1
|
Giri RK. Molecular signatures in prion disease: altered death receptor pathways in a mouse model. J Transl Med 2024; 22:503. [PMID: 38802941 PMCID: PMC11129387 DOI: 10.1186/s12967-024-05121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Prion diseases are transmissible and fatal neurodegenerative diseases characterized by accumulation of misfolded prion protein isoform (PrPSc), astrocytosis, microgliosis, spongiosis, and neurodegeneration. Elevated levels of cell membrane associated PrPSc protein and inflammatory cytokines hint towards the activation of death receptor (DR) pathway/s in prion diseases. Activation of DRs regulate, either cell survival or apoptosis, autophagy and necroptosis based on the adaptors they interact. Very little is known about the DR pathways activation in prion disease. DR3 and DR5 that are expressed in normal mouse brain were never studied in prion disease, so also their ligands and any DR adaptors. This research gap is notable and investigated in the present study. METHODS C57BL/6J mice were infected with Rocky Mountain Laboratory scrapie mouse prion strain. The progression of prion disease was examined by observing morphological and behavioural abnormalities. The levels of PrP isoforms and GFAP were measured as the marker of PrPSc accumulation and astrocytosis respectively using antibody-based techniques that detect proteins on blot and brain section. The levels of DRs, their glycosylation and ectodomain shedding, and associated factors warrant their examination at protein level, hence western blot analysis was employed in this study. RESULTS Prion-infected mice developed motor deficits and neuropathology like PrPSc accumulation and astrocytosis similar to other prion diseases. Results from this research show higher expression of all DR ligands, TNFR1, Fas and p75NTR but decreased levels DR3 and DR5. The levels of DR adaptor proteins like TRADD and TRAF2 (primarily regulate pro-survival pathways) are reduced. FADD, which primarily regulate cell death, its level remains unchanged. RIPK1, which regulate pro-survival, apoptosis and necroptosis, its expression and proteolysis (inhibits necroptosis but activates apoptosis) are increased. CONCLUSIONS The findings from the present study provide evidence towards the involvement of DR3, DR5, DR6, TL1A, TRAIL, TRADD, TRAF2, FADD and RIPK1 for the first time in prion diseases. The knowledge obtained from this research discuss the possible impacts of these 16 differentially expressed DR factors on our understanding towards the multifaceted neuropathology of prion diseases and towards future explorations into potential targeted therapeutic interventions for prion disease specific neuropathology.
Collapse
Affiliation(s)
- Ranjit Kumar Giri
- Molecular and Cellular Neuroscience Division, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
2
|
Gao Y, Wang Y, Wang X, Wang Y, Zhang X, Sun X. TNF-like ligand 1A is associated with progression and prognosis of human gastric cancer. Onco Targets Ther 2019; 12:7715-7723. [PMID: 31571922 PMCID: PMC6756834 DOI: 10.2147/ott.s210939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose This study aimed to investigate the function of TNF-like ligand 1A (TL1A) in the tumorigenesis and progression of gastric cancer (GC). Methods RNA-seq gene expression and clinical information for GC patients were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) between GC tissue samples and normal controls were screened with the edgeR package. Identification of gene co-expression and functional enrichment analyses were performed with Pearson’s correlation analysis and gene set enrichment analysis (GSEA), respectively. Lastly, survival analysis was performed using the Kaplan-Meier method with the log rank test. Results TL1A expression in GC tissue samples were significantly higher than that in normal controls (LogFC=1.07 and P=8.90E-07). Moreover, 215 genes, co-expressed with TL1A, and 21 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were obtained. Next, the miRNA-lncRNA/mRNA network, comprising 7 miRNAs, 27 lncRNAs, and 21 mRNAs, was constructed based on key genes from intersections between co-expression analysis and GSEA. In addition, survival analysis results demonstrated that TL1A (P=2.6e−07) was significantly associated with the overall survival (OS) of GC patients. Conclusion TL1A was involved in the tumorigenesis and progression of GC, and was significantly associated with the OS of GC patients.
