1
|
Yokoyama T, Hisatomi K, Oshima S, Tanaka I, Okada T, Toyooka N. Discovery and optimization of isoliquiritigenin as a death-associated protein kinase 1 inhibitor. Eur J Med Chem 2024; 279:116836. [PMID: 39243455 DOI: 10.1016/j.ejmech.2024.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Death-associated protein kinase 1 (DAPK1) is a phosphotransferase in the serine/threonine kinase family. Inhibiting DAPK1 is expected to be beneficial in treating Alzheimer's disease and protecting neuronal cells during cerebral ischemia. In this study, we demonstrated that the natural chalcone isoliquiritigenin inhibits DAPK1 in an ATP-competitive manner, and we synthesized halogen derivatives to amplify the inhibitory effect. Among the compounds tested, the chlorine, bromine, and iodine derivatives exhibited high DAPK1 inhibitory activity and binding affinity. Crystal structure analysis revealed that this improvement is attributable to the halogen atoms fitting well into the hydrophobic pocket formed by I77, L93, and I160. In particular, the chlorine derivative showed a significant enthalpic contribution to the interaction with DAPK1, suggesting its potential as a primary compound for new DAPK1 inhibitors.
Collapse
Affiliation(s)
- Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0914, Japan.
| | - Kotono Hisatomi
- Graduate School of Pharma-Medical Sciences, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Saki Oshima
- Graduate School of Pharma-Medical Sciences, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Ichiro Tanaka
- Graduate School of Science and Engineering, Ibaraki University, Nakanarusawa 4-12-1, Hitachi, Ibaraki, 316-8511, Japan
| | - Takuya Okada
- Graduate School of Pharma-Medical Sciences, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Naoki Toyooka
- Graduate School of Pharma-Medical Sciences, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| |
Collapse
|
2
|
Geng J, Chrabaszczewska M, Kurpiejewski K, Stankiewicz-Drogon A, Jankowska-Anyszka M, Darzynkiewicz E, Grzela R. Cap-related modifications of RNA regulate binding to IFIT proteins. RNA (NEW YORK, N.Y.) 2024; 30:1292-1305. [PMID: 39009378 PMCID: PMC11404448 DOI: 10.1261/rna.080011.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
All cells in our body are equipped with receptors to recognize pathogens and trigger a rapid defense response. As a result, foreign molecules are blocked, and cells are alerted to the danger. Among the many molecules produced in response to viral infection are interferon-induced proteins with tetratricopeptide repeats (IFITs). Their role is to recognize foreign mRNA and eliminate it from the translational pool of transcripts. In the present study, we used biophysical methods to characterize the interactions between the IFIT1 protein and its partners IFIT2 and IFIT3. IFIT1 interacts with IFIT3 with nanomolar binding affinity, which did not change significantly in the presence of the preformed IFIT2/3 complex. The interactions between IFIT2 and IFIT3 and IFIT1 and IFIT2 were one order of magnitude weaker. We also present kinetic data of the interactions between the IFIT protein complex and short RNA bearing various modifications at the 5' end. We show kinetic parameters for interaction between the IFIT complex and RNA with m6Am modification. The results show that the cap-adjacent m6Am modification is a stronger signature than cap1 alone. It blocks the formation of a complex between IFIT proteins and m7Gpppm6Am-RNA much more effectively than other cap modifications. In contrast, m6A in the 5'UTR is not recognized by IFIT proteins and does not contribute to translation repression by IFIT proteins. The data obtained are important for understanding the regulation of expression of genetic information. They indicate that 2'-O and m6Am modifications modulate the availability of mRNA molecules for proteins of innate immune response.
Collapse
Affiliation(s)
- Jingping Geng
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Chrabaszczewska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Edward Darzynkiewicz
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Renata Grzela
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Farzam F, Dabirmanesh B. Experimental techniques for detecting and evaluating the amyloid fibrils. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:183-227. [PMID: 38811081 DOI: 10.1016/bs.pmbts.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Amyloid fibrils are insoluble proteins with intricate β-sheet structures associated with various human diseases, including Parkinson's, Alzheimer's, and prion diseases. Proteins can form aggregates when their structure is misfolded, resulting in highly organized amyloid fibrils or amorphous aggregates. The formation of protein aggregates is a promising research field for mitigating diseases and the pharmaceutical and food industries. It is important to monitor and minimize the appearance of aggregates in these protein products. Several methods exist to assess protein aggregation, that includes from basic investigations to advanced biophysical techniques. Physicochemical parameters such as molecular weight, conformation, structure, and dimension are examined to study aggregation. There is an urgent need to develop methods for the detection of protein aggregation and amyloid fibril formation both in vitro and in vivo. This chapter focuses on a comprehensive discussion of the methods used to characterize and evaluate aggregates and amyloid fibrils.
Collapse
Affiliation(s)
- Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Winiewska-Szajewska M, Paprocki D, Marzec E, Poznański J. Effect of histidine protonation state on ligand binding at the ATP-binding site of human protein kinase CK2. Sci Rep 2024; 14:1463. [PMID: 38233478 PMCID: PMC10794401 DOI: 10.1038/s41598-024-51905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Histidine residues contribute to numerous molecular interactions, owing to their structure with the ionizable aromatic side chain with pKa close to the physiological pH. Herein, we studied how the two histidine residues, His115 and His160 of the catalytic subunit of human protein kinase CK2, affect the binding of the halogenated heterocyclic ligands at the ATP-binding site. Thermodynamic studies on the interaction between five variants of hCK2α (WT protein and four histidine mutants) and three ionizable bromo-benzotriazoles and their conditionally non-ionizable benzimidazole counterparts were performed with nanoDSF, MST, and ITC. The results allowed us to identify the contribution of interactions involving the particular histidine residues to ligand binding. We showed that despite the well-documented hydrogen bonding/salt bridge formation dragging the anionic ligands towards Lys68, the protonated His160 also contributes to the binding of such ligands by long-range electrostatic interactions. Simultaneously, His 115 indirectly affects ligand binding, placing the hinge region in open/closed conformations.
