiological responses for intensity regulation within a specific exercise modality.
Collapse
|
6
|
Løkkeborg J, Ettema G. The role of incline, speed and work rate on the choice of technique in classical roller skiing. PLoS One 2020; 15:e0236102. [PMID: 32667941 PMCID: PMC7363089 DOI: 10.1371/journal.pone.0236102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022] Open
Abstract
Cross-country skiers use different sub-techniques like 'gears' (diagonals stride, double poling with kick, and double poling) depending on terrain (incline) and demand (speed and external work rate). Previous studies have identified the major effect of speed and incline, but not any potential interaction between these parameters: the incline-speed combination determines the work rate, which in itself may be a controlling factor. The aim of this study was to investigate the role of these task conditions (external work rate, speed, incline) and their interactions on the choice of sub-technique in classical roller skiing. Twelve male and nine female cross-country skiers executed three subsets of protocols in which two of three condition parameters were altered every 15 seconds while roller skiing on a treadmill. This design created a quasi-random set of combinations of speed, incline and work rate that were analysed on sub-technique choice. A repeated measures model with sex as between subject factor was conducted for each subset of protocols. The incline appeared to be the factor affecting sub-technique choice most, but not exclusively; at constant incline, athletes applied different sub-techniques, depending mostly on speed rather than work rate. Most athletes did not use one particular sub-technique for a given speed-incline-work rate combination, but it depended on the protocol and direction of condition change in the constant speed protocol (hysteresis). Only minor differences between men and women existed regarding the impact of condition factor on sub-technique choice. The findings disagree with the notion of a simple mechanism that explains the choice of sub-technique, but rather opt for a complex structure that entangles various mechanisms which play a role in the choice of sub-technique under moderate effort conditions.
Collapse
Affiliation(s)
- Johannes Løkkeborg
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gertjan Ettema
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
7
|
Improving Utilization of Maximal Oxygen Uptake and Work Economy in Recreational Cross-Country Skiers With High-Intensity Double-Poling Intervals. Int J Sports Physiol Perform 2020; 16:37-44. [PMID: 32604071 DOI: 10.1123/ijspp.2019-0689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate the effect of a double-poling (DP) high-intensity aerobic interval-training (HIT) intervention performed without increasing total HIT volume. This means that regular HIT training (eg, running) was replaced by HIT DP. The aim was to explore whether this intervention could improve peak oxygen uptake in DP, the fractional utilization of maximal oxygen uptake (VO2max) in DP, oxygen cost of DP, maximal aerobic speed, and a 3-km DP time trial. METHODS Nine non-specially-DP-trained cross-country skiers (intervention group) and 9 national-level cross-country skiers (control group) were recruited. All participants were tested for VO2max in running, peak oxygen uptake in DP, oxygen cost of DP, and time-trial performance before and after a 6-wk, 3-times-per-week HIT DP intervention. The intervention group omitted all regular HIT with HIT in DP, leaving the total weekly amount of HIT unchanged. RESULTS Seven participants in each group completed the study. VO2max in running remained unchanged in both groups, whereas peak oxygen uptake in DP improved by 7.1% (P = .005) in the intervention group. The fractional utilization of VO2max in DP thus increased by 7.3% (P = .019), oxygen cost of DP by 9.2% (P = .047), maximal aerobic speed by 16.5% (P = .009), and time trial by 19.5% (P = .004) in the intervention group but remained unchanged in the control group. CONCLUSIONS The results indicate that a 6-wk HIT DP intervention could be an effective model to improve DP-specific capacities, with maintenance of VO2max in running.