Collapse
Affiliation(s)
- Yaxian Gao
- Department of Immunology, China Medical University, Shenyang, Liaoning 110000, People's Republic of China.,Department of Immunology, Chengde Medical College, Chengde, Hebei 067000, People's Republic of China
| | - Yuanyuan Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110000, People's Republic of China
| | - Xiao Wang
- Department of Immunology, China Medical University, Shenyang, Liaoning 110000, People's Republic of China
| | - Yongwei Wang
- Department of Anatomy, Chengde Medical College, Chengde, Hebei 067000, People's Republic of China
| | - Xiaoqing Zhang
- Department of Immunology, China Medical University, Shenyang, Liaoning 110000, People's Republic of China
| | - Xun Sun
- Department of Immunology, China Medical University, Shenyang, Liaoning 110000, People's Republic of China
| |
Collapse
|
3
|
Della Bella S, Calcaterra F, Bacci M, Carenza C, Pandolfo C, Ferrazzi P, Uva P, Pagani M, Lodigiani C, Mavilio D. Pathologic up-regulation of TNFSF15–TNFRSF25 axis sustains endothelial dysfunction in unprovoked venous thromboembolism. Cardiovasc Res 2019; 116:698-707. [DOI: 10.1093/cvr/cvz131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Abstract
Aims
The pathogenetic mechanisms underlying unprovoked venous thromboembolism (uVTE) are largely unknown. In this study, we investigated the molecular mechanisms involved in uVTE pathogenesis by using ex vivo expanded endothelial colony-forming cells (ECFCs), which represent a valuable non-invasive tool for the assessment of endothelial function.
Methods and results
We isolated and expanded ECFCs from the peripheral blood of uVTE patients and observed that these cells underwent earlier senescence and showed lower growth rate compared with ECFCs obtained from healthy donors. Through microarray expression profiling, we demonstrated that 2905 genes were differentially expressed between patients and controls. Among them, the anti-angiogenic cytokine TNF superfamily member 15 (TNFSF15) and its death-receptor TNFRSF25 were up-regulated in uVTE ECFCs, and this finding was validated by RT-qPCR. TNFSF15 up-regulation was confirmed at the protein level in ECFC supernatants, and the in vivo relevance of these findings was further corroborated by demonstrating that also the plasmatic levels of TNFSF15 are increased in uVTE patients. After proving that exogenous TNFSF15 exerts pro-apoptotic and anti-proliferative activity on control ECFCs, we demonstrated through blocking experiments that TNFSF15 up-regulation contributes to impaired survival and proliferation of uVTE ECFCs.
Conclusion
By providing evidence that TNFSF15 impairs ECFC functions crucial to endothelial repair, and that uVTE patients have increased TNFSF15 levels both ex vivo and in vivo, the results of this study suggest that pathologic up-regulation of TNFSF15–TNFRSF25 axis may contribute to uVTE pathogenesis, and may represent the target for novel therapeutic strategies aimed at preventing recurrences in uVTE patients.
Collapse
Affiliation(s)
- Silvia Della Bella
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center—IRCCS, via Manzoni 113, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Francesca Calcaterra
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center—IRCCS, via Manzoni 113, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Monica Bacci
- Thrombosis and Haemorragic Diseases Center, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Claudia Carenza
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center—IRCCS, via Manzoni 113, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Pandolfo
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center—IRCCS, via Manzoni 113, Rozzano, Milan, Italy
| | - Paola Ferrazzi
- Thrombosis and Haemorragic Diseases Center, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paolo Uva
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Science and Technology Park Polaris, Pula, Cagliari, Italy
| | - Massimiliano Pagani
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- INGM-National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan, Milan, Italy
| | - Corrado Lodigiani
- Thrombosis and Haemorragic Diseases Center, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center—IRCCS, via Manzoni 113, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Gertman O, Omer D, Hendler A, Stein D, Onn L, Khukhin Y, Portillo M, Zarivach R, Cohen HY, Toiber D, Aharoni A. Directed evolution of SIRT6 for improved deacylation and glucose homeostasis maintenance. Sci Rep 2018; 8:3538. [PMID: 29476161 PMCID: PMC5824787 DOI: 10.1038/s41598-018-21887-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/18/2017] [Indexed: 01/03/2023] Open
Abstract
Mammalian SIRT6 is a well-studied histone deacetylase that was recently shown to exhibit high protein deacylation activity enabling the removal of long chain fatty acyl groups from proteins. SIRT6 was shown to play key roles in cellular homeostasis by regulating a variety of cellular processes including DNA repair and glucose metabolism. However, the link between SIRT6 enzymatic activities and its cellular functions is not clear. Here, we utilized a directed enzyme evolution approach to generate SIRT6 mutants with improved deacylation activity. We found that while two mutants show increased deacylation activity at high substrate concentration and improved glucose metabolism they exhibit no improvement and even abolished deacetylation activity on H3K9Ac and H3K56Ac in cells. Our results demonstrate the separation of function between SIRT6 catalytic activities and suggest that SIRT6 deacylation activity in cells is important for glucose metabolism and can be mediated by still unknown acylated cellular proteins.