Collapse
Affiliation(s)
- Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland.
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089, Warsaw, Poland.
| | - Daniel Paprocki
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Ewa Marzec
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
5
|
Sankhe GD, Raja R, Singh DP, Bheemireddy S, Rana S, Athira PJ, Dixit NM, Saini DK. Sequestration of histidine kinases by non-cognate response regulators establishes a threshold level of stimulation for bacterial two-component signaling. Nat Commun 2023; 14:4483. [PMID: 37491529 PMCID: PMC10368727 DOI: 10.1038/s41467-023-40095-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
Bacterial two-component systems (TCSs) consist of a sensor histidine kinase (HK) that perceives a specific signal, and a cognate response regulator (RR) that modulates the expression of target genes. Positive autoregulation improves TCS sensitivity to stimuli, but may trigger disproportionately large responses to weak signals, compromising bacterial fitness. Here, we combine experiments and mathematical modelling to reveal a general design that prevents such disproportionate responses: phosphorylated HKs (HK~Ps) can be sequestered by non-cognate RRs. We study five TCSs of Mycobacterium tuberculosis and find, for all of them, non-cognate RRs that show higher affinity than cognate RRs for HK~Ps. Indeed, in vitro assays show that HK~Ps preferentially bind higher affinity non-cognate RRs and get sequestered. Mathematical modelling indicates that this sequestration would introduce a 'threshold' stimulus strength for eliciting responses, thereby preventing responses to weak signals. Finally, we construct tunable expression systems in Mycobacterium bovis BCG to show that higher affinity non-cognate RRs suppress responses in vivo.
Collapse
Affiliation(s)
- Gaurav D Sankhe
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Devendra Pratap Singh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science, Bengaluru, India
| | - P J Athira
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Narendra M Dixit
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
| | - Deepak Kumar Saini
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
6
|
Jiang L, Zhang D, Li Y, Chen W, Shi W, Wu H, Ma Z. Eukaryotic Expression of the Cytochrome c Oxidase Subunit I of Sitophilus zeamais and Its Interaction with Allyl Isothiocyanate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3497-3507. [PMID: 36757172 DOI: 10.1021/acs.jafc.2c08363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) is a destructive pest of stored grains around the world. Allyl isothiocyanate (AITC) was shown to have good bioactivity in the control of S. zeamais. In this study, the interaction of AITC on cytochrome c oxidase core subunits I (COX I) and their binding mechanism were determined using spectroscopic, isothermal titration calorimetry and molecular docking techniques. The results indicate the binding constant (Ka) of AITC and COX I was 6.742 × 103 L/mol. Analysis of spectroscopic revealed that the binding of COX I to reduced Cyt c induced conformational changes of reduced Cyt c, while AITC could competitively bind and inhibit the activity of the COX I protein. Moreover, molecular docking results suggested a sulfur atom in the AITC structure could form a hydrogen bond having a length of 3.3 Å with the Gly- 27 of COX I.
Collapse
Affiliation(s)
- Linlin Jiang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Dan Zhang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Yue Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Wei Chen
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Weilin Shi
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Hua Wu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
7
|
Winiewska-Szajewska M, Czapinska H, Kaus-Drobek M, Fricke A, Mieczkowska K, Dadlez M, Bochtler M, Poznański J. Competition between electrostatic interactions and halogen bonding in the protein-ligand system: structural and thermodynamic studies of 5,6-dibromobenzotriazole-hCK2α complexes. Sci Rep 2022; 12:18964. [PMID: 36347916 PMCID: PMC9641685 DOI: 10.1038/s41598-022-23611-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
CK2 is a member of the CMGC group of eukaryotic protein kinases and a cancer drug target. It can be efficiently inhibited by halogenated benzotriazoles and benzimidazoles. Depending on the scaffold, substitution pattern, and pH, these compounds are either neutral or anionic. Their binding poses are dictated by a hydrophobic effect (desolvation) and a tug of war between a salt bridge/hydrogen bond (to K68) and halogen bonding (to E114 and V116 backbone oxygens). Here, we test the idea that binding poses might be controllable by pH for ligands with near-neutral pKa, using the conditionally anionic 5,6-DBBt and constitutively anionic TBBt as our models. We characterize the binding by low-volume Differential Scanning Fluorimetry (nanoDSF), Isothermal Calorimetry (ITC), Hydrogen/Deuterium eXchange (HDX), and X-ray crystallography (MX). The data indicate that the ligand pose away from the hinge dominates for the entire tested pH range (5.5-8.5). The insensitivity of the binding mode to pH is attributed to the perturbation of ligand pKa upon binding that keeps it anionic in the ligand binding pocket at all tested pH values. However, a minor population of the ligand, detectable only by HDX, shifts towards the hinge in acidic conditions. Our findings demonstrate that electrostatic (ionic) interactions predominate over halogen bonding.
