1
|
Castric V, Batista RA, Carré A, Mousavi S, Mazoyer C, Godé C, Gallina S, Ponitzki C, Theron A, Bellec A, Marande W, Santoni S, Mariotti R, Rubini A, Legrand S, Billiard S, Vekemans X, Vernet P, Saumitou-Laprade P. The homomorphic self-incompatibility system in Oleaceae is controlled by a hemizygous genomic region expressing a gibberellin pathway gene. Curr Biol 2024; 34:1967-1976.e6. [PMID: 38626763 DOI: 10.1016/j.cub.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
In flowering plants, outcrossing is commonly ensured by self-incompatibility (SI) systems. These can be homomorphic (typically with many different allelic specificities) or can accompany flower heteromorphism (mostly with just two specificities and corresponding floral types). The SI system of the Oleaceae family is unusual, with the long-term maintenance of only two specificities but often without flower morphology differences. To elucidate the genomic architecture and molecular basis of this SI system, we obtained chromosome-scale genome assemblies of Phillyrea angustifolia individuals and related them to a genetic map. The S-locus region proved to have a segregating 543-kb indel unique to one specificity, suggesting a hemizygous region, as observed in all distylous systems so far studied at the genomic level. Only one of the predicted genes in this indel region is found in the olive tree, Olea europaea, genome, also within a segregating indel. We describe complete association between the presence/absence of this gene and the SI types determined for individuals of seven distantly related Oleaceae species. This gene is predicted to be involved in catabolism of the gibberellic acid (GA) hormone, and experimental manipulation of GA levels in developing buds modified the male and female SI responses of the two specificities in different ways. Our results provide a unique example of a homomorphic SI system, where a single conserved gibberellin-related gene in a hemizygous indel underlies the long-term maintenance of two groups of reproductive compatibility.
Collapse
Affiliation(s)
- Vincent Castric
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Rita A Batista
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Amélie Carré
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Soraya Mousavi
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Clément Mazoyer
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Sophie Gallina
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Chloé Ponitzki
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Anthony Theron
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - Arnaud Bellec
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - William Marande
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - Sylvain Santoni
- UMR DIAPC Diversité et adaptation des plantes cultivées, F-34398 Montpellier, France
| | - Roberto Mariotti
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Andrea Rubini
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Sylvain Legrand
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Sylvain Billiard
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Philippe Vernet
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
2
|
Lin Z, Qin Y, Chen H, Shi D, Zhong M, An T, Chen L, Wang Y, Lin F, Li G, Ji ZL. TransIntegrator: capture nearly full protein-coding transcript variants via integrating Illumina and PacBio transcriptomes. Brief Bioinform 2023; 24:bbad334. [PMID: 37779246 DOI: 10.1093/bib/bbad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Genes have the ability to produce transcript variants that perform specific cellular functions. However, accurately detecting all transcript variants remains a long-standing challenge, especially when working with poorly annotated genomes or without a known genome. To address this issue, we have developed a new computational method, TransIntegrator, which enables transcriptome-wide detection of novel transcript variants. For this, we determined 10 Illumina sequencing transcriptomes and a PacBio full-length transcriptome for consecutive embryo development stages of amphioxus, a species of great evolutionary importance. Based on the transcriptomes, we employed TransIntegrator to create a comprehensive transcript variant library, namely iTranscriptome. The resulting iTrancriptome contained 91 915 distinct transcript variants, with an average of 2.4 variants per gene. This substantially improved current amphioxus genome annotation by expanding the number of genes from 21 954 to 38 777. Further analysis manifested that the gene expansion was largely ascribed to integration of multiple Illumina datasets instead of involving the PacBio data. Moreover, we demonstrated an example application of TransIntegrator, via generating iTrancriptome, in aiding accurate transcriptome assembly, which significantly outperformed other hybrid methods such as IDP-denovo and Trinity. For user convenience, we have deposited the source codes of TransIntegrator on GitHub as well as a conda package in Anaconda. In summary, this study proposes an affordable but efficient method for reliable transcriptomic research in most species.
Collapse
Affiliation(s)
- Zhe Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, 361102, Xiamen, China
| | - Yangmei Qin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Hao Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Dan Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Mindong Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Te An
- School of Informatics, Xiamen University, 361005, Xiamen, China
| | - Linshan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Fan Lin
- National Institute for Data Science in Health and Medicine, Xiamen University, 361102, Xiamen, China
- School of Informatics, Xiamen University, 361005, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, 361102, Xiamen, China
| |
Collapse
|
3
|
McWhite CD, Papoulas O, Drew K, Cox RM, June V, Dong OX, Kwon T, Wan C, Salmi ML, Roux SJ, Browning KS, Chen ZJ, Ronald PC, Marcotte EM. A Pan-plant Protein Complex Map Reveals Deep Conservation and Novel Assemblies. Cell 2020; 181:460-474.e14. [PMID: 32191846 PMCID: PMC7297045 DOI: 10.1016/j.cell.2020.02.049] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/08/2020] [Accepted: 02/21/2020] [Indexed: 01/11/2023]
Abstract
Plants are foundational for global ecological and economic systems, but most plant proteins remain uncharacterized. Protein interaction networks often suggest protein functions and open new avenues to characterize genes and proteins. We therefore systematically determined protein complexes from 13 plant species of scientific and agricultural importance, greatly expanding the known repertoire of stable protein complexes in plants. By using co-fractionation mass spectrometry, we recovered known complexes, confirmed complexes predicted to occur in plants, and identified previously unknown interactions conserved over 1.1 billion years of green plant evolution. Several novel complexes are involved in vernalization and pathogen defense, traits critical for agriculture. We also observed plant analogs of animal complexes with distinct molecular assemblies, including a megadalton-scale tRNA multi-synthetase complex. The resulting map offers a cross-species view of conserved, stable protein assemblies shared across plant cells and provides a mechanistic, biochemical framework for interpreting plant genetics and mutant phenotypes.