Collapse
|
8
|
Losnegard T. Energy system contribution during competitive cross-country skiing. Eur J Appl Physiol 2019; 119:1675-1690. [PMID: 31076890 PMCID: PMC6647095 DOI: 10.1007/s00421-019-04158-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/03/2019] [Indexed: 10/28/2022]
Abstract
Energy system contribution during cross-country (XC) skiing races is dependent on several factors, including the race duration, track profile, and sub-techniques applied, and their subsequent effects on the use of the upper and lower body. This review provides a scientific synopsis of the interactions of energy system contributions from a physiological, technical, and tactical perspective. On average, the aerobic proportion of the total energy expended during XC skiing competitions is comparable to the values for other sports with similar racing times. However, during both sprint (≤ 1.8 km) and distance races (≥ 10 and 15 km, women and men, respectively) a high aerobic turnover interacts with subsequent periods of very high work rates at ~ 120 to 160% of VO2peak during the uphill sections of the race. The repeated intensity fluctuations are possible due to the nature of skiing, which involves intermittent downhills where skiers can recover. Thus, the combination of high and sustained aerobic energy turnover and repeated work rates above VO2peak, interspersed with short recovery periods, distinguishes XC skiing from most other endurance sports. The substantially increased average speed in races over recent decades, frequent competitions in mass starts and sprints, and the greater importance of short periods at high speeds in various sub-techniques, have demanded changes in the physiological, technical, and tactical abilities needed to achieve world-class level within the specific disciplines.
Collapse
Affiliation(s)
- Thomas Losnegard
- Department of Physical Performance, Norwegian School of Sport Sciences, Ullevål Stadion, Post box 4014, 0806, Oslo, Norway.
| |
Collapse
|
9
|
The effect of pole length on physiological and perceptual responses during G3 roller ski skating on uphill terrain. PLoS One 2019; 14:e0211550. [PMID: 30794571 PMCID: PMC6386358 DOI: 10.1371/journal.pone.0211550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The benefits of using longer than self-selected poles have been shown in double poling, but these potential benefits have not been examined in the gear 3 ski skating sub-technique (G3), during which the poling movement is very similar to double poling. The aim of this study was to examine the effect of longer than self-selected poles on physiological and perceptual responses in the G3 sub-technique. Ten cross-country skiers and biathletes (VO2max 72.4 ± 3.0 ml∙min-1∙kg-1, age 20.1 ± 2.8 years, height 1.81 ± 0.03 m and weight 73.1 ± 4.6 kg) completed two tests, each with three different submaximal intensities, during roller skiing using the G3 technique. The first test was carried out at a fixed speed (10 km∙h-1) and the skiers performed two intervals of 5 min at 7, 9 and 11% inclination on a roller ski treadmill with self-selected poles (SSP) and 7.5 cm longer poles (LP) at each step. The second test had a fixed inclination of 4% and speeds of 14, 17 and 20 km∙h-1, also performed with SSP and LP at each step. At fixed speed, the oxygen uptake was 2.7% lower (P = 0.005) and the gross efficiency (GE) 2.1% higher (P = 0.01) with LP than with SSP at the steepest inclination of 11%. At fixed inclination, the oxygen uptake was 2.1% lower (P = 0.01) and the GE was 4.1% higher (P = 0.03) with LP than with SSP at the highest speed of 20 km∙h-1. At 14 km∙h-1, the oxygen uptake was 3.0% lower (P = 0.05) and GE was 3.8% higher (P = 0.03) with LP than with SSP. Our novel findings show that longer poles in the G3 technique may enhance the efficiency of skiing.
Collapse
|
10
|
La Monica MB, Fukuda DH, Starling-Smith TM, Clark NW, Morales J, Hoffman JR, Stout JR. Examining work-to-rest ratios to optimize upper body sprint interval training. Respir Physiol Neurobiol 2019; 262:12-19. [PMID: 30660860 DOI: 10.1016/j.resp.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/26/2023]
Abstract
The objective was to compare the metabolic influence of varying work-to-rest ratios during upper body sprint interval training (SIT). Forty-two recreationally-trained men were randomized into a training group [10 s work - 2 min of rest (10:2) or 4 min of rest (10:4), or 30 s work - 4 min of rest (30:4)] or a control group (CON). Participants underwent six training sessions over two weeks. Assessments consisted of a graded exercise test [maximal oxygen consumption (VO2peak) and peak power output (PPO)], four constant-work rate trials [critical power, anaerobic working capacity, and electromyographic fatigue threshold], and an upper body Wingate test (mean/peak power and total work). Post-training absolute and relative VO2peak was greater than pre-training for 30:4 (p = .005 and p = .009, respectively), but lower for CON (p = .001 and p = .006, respectively). Post-training PPO was greater in 30:4 (p < .001). No differences were observed during the constant-work rate trials or Wingate test. Traditional SIT appears to have enhanced VO2peak in the upper body over a short-term two-week intervention.