Collapse
Affiliation(s)
- Maria Winiewska-Szajewska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.12847.380000 0004 1937 1290Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089 Warsaw, Poland
| | - Honorata Czapinska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Magdalena Kaus-Drobek
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Anna Fricke
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Kinga Mieczkowska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Michał Dadlez
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Matthias Bochtler
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jarosław Poznański
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Odolczyk N, Klim J, Podsiadła-Białoskórska M, Winiewska-Szajewska M, Szolajska E, Zielenkiewicz U, Poznański J, Zielenkiewicz P. Improvement of native structure-based peptides as efficient inhibitors of protein-protein interactions of SARS-CoV-2 spike protein and human ACE2. Front Mol Biosci 2022; 9:983014. [PMID: 36250011 PMCID: PMC9555309 DOI: 10.3389/fmolb.2022.983014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
New pathogens responsible for novel human disease outbreaks in the last two decades are mainly the respiratory system viruses. Not different was the last pandemic episode, caused by infection of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One of the extensively explored targets, in the recent scientific literature, as a possible way for rapid development of COVID-19 specific drug(s) is the interaction between the receptor-binding domain of the virus’ spike (S) glycoprotein and human receptor angiotensin-converting enzyme 2 (hACE2). This protein-protein recognition process is involved in the early stages of the SARS-CoV-2 life cycle leading to the host cell membrane penetration. Thus, disrupting this interaction may block or significantly reduce the infection caused by the novel pathogen. Previously we have designed (by in silico structure-based analysis) three very short peptides having sequences inspirited by hACE2 native fragments, which effectively bind to the SARS-CoV-2 S protein and block its interaction with the human receptor. In continuation of the above mentioned studies, here we presented an application of molecular modeling approach resulting in improved binding affinity of the previously proposed ligand and its enhanced ability to inhibit meaningful host-virus protein-protein interaction. The new optimized hexapeptide binds to the virus protein with affinity one magnitude higher than the initial ligand and, as a very short peptide, has also great potential for further drug development. The peptide-based strategy is rapid and cost-effective for developing and optimizing efficient protein-protein interactions disruptors and may be successfully applied to discover antiviral candidates against other future emerging human viral infections.
Collapse
Affiliation(s)
- Norbert Odolczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
- Laboratory of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Klim
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | | | | | - Ewa Szolajska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
- *Correspondence: Jarosław Poznański, ; Piotr Zielenkiewicz,
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
- Laboratory of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Jarosław Poznański, ; Piotr Zielenkiewicz,
| |
Collapse
|
9
|
El Deeb S, Al-Harrasi A, Khan A, Al-Broumi M, Al-Thani G, Alomairi M, Elumalai P, Sayed RA, Ibrahim AE. Microscale thermophoresis as a powerful growing analytical technique for the investigation of biomolecular interaction and the determination of binding parameters. Methods Appl Fluoresc 2022; 10. [PMID: 35856854 DOI: 10.1088/2050-6120/ac82a6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022]
Abstract
The in vitro panel of technologies to address biomolecular interactions are in play, however microscale thermophoresis is continuously increasing in use to represent a key player in this arena. This review highlights the usefulness of microscale thermophoresis in the determination of molecular and biomolecular affinity interactions. This work reviews the literature from January 2016 to January 2022 about microscale thermophoresis. It gives a summarized overview about both the state-of the art and the development in the field of microscale thermophoresis. The principle of microscale thermophoresis is also described supported with self-created illustrations. Moreover, some recent advances are mentioned that showing application of the technique in investigating biomolecular interactions in different fields. Finally, advantages as well as drawbacks of the technique in comparison with other competing techniques are summarized.
Collapse
Affiliation(s)
- Sami El Deeb
- Technische Universitat Braunschweig, Braunschweig, Braunschweig, Niedersachsen, 38106, GERMANY
| | | | - Ajmal Khan
- University of Nizwa, Nizwa, Nizwa, 616, OMAN
| | | | | | | | | | - Rania A Sayed
- Pharmaceutical analytical chemistry department, Zagazig University, Zagazig, Zagazig, 44519, EGYPT
| | - Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry, Port Said University, Port Said, Port Said, 42526, EGYPT
| |
Collapse
|
10
|
Paprocki D, Winiewska-Szajewska M, Speina E, Kucharczyk R, Poznański J. 5,6-diiodo-1H-benzotriazole: new TBBt analogue that minutely affects mitochondrial activity. Sci Rep 2021; 11:23701. [PMID: 34880390 PMCID: PMC8654832 DOI: 10.1038/s41598-021-03136-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
4,5,6,7-Tetrabromo-1H-benzotriazole is widely used as the reference ATP-competitive inhibitor of protein kinase CK2. Herein, we study its new analogs: 5,6-diiodo- and 5,6-diiodo-4,7-dibromo-1H-benzotriazole. We used biophysical (MST, ITC) and biochemical (enzymatic assay) methods to describe the interactions of halogenated benzotriazoles with the catalytic subunit of human protein kinase CK2 (hCK2α). To trace the biological activity, we measured their cytotoxicity against four reference cancer cell lines and the effect on the mitochondrial inner membrane potential. The results obtained lead to the conclusion that iodinated compounds are an attractive alternative to brominated ones. One of them retains the cytotoxicity against selected cancer cell lines of the reference TBBt with a smaller side effect on mitochondrial activity. Both iodinated compounds are candidate leaders in the further development of CK2 inhibitors.