Collapse
Affiliation(s)
- Claire D McWhite
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Kevin Drew
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Rachael M Cox
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Viviana June
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Oliver Xiaoou Dong
- Department of Plant Pathology and The Genome Center, University of California, Davis, Davis, CA 95616, USA; Joint Bioenergy Institute, Emeryville, CA 94608, USA
| | - Taejoon Kwon
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Cuihong Wan
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA; Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, P.R. China
| | - Mari L Salmi
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Stanley J Roux
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Karen S Browning
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Pamela C Ronald
- Department of Plant Pathology and The Genome Center, University of California, Davis, Davis, CA 95616, USA; Joint Bioenergy Institute, Emeryville, CA 94608, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Utilization of Tissue Ploidy Level Variation in de Novo Transcriptome Assembly of Pinus sylvestris. G3-GENES GENOMES GENETICS 2019; 9:3409-3421. [PMID: 31427456 PMCID: PMC6778806 DOI: 10.1534/g3.119.400357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Compared to angiosperms, gymnosperms lag behind in the availability of assembled and annotated genomes. Most genomic analyses in gymnosperms, especially conifer tree species, rely on the use of de novo assembled transcriptomes. However, the level of allelic redundancy and transcript fragmentation in these assembled transcriptomes, and their effect on downstream applications have not been fully investigated. Here, we assessed three assembly strategies for short-reads data, including the utility of haploid megagametophyte tissue during de novo assembly as single-allele guides, for six individuals and five different tissues in Pinus sylvestris. We then contrasted haploid and diploid tissue genotype calls obtained from the assembled transcriptomes to evaluate the extent of paralog mapping. The use of the haploid tissue during assembly increased its completeness without reducing the number of assembled transcripts. Our results suggest that current strategies that rely on available genomic resources as guidance to minimize allelic redundancy are less effective than the application of strategies that cluster redundant assembled transcripts. The strategy yielding the lowest levels of allelic redundancy among the assembled transcriptomes assessed here was the generation of SuperTranscripts with Lace followed by CD-HIT clustering. However, we still observed some levels of heterozygosity (multiple gene fragments per transcript reflecting allelic redundancy) in this assembled transcriptome on the haploid tissue, indicating that further filtering is required before using these assemblies for downstream applications. We discuss the influence of allelic redundancy when these reference transcriptomes are used to select regions for probe design of exome capture baits and for estimation of population genetic diversity.
Collapse
|
5
|
Shih TH, Lin SH, Huang MY, Sun CW, Yang CM. Transcriptome profile of cup-shaped galls in Litsea acuminata leaves. PLoS One 2018; 13:e0205265. [PMID: 30356295 PMCID: PMC6200225 DOI: 10.1371/journal.pone.0205265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 09/22/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Insect galls are atypical plant tissues induced by the invasion of insects. Compared to the host leaf, gall tissues lose photosynthetic ability, but have higher soluble sugar content. Although the physiological and biochemical regulation of gall tissues have been demonstrated, the mechanism of genetic regulation has only been analyzed in few studies. RESULTS In this study, the transcriptome of cup-shaped galls and its host leaf were de novo assembled. Cellular functional enrichment and differentially expressed gene groups in the gall tissues were analyzed. The genes associated with primary metabolism, including photosynthesis, cell wall turnover, and sugar degradation, were expressed differently in galls and leaves. The examination of gene expression demonstrated that the genes involved in brassinosteroid synthesis and responses exhibited a remarkable modulation in cup-shaped galls, suggesting a potential role of steroid hormones in regulating gall development. CONCLUSIONS This study revealed the genetic responses, including those involved in source-sink reallocation and phytohormone metabolism, of galls induced by a dipteran insect.
Collapse
Affiliation(s)
- Tin-Han Shih
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Szu-Hsien Lin
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Meng-Yuan Huang
- Department of Horticulture and Biotechnology, Chinese Culture University, Shihlin, Taipei, Taiwan
| | - Chih-Wen Sun
- Department of Life Science, National Taiwan Normal University, Wenshan, Taipei, Taiwan
| | - Chi-Ming Yang
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|