Collapse
Affiliation(s)
- Michael B La Monica
- Department of Kinesiology, Missouri State University, 901 S National Ave, Springfield, MO 65897, USA.
| | - David H Fukuda
- School of Kinesiology and Physical Therapy, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Tristan M Starling-Smith
- School of Kinesiology and Physical Therapy, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Nicolas W Clark
- School of Kinesiology and Physical Therapy, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Jose Morales
- Facultat de Ciències de l'Esport Blanquerna, Universitat Ramon Llull, C/ Císter, 34 08022 Barcelona, Spain
| | - Jay R Hoffman
- School of Kinesiology and Physical Therapy, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Jeffrey R Stout
- School of Kinesiology and Physical Therapy, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| |
Collapse
|
11
|
Brewer W, Kovacs R, Hogan K, Felder D, Mitchell H. Metabolic Responses to a Battling Rope Protocol Performed in the Seated or Stance Positions. J Strength Cond Res 2018; 32:3319-3325. [PMID: 30335722 DOI: 10.1519/jsc.0000000000002903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brewer, W, Kovacs, R, Hogan, K, Felder, D, and Mitchell, H. Metabolic responses to a battling rope protocol performed in the seated or stance positions. J Strength Cond Res 32(12): 3319-3325, 2018-The purpose of this study is to compare the levels of oxygen consumption and heart rate responses elicited by a treadmill or cycle V[Combining Dot Above]O2max test with a standing or sitting battling rope protocol (BRP) (treadmill vs. standing BRP) (cycle vs. seated BRP). Forty healthy subjects performed either a ramped V[Combining Dot Above]O2max treadmill or cycle test. At least 3 days later, the subjects who performed the ramped treadmill test did the standing BRP, and the subjects who performed the ramped cycle test did the sitting BRP. Each BRP consisted of 10 sets of 15/45 seconds of work/rest for 10 sets. V[Combining Dot Above]O2peak and HRpeak were recorded. Metabolic responses were significantly lower for the sitting BRP and standing as compared to the HRmax and V[Combining Dot Above]O2max values derived from the bicycle and treadmill tests. The BRP produced a V[Combining Dot Above]O2peak that was 71.87% (sitting) and 68.37% (standing) of the subjects' V[Combining Dot Above]O2max assessed u the bicycle and treadmill protocol. Moderate correlations were found between the V[Combining Dot Above]O2 during the seated (r = 0.61; p = 0.003) and standing (r = 0.43; p = 0.03) BRP and the bicycle and treadmill V[Combining Dot Above]O2max tests, respectively. The HRpeak elicited by the BRP performed in sitting (r = 0.52; p = 0.009) and standing (r = 0.67; p = 0.001) had a moderate correlation with the HRmax derived from the bicycle and treadmill tests. Battling ropes may be a low cost, accessible option to improve cardiovascular endurance for individuals who cannot stand or move their lower extremities in a rhythmic manner to conduct aerobic exercise.