Collapse
Affiliation(s)
- Daniel Paprocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| | - Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.,Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089, Warsaw, Poland
| | - Elżbieta Speina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
11
|
Insight into the Binding and Hydrolytic Preferences of hNudt16 Based on Nucleotide Diphosphate Substrates. Int J Mol Sci 2021; 22:ijms222010929. [PMID: 34681586 PMCID: PMC8535469 DOI: 10.3390/ijms222010929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
Nudt16 is a member of the NUDIX family of hydrolases that show specificity towards substrates consisting of a nucleoside diphosphate linked to another moiety X. Several substrates for hNudt16 and various possible biological functions have been reported. However, some of these reports contradict each other and studies comparing the substrate specificity of the hNudt16 protein are limited. Therefore, we quantitatively compared the affinity of hNudt16 towards a set of previously published substrates, as well as identified novel potential substrates. Here, we show that hNudt16 has the highest affinity towards IDP and GppG, with Kd below 100 nM. Other tested ligands exhibited a weaker affinity of several orders of magnitude. Among the investigated compounds, only IDP, GppG, m7GppG, AppA, dpCoA, and NADH were hydrolyzed by hNudt16 with a strong substrate preference for inosine or guanosine containing compounds. A new identified substrate for hNudt16, GppG, which binds the enzyme with an affinity comparable to that of IDP, suggests another potential regulatory role of this protein. Molecular docking of hNudt16-ligand binding inside the hNudt16 pocket revealed two binding modes for representative substrates. Nucleobase stabilization by Π stacking interactions with His24 has been associated with strong binding of hNudt16 substrates.
Collapse
|
12
|
Marcinkowski M, Pilžys T, Garbicz D, Piwowarski J, Przygońska K, Winiewska-Szajewska M, Ferenc K, Skorobogatov O, Poznański J, Grzesiuk E. Calmodulin as Ca 2+-Dependent Interactor of FTO Dioxygenase. Int J Mol Sci 2021; 22:ijms221910869. [PMID: 34639211 PMCID: PMC8509707 DOI: 10.3390/ijms221910869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
FTO is an N6-methyladenosine demethylase removing methyl groups from nucleic acids. Several studies indicate the creation of FTO complexes with other proteins. Here, we looked for regulatory proteins recognizing parts of the FTO dioxygenase region. In the Calmodulin (CaM) Target Database, we found the FTO C-domain potentially binding CaM, and we proved this finding experimentally. The interaction was Ca2+-dependent but independent on FTO phosphorylation. We found that FTO–CaM interaction essentially influences calcium-binding loops in CaM, indicating the presence of two peptide populations—exchanging as CaM alone and differently, suggesting that only one part of CaM interacts with FTO, and the other one reminds free. The modeling of FTO–CaM interaction showed its stable structure when the half of the CaM molecule saturated with Ca2+ interacts with the FTO C-domain, whereas the other part is disconnected. The presented data indicate calmodulin as a new FTO interactor and support engagement of the FTO protein in calcium signaling pathways.
Collapse
Affiliation(s)
- Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Jan Piwowarski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Kaja Przygońska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Karolina Ferenc
- Center of Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland;
| | - Oleksandr Skorobogatov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
- Correspondence: (J.P.); (E.G.)
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
- Correspondence: (J.P.); (E.G.)
| |
Collapse
|
13
|
Liu W, Tan Y, Jones LO, Song B, Guo QH, Zhang L, Qiu Y, Feng Y, Chen XY, Schatz GC, Stoddart JF. PCage: Fluorescent Molecular Temples for Binding Sugars in Water. J Am Chem Soc 2021; 143:15688-15700. [PMID: 34505510 DOI: 10.1021/jacs.1c06333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of synthetic receptors that recognize carbohydrates in water with high selectivity and specificity is challenging on account of their structural complexity and strong hydrophilicity. Here, we report on the design and synthesis of two pyrene-based, temple-shaped receptors for the recognition of a range of common sugars in water. These receptors rely on the use of two parallel pyrene panels, which serve as roofs and floors, capable of forming multiple [C-H···π] interactions with the axially oriented C-H bonds on glycopyranosyl rings in the carbohydrate-based substrates. In addition, eight polarized pyridinium C-H bonds, projecting from the roofs and floors of the temple receptors toward the binding cavities, form [C-H···O] hydrogen bonds, with the equatorially oriented OH groups on the sugars located inside the hydrophobic cavities. Four para-xylylene pillars play a crucial role in controlling the distance between the roof and floor. These temple receptors are highly selective for the binding of glucose and its derivatives. Furthermore, they show enhanced fluorescence upon binding with glucose in water, a property which is useful for glucose-sensing in aqueous solution.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Leighton O Jones
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Long Zhang
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
14
|
Winiewska-Szajewska M, Maciejewska AM, Speina E, Poznański J, Paprocki D. Synthesis of Novel Halogenated Heterocycles Based on o-Phenylenediamine and Their Interactions with the Catalytic Subunit of Protein Kinase CK2. Molecules 2021; 26:molecules26113163. [PMID: 34070615 PMCID: PMC8198750 DOI: 10.3390/molecules26113163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/07/2023] Open
Abstract
Protein kinase CK2 is a highly pleiotropic protein kinase capable of phosphorylating hundreds of protein substrates. It is involved in numerous cellular functions, including cell viability, apoptosis, cell proliferation and survival, angiogenesis, or ER-stress response. As CK2 activity is found perturbed in many pathological states, including cancers, it becomes an attractive target for the pharma. A large number of low-mass ATP-competitive inhibitors have already been developed, the majority of them halogenated. We tested the binding of six series of halogenated heterocyclic ligands derived from the commercially available 4,5-dihalo-benzene-1,2-diamines. These ligand series were selected to enable the separation of the scaffold effect from the hydrophobic interactions attributed directly to the presence of halogen atoms. In silico molecular docking was initially applied to test the capability of each ligand for binding at the ATP-binding site of CK2. HPLC-derived ligand hydrophobicity data are compared with the binding affinity assessed by low-volume differential scanning fluorimetry (nanoDSF). We identified three promising ligand scaffolds, two of which have not yet been described as CK2 inhibitors but may lead to potent CK2 kinase inhibitors. The inhibitory activity against CK2α and toxicity against four reference cell lines have been determined for eight compounds identified as the most promising in nanoDSF assay.
Collapse
|
15
|
Czapinska H, Winiewska-Szajewska M, Szymaniec-Rutkowska A, Piasecka A, Bochtler M, Poznański J. Halogen Atoms in the Protein-Ligand System. Structural and Thermodynamic Studies of the Binding of Bromobenzotriazoles by the Catalytic Subunit of Human Protein Kinase CK2. J Phys Chem B 2021; 125:2491-2503. [PMID: 33689348 PMCID: PMC8041304 DOI: 10.1021/acs.jpcb.0c10264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Binding of a family
of brominated benzotriazoles to the catalytic
subunit of human protein kinase CK2 (hCK2α) was used as a model
system to assess the contribution of halogen bonding to protein–ligand
interaction. CK2 is a constitutively active pleiotropic serine/threonine
protein kinase that belongs to the CMGC group of eukaryotic protein
kinases (EPKs). Due to the addiction of some cancer cells, CK2 is
an attractive and well-characterized drug target. Halogenated benzotriazoles
act as ATP-competitive inhibitors with unexpectedly good selectivity
for CK2 over other EPKs. We have characterized the interaction of
bromobenzotriazoles with hCK2α by X-ray crystallography, low-volume
differential scanning fluorimetry, and isothermal titration calorimetry.
Properties of free ligands in solution were additionally characterized
by volumetric and RT-HPLC measurements. Thermodynamic data indicate
that the affinity increases with bromo substitution, with greater
contributions from 5- and 6-substituents than 4- and 7-substituents.
Except for 4,7-disubstituted compounds, the bromobenzotriazoles adopt
a canonical pose with the triazole close to lysine 68, which precludes
halogen bonding. More highly substituted benzotriazoles adopt many
additional noncanonical poses, presumably driven by a large hydrophobic
contribution to binding. Some noncanonical ligand orientations allow
the formation of halogen bonds with the hinge region. Consistent with
a predominantly hydrophobic interaction, the isobaric heat capacity
decreases upon ligand binding, the more so the higher the substitution.
Collapse
Affiliation(s)
- Honorata Czapinska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089 Warsaw, Poland
| | | | - Anna Piasecka
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Matthias Bochtler
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
16
|
Judy E, Kishore N. Discrepancies in Thermodynamic Information Obtained from Calorimetry and Spectroscopy in Ligand Binding Reactions: Implications on Correct Analysis in Systems of Biological Importance. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Eva Judy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400 076, India
| |
Collapse
|
17
|
Singh KK, Athira PJ, Bhardwaj N, Singh DP, Watson U, Saini DK. Acetylation of Response Regulator Protein MtrA in M. tuberculosis Regulates Its Repressor Activity. Front Microbiol 2021; 11:516315. [PMID: 33519719 PMCID: PMC7843721 DOI: 10.3389/fmicb.2020.516315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
MtrA is an essential response regulator (RR) protein in M. tuberculosis, and its activity is modulated after phosphorylation from its sensor kinase MtrB. Interestingly, many regulatory effects of MtrA have been reported to be independent of its phosphorylation, thereby suggesting alternate mechanisms of regulation of the MtrAB two-component system in M. tuberculosis. Here, we show that RR MtrA undergoes non-enzymatic acetylation through acetyl phosphate, modulating its activities independent of its phosphorylation status. Acetylated MtrA shows increased phosphorylation and enhanced interaction with SK MtrB assessed by phosphotransfer assays and FRET analysis. We also observed that acetylated MtrA loses its DNA-binding ability on gene targets that are otherwise enhanced by phosphorylation. More interestingly, acetylation is the dominant post-translational modification, overriding the effect of phosphorylation. Evaluation of the impact of MtrA and its lysine mutant overexpression on the growth of H37Ra bacteria under different conditions along with the infection studies on alveolar epithelial cells further strengthens the importance of acetylated MtrA protein in regulating the growth of M. tuberculosis. Overall, we show that both acetylation and phosphorylation regulate the activities of RR MtrA on different target genomic regions. We propose here that, although phosphorylation-dependent binding of MtrA drives its repressor activity on oriC and rpf, acetylation of MtrA turns this off and facilitates division in mycobacteria. Our findings, thus, reveal a more complex regulatory role of RR proteins in which multiple post-translational modifications regulate the activities at the levels of interaction with SK and the target gene expression.