Collapse
Affiliation(s)
- Wayne Brewer
- Institute of Health Sciences, Texas Woman's University, Houston, Texas
| | | | | | | | | |
Collapse
|
12
|
The pacing strategy and technique of male cross-country skiers with different levels of performance during a 15-km classical race. PLoS One 2017; 12:e0187111. [PMID: 29117228 PMCID: PMC5678876 DOI: 10.1371/journal.pone.0187111] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/13/2017] [Indexed: 11/30/2022] Open
Abstract
In this study the pacing strategy, cycle characteristics and choice of technique of elite male cross-country (XC) skiers during a three-lap, 15-km classical race with interval start were measured. During the Norwegian Championships in 2016, fast (n = 18, age: 26±4 yr; height: 182±4 cm; body mass: 78±3 kg (means±SD)) and slow skiers (n = 18, age: 22±2 yr; height: 183±5 cm; body mass: 78±6 kg) were video recorded on flat (0°), intermediate (3.5°) and uphill sections (7.1°) of the first and final laps. All skiers adopted a positive pacing strategy, skiing more slowly (11.8%) with shorter cycles (11.7%) on the final than first lap (both p<0.001; pη2 = 0.93 and 0.87, respectively). The fast skiers were 7.0% faster overall (p<0.001, d = 4.20), and 6.1% (p<0.001, d = 3.32) and 7.0% (p<0.001, d = 3.68) faster on the first and final laps, respectively, compared to slower skiers. On all sections of both laps, the fast skiers exhibited 9.5% more rapid (pη2 = 0.74) and 8.9% (pη2 = 0.48) longer cycles (both p<0.001). On intermediate terrain, the fast skiers employed primarily double poling (DP, 38.9% on the first lap) and double poling with a kick (DPKICK, 50% on the final lap). In contrast, the slow skiers utilized for the most part DP alone (lap 1: 33.3%, lap 3: 38.9%) or in combination with other techniques (lap 1: 33.3%, lap 3: 38.9%) and decreased their usage of DPKICK from 27.8% on the first to 16.7% on the final lap. Skiing velocity on flat and intermediate terrain proved to be the best predictor of race performance (p<0.001). In conclusion, during a 15-km classical XC skiing race, velocity and cycle length decreased from the first to the final lap, most extensively on flat terrain and least uphill. Moreover, on the intermediate sections the fast and slow skiers chose to use different techniques.
Collapse
|
13
|
Børve J, Jevne SN, Rud B, Losnegard T. Upper-Body Muscular Endurance Training Improves Performance Following 50 min of Double Poling in Well-Trained Cross-Country Skiers. Front Physiol 2017; 8:690. [PMID: 29018351 PMCID: PMC5615216 DOI: 10.3389/fphys.2017.00690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022] Open
Abstract
This study investigated the effect of muscular endurance training on O2-cost and performance in double poling (DP) on a rollerski treadmill. Twenty-two well-trained cross-country skiers (31 ± 4 years, 77 ± 9 kg, 181 ± 8 cm, VO2max running: 64 ± 5 mL·kg−1·min−1) were counter-balanced to either a combined muscular endurance and running interval training group [MET; n = 11 (♂ = 9, ♀ = 2)], or an endurance running interval training group [ET; n = 11 (♂ = 9, ♀ = 2)]. Both groups continued their normal low-and moderate intensity training, but replaced 2 weekly high intensity-training sessions with two project-specific sessions for 6 weeks. In these sessions, MET combined upper-body muscular endurance training (4 × 30 repetitions, 90 s rest between sets) and running intervals (3 × 4 or 2 × 6 min, 3 min rest), while ET performed running intervals only (6 × 4 or 4 × 6 min, 3 min rest). The DP test-protocol consisted of 50 min submaximal poling for O2-cost measurement, followed by a self-paced 1,000-m performance test. In addition, subjects performed a VO2max test in running. MET increased muscular endurance (P < 0.05) and 1RM in simulated DP (P < 0.01) more than ET. Further, MET reduced the 1,000-m time and O2-cost compared to baseline values (P < 0.05), and tended to improve the 1,000-m time more than ET (P = 0.06). There were no changes in VO2max running or VO2peak DP in either MET or ET. In conclusion, 6 weeks of muscular endurance training increased both muscular endurance and 1RM in simulated DP. Further, specific upper-body muscular endurance training improved DP performance and thus, seems as a promising training model to optimize performance in well-trained cross-country skiers.
Collapse
Affiliation(s)
- Jørgen Børve
- Department of Physical Performance, Norwegian School of Sport SciencesOslo, Norway
| | - Steffen N Jevne
- Department of Physical Performance, Norwegian School of Sport SciencesOslo, Norway
| | - Bjarne Rud
- Department of Physical Performance, Norwegian School of Sport SciencesOslo, Norway
| | - Thomas Losnegard
- Department of Physical Performance, Norwegian School of Sport SciencesOslo, Norway
| |
Collapse
|
14
|
Ploeger JM, Manivel JC, Boatner LN, Mashek DG. Caloric Restriction Prevents Carcinogen-Initiated Liver Tumorigenesis in Mice. Cancer Prev Res (Phila) 2017; 10:660-670. [DOI: 10.1158/1940-6207.capr-17-0174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/27/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022]
|