Collapse
Affiliation(s)
- Krishna Kumar Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - P J Athira
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Neerupma Bhardwaj
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Devendra Pratap Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Uchenna Watson
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India.,Department of Studies in Zoology, University of Mysore, Mysore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
18
|
Bacon K, Blain A, Burroughs M, McArthur N, Rao BM, Menegatti S. Isolation of Chemically Cyclized Peptide Binders Using Yeast Surface Display. ACS COMBINATORIAL SCIENCE 2020; 22:519-532. [PMID: 32786323 DOI: 10.1021/acscombsci.0c00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclic peptides with engineered protein-binding activity have gained increasing attention for use in therapeutic and biotechnology applications. We describe the efficient isolation and characterization of cyclic peptide binders from genetically encoded combinatorial libraries using yeast surface display. Here, peptide cyclization is achieved by disuccinimidyl glutarate-mediated cross-linking of amine groups within a linear peptide sequence that is expressed as a yeast cell surface fusion. Using this approach, we first screened a library of cyclic heptapeptides using magnetic selection, followed by fluorescence activated cell sorting (FACS) to isolate binders for a model target (lysozyme) with low micromolar binding affinity (KD ∼ 1.2-3.7 μM). The isolated peptides bind lysozyme selectively and only when cyclized. Importantly, we showed that yeast surface displayed cyclic peptides can be used to efficiently obtain quantitative estimates of binding affinity, circumventing the need for chemical synthesis of the selected peptides. Subsequently, to demonstrate broader applicability of our approach, we isolated cyclic heptapeptides that bind human interleukin-17 (IL-17) using yeast-displayed IL-17 as a target for magnetic selection, followed by FACS using recombinant IL-17. Molecular docking simulations and follow-up experimental analyses identified a candidate cyclic peptide that likely binds IL-17 in its receptor binding region with moderate apparent affinity (KD ∼ 300 nM). Taken together, our results show that yeast surface display can be used to efficiently isolate and characterize cyclic peptides generated by chemical modification from combinatorial libraries.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Abigail Blain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Matthew Burroughs
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Nikki McArthur
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
19
|
Ooi HW, Kocken JMM, Morgan FLC, Malheiro A, Zoetebier B, Karperien M, Wieringa PA, Dijkstra PJ, Moroni L, Baker MB. Multivalency Enables Dynamic Supramolecular Host-Guest Hydrogel Formation. Biomacromolecules 2020; 21:2208-2217. [PMID: 32243138 PMCID: PMC7284802 DOI: 10.1021/acs.biomac.0c00148] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Supramolecular
and dynamic biomaterials hold promise to recapitulate
the time-dependent properties and stimuli-responsiveness of the native
extracellular matrix (ECM). Host–guest chemistry is one of
the most widely studied supramolecular bonds, yet the binding characteristics
of host–guest complexes (β-CD/adamantane) in relevant
biomaterials have mostly focused on singular host–guest interactions
or nondiscrete multivalent pendent polymers. The stepwise synergistic
effect of multivalent host–guest interactions for the formation
of dynamic biomaterials remains relatively unreported. In this work,
we study how a series of multivalent adamantane (guest) cross-linkers
affect the overall binding affinity and ability to form supramolecular
networks with alginate-CD (Alg-CD). These binding constants of the
multivalent cross-linkers were determined via NMR titrations and showed
increases in binding constants occurring with multivalent constructs.
The higher multivalent cross-linkers enabled hydrogel formation; furthermore,
an increase in binding and gelation was observed with the inclusion
of a phenyl spacer to the cross-linker. A preliminary screen shows
that only cross-linking Alg-CD with an 8-arm-multivalent guest results
in robust gel formation. These cytocompatible hydrogels highlight
the importance of multivalent design for dynamically cross-linked
hydrogels. These materials hold promise for development toward cell-
and small molecule-delivery platforms and allow discrete and fine-tuning
of network properties.
Collapse
Affiliation(s)
- Huey Wen Ooi
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Jordy M M Kocken
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Francis L C Morgan
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Afonso Malheiro
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Bram Zoetebier
- Department of Developmental BioEngineering, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Paul A Wieringa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Pieter J Dijkstra
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
20
|
Stulz A, Breitsamer M, Winter G, Heerklotz H. Primary and Secondary Binding of Exenatide to Liposomes. Biophys J 2020; 118:600-611. [PMID: 31972156 PMCID: PMC7002983 DOI: 10.1016/j.bpj.2019.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
The interactions of exenatide, a Trp-containing peptide used as a drug to treat diabetes, with liposomes were studied by isothermal titration calorimetry (ITC), tryptophan (Trp) fluorescence, and microscale thermophoresis measurements. The results are not only important for better understanding the release of this specific drug from vesicular phospholipid gel formulations but describe a general scenario as described before for various systems. This study introduces a model to fit these data on the basis of primary and secondary peptide-lipid interactions. Finally, resolving apparent inconsistencies between different methods aids the design and critical interpretation of binding experiments in general. Our results show that the net cationic exenatide adsorbs electrostatically to liposomes containing anionic diacyl phosphatidylglycerol lipids (PG); however, the ITC data could not properly be fitted by any established model. The combination of electrostatic adsorption of exenatide to the membrane surface and its self-association (Kd = 46 μM) suggested the possibility of secondary binding of peptide to the first, primarily (i.e., lipid-) bound peptide layer. A global fit of the ITC data validated this model and suggested one peptide to bind primarily per five PG molecules with a Kd ≈ 0.2 μM for PC/PG 1:1 and 0.6 μM for PC/PG 7:3 liposomes. Secondary binding shows a weaker affinity and a less exothermic or even endothermic enthalpy change. Depending on the concentration of liposomes, secondary binding may also lead to liposomal aggregation as detected by dynamic light-scattering measurements. ITC quantifies primary and secondary binding separately, whereas microscale thermophoresis and Trp fluorescence represent a summary or average of both effects, possibly with the fluorescence data showing somewhat greater weighting of primary binding. Systems with secondary peptide-peptide association within the membrane are mathematically analogous to the adsorption discussed here.
Collapse
Affiliation(s)
- Anja Stulz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Michaela Breitsamer
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gerhard Winter
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Pietsch M, Viht K, Schnitzler A, Ekambaram R, Steinkrüger M, Enkvist E, Nienberg C, Nickelsen A, Lauwers M, Jose J, Uri A, Niefind K. Unexpected CK2β-antagonistic functionality of bisubstrate inhibitors targeting protein kinase CK2. Bioorg Chem 2020; 96:103608. [PMID: 32058103 DOI: 10.1016/j.bioorg.2020.103608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/11/2019] [Accepted: 01/20/2020] [Indexed: 01/17/2023]
Abstract
Protein kinase CK2, a heterotetrameric holoenzyme composed of two catalytic chains (CK2α) attached to a homodimer of regulatory subunits (CK2β), is a target for drug development for cancer therapy. Here, we describe the tetraiodobenzimidazole derivative ARC-3140, a bisubstrate inhibitor addressing the ATP site and the substrate-binding site of CK2 with extraordinary affinity (Ki = 84 pM). In a crystal structure of ARC-3140 in complex with CK2α, three copies of the inhibitor are visible, one of them at the CK2β interface of CK2α. Subsequent interaction studies based on microscale thermophoresis and fluorescence anisotropy changes revealed a significant impact of ARC-3140 and of its tetrabromo equivalent ARC-1502 on the CK2α/CK2β interaction. A structural inspection revealed that ARC-3140, unlike CK2β antagonists described so far, interferes with both sub-interfaces of the bipartite CK2α/CK2β interaction. Thus, ARC-3140 is a lead for the further development of highly effective compounds perturbating the quaternary structure of the CK2α2β2 holoenzyme.
Collapse
Affiliation(s)
- Markus Pietsch
- Institut II für Pharmakologie, Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Str. 24, D-50931 Köln, Germany
| | - Kaido Viht
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Alexander Schnitzler
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Ramesh Ekambaram
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Michaela Steinkrüger
- Institut II für Pharmakologie, Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Str. 24, D-50931 Köln, Germany
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Christian Nienberg
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Anna Nickelsen
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Miriam Lauwers
- Institut II für Pharmakologie, Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Str. 24, D-50931 Köln, Germany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Asko Uri
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia.
| | - Karsten Niefind
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany.
| |
Collapse
|
22
|
Balusamy SR, Veerappan K, Ranjan A, Kim YJ, Chellappan DK, Dua K, Lee J, Perumalsamy H. Phyllanthus emblica fruit extract attenuates lipid metabolism in 3T3-L1 adipocytes via activating apoptosis mediated cell death. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153129. [PMID: 31794911 DOI: 10.1016/j.phymed.2019.153129] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Phyllanthus emblica L. (Indian gooseberry) is widely used in the Ayurveda for thousands of years to treat health complications including disorders of the immune system, diabetes, and obesity. PURPOSE For the first time, our study aims to demonstrate the molecular mechanisms of the fruit extract of Phyllanthus emblica (PEFE) involved in the promotion of fat cell apoptosis and alleviation of adipogenesis. METHODS The active constituents from PEFE were identified using high performance liquid chromatography-mass spectrometry (HPLC-MS). We carried out the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay to evaluate the cytotoxic effects of PEFE using 3T3-L1 pre-adipocytes. The colonogenic assay was carried out to determine the inhibitory effect of 3T3-L1 adipocytes after PEFE treatment. In addition, inhibition of pancreatic lipase activity was performed and the lipolytic activity of PEFE and digallic acid was compared with the well-known standard drug orlistat. Besides, the molecular interaction and ligand optimization between digallic and adipogenesis/apoptosis markers were also carried out. Furthermore, to confirm fat cell apoptosis we have used several detection methods that includes Hoechst staining, PI staining, Oil staining and qPCR respectively. RESULTS Digallic acid was identified as a major component in the PEFE. The IC50 values of digallic acid and PEFE were found to be 3.82 µg/ml and 21.85 µg/ml respectively. PEFE and digallic acid showed significant anti-lipolytic activity compared to the standard drug orlistat. In the mature adipocytes, PEFE significantly decreased triglyceride accumulation by downregulating adiponectin, PPARγ, cEBPα, and FABP4 respectively. We further analyzed the expression of apoptosis related genes upon PEFE treatment. Apoptotic process initiated through upregulation of BAX and downregulation of BCL2 resulting in an increased caspase-3 activity. In addition, we have also confirmed the apoptosis and DNA fragmentation in 3T3-L1 cells using Hoechst, PI and TUNEL assays. CONCLUSION PEFE negatively regulates adipogenesis by initiating fat cell apoptosis and therefore it can be considered as a potential herbal medicinal product for treating obesity.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Karpagam Veerappan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Anuj Ranjan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh 201313, India
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMR) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, NSW 2308, Australia
| | - Jihyun Lee
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Haribalan Perumalsamy
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 446-701, Republic of Korea.
| |
Collapse
|
23
|
Szymaniec-Rutkowska A, Bugajska E, Kasperowicz S, Mieczkowska K, Maciejewska AM, Poznański J. Does the partial molar volume of a solute reflect the free energy of hydrophobic solvation? J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Rational drug-design approach supported with thermodynamic studies - a peptide leader for the efficient bi-substrate inhibitor of protein kinase CK2. Sci Rep 2019; 9:11018. [PMID: 31358826 PMCID: PMC6662822 DOI: 10.1038/s41598-019-47404-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous inhibitors of protein kinases act on the basis of competition, targeting the ATP binding site. In this work, we present a procedure of rational design of a bi-substrate inhibitor, complemented with biophysical assays. The inhibitors of this type are commonly engineered by combining ligands carrying an ATP-like part with a peptide or peptide-mimicking fragment that determines specificity. Approach presented in this paper led to generation of a specific system for independent screening for efficient ligands and peptides, by means of thermodynamic measurements, that assessed the ability of the identified ligand and peptide to combine into a bi-substrate inhibitor. The catalytic subunit of human protein kinase CK2 was used as the model target. Peptide sequence was optimized using peptide libraries [KGDE]-[DE]-[ST]-[DE]3-4-NH2, originated from the consensus CK2 sequence. We identified KESEEE-NH2 peptide as the most promising one, whose binding affinity is substantially higher than that of the reference RRRDDDSDDD peptide. We assessed its potency to form an efficient bi-substrate inhibitor using tetrabromobenzotriazole (TBBt) as the model ATP-competitive inhibitor. The formation of ternary complex was monitored using Differential Scanning Fluorimetry (DSF), Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC).
Collapse
|
25
|
Mushtaq I, Akhter Z, Shah FU. Tunable Self-Assembled Nanostructures of Electroactive PEGylated Tetra(Aniline) Based ABA Triblock Structures in Aqueous Medium. Front Chem 2019; 7:518. [PMID: 31403042 PMCID: PMC6669400 DOI: 10.3389/fchem.2019.00518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/08/2019] [Indexed: 01/22/2023] Open
Abstract
PEGylated tetra(aniline) ABA triblock structure PEG-TANI-PEG (2) consisting of tetra(aniline) (TANI) and polyethylene glycol (PEG) was synthesized by coupling the tosylated-PEG to boc-protected NH2/NH2 TANI (1) through a simple nucleophilic substitution reaction. Deprotection of 2 resulted in a leucoemeraldine base state of TANI (2-LEB), which was oxidized to stable emeraldine base (2-EB) state. 2-EB was doped with 1 M HCl to emeraldine salt (2-ES) state. FTIR, 1H and 13C NMR and UV-Vis-NIR spectroscopy, and MS (ESI) was used for structural characterization. The synthesized triblock structure exhibited good electroactivity as confirmed by CV and UV-Vis-NIR spectroscopy. Self-assembling of the triblock structure in aqueous medium was assessed by DLS, TEM, and SEM. Spherical aggregates were observed with variable sizes depicting the effect of concentration and oxidation of 2-LEB. Further, the aggregates showed acid/base sensitivity as evaluated by doping and dedoping of 2-EB with 1 M HCl and 1 M NH4OH, respectively. Future applications in drug delivery and sensors are envisaged for such tunable self-assembled nanostructures in aqueous media.
Collapse
Affiliation(s)
- Irrum Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zareen Akhter
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
26
|
Singh KK, Bhardwaj N, Sankhe GD, Udaykumar N, Singh R, Malhotra V, Saini DK. Acetylation of Response Regulator Proteins, TcrX and MtrA in M. tuberculosis Tunes their Phosphotransfer Ability and Modulates Two-Component Signaling Crosstalk. J Mol Biol 2019; 431:777-793. [DOI: 10.1016/j.jmb.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 01/31/2023]
|
27
|
Wielgus-Kutrowska B, Grycuk T, Bzowska A. Part-of-the-sites binding and reactivity in the homooligomeric enzymes - facts and artifacts. Arch Biochem Biophys 2018; 642:31-45. [PMID: 29408402 DOI: 10.1016/j.abb.2018.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/13/2018] [Accepted: 01/17/2018] [Indexed: 01/18/2023]
Abstract
For a number of enzymes composed of several subunits with the same amino acid sequence, it was documented, or suggested, that binding of a ligand, or catalysis, is carried out by a single subunit. This phenomenon may be the result of a pre-existent asymmetry of subunits or a limiting case of the negative cooperativity, and is sometimes called "half-of-the-sites binding (or reactivity)" for dimers and could be called "part-of-the-sites binding (or reactivity)" for higher oligomers. In this article, we discuss molecular mechanisms that may result in "part-of-the-sites binding (and reactivity)", offer possible explanations why it may have a beneficial role in enzyme function, and point to experimental problems in documenting this behaviour. We describe some cases, for which such a mechanism was first reported and later disproved. We also give several examples of enzymes, for which this mechanism seems to be well documented, and profitable. A majority of enzymes identified in this study as half-of-the-sites binding (or reactive) use it in the flip-flop version, in which "half-of-the-sites" refers to a particular moment in time. In general, the various variants of the mechanism seems to be employed often by oligomeric enzymes for allosteric regulation to enhance the efficiency of enzymatic reactions in many key metabolic pathways.
Collapse
Affiliation(s)
- Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Department of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland.
| | - Tomasz Grycuk
- Division of Biophysics, Institute of Experimental Physics, Department of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Department of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland.
| |
Collapse
|