Collapse
Affiliation(s)
- Or Gertman
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | - Dotan Omer
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel.,Smartzyme Innovation LTD, Ilan Ramon, Science Park-Ness Ziona, Ness Ziona, Israel
| | - Adi Hendler
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | - Daniel Stein
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | - Lior Onn
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | - Yana Khukhin
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | - Miguel Portillo
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | - Haim Y Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel. .,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel.
| |
Collapse
|
5
|
Huang RYC, Krystek SR, Felix N, Graziano RF, Srinivasan M, Pashine A, Chen G. Hydrogen/deuterium exchange mass spectrometry and computational modeling reveal a discontinuous epitope of an antibody/TL1A Interaction. MAbs 2017; 10:95-103. [PMID: 29135326 DOI: 10.1080/19420862.2017.1393595] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
TL1A, a tumor necrosis factor-like cytokine, is a ligand for the death domain receptor DR3. TL1A, upon binding to DR3, can stimulate lymphocytes and trigger secretion of proinflammatory cytokines. Therefore, blockade of TL1A/DR3 interaction may be a potential therapeutic strategy for autoimmune and inflammatory diseases. Recently, the anti-TL1A monoclonal antibody 1 (mAb1) with a strong potency in blocking the TL1A/DR3 interaction was identified. Here, we report on the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to obtain molecular-level details of mAb1's binding epitope on TL1A. HDX coupled with electron-transfer dissociation MS provided residue-level epitope information. The HDX dataset, in combination with solvent accessible surface area (SASA) analysis and computational modeling, revealed a discontinuous epitope within the predicted interaction interface of TL1A and DR3. The epitope regions span a distance within the approximate size of the variable domains of mAb1's heavy and light chains, indicating it uses a unique mechanism of action to block the TL1A/DR3 interaction.
Collapse
Affiliation(s)
- Richard Y-C Huang
- a Bioanalytical and Discovery Analytical Sciences, Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , NJ , USA
| | - Stanley R Krystek
- b Molecular Discovery Technologies, Research and Development , Bristol-Myers Squibb Company , Princeton , NJ , USA
| | - Nathan Felix
- c Discovery Biology, Research and Development , Bristol-Myers Squibb Company , Princeton , NJ , USA
| | - Robert F Graziano
- c Discovery Biology, Research and Development , Bristol-Myers Squibb Company , Princeton , NJ , USA
| | - Mohan Srinivasan
- d Biologics Discovery California, Research and Development , Bristol-Myers Squibb Company , Redwood City , CA , USA
| | - Achal Pashine
- c Discovery Biology, Research and Development , Bristol-Myers Squibb Company , Princeton , NJ , USA
| | - Guodong Chen
- a Bioanalytical and Discovery Analytical Sciences, Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , NJ , USA
| |
Collapse
|
6
|
Weizman T, Levin I, Zaretsky M, Sagi I, Aharoni A. Increased Potency of a Bi-specific TL1A-ADAM17 (TACE) Inhibitor by Cell Surface Targeting. Front Mol Biosci 2017; 4:61. [PMID: 28879185 PMCID: PMC5572276 DOI: 10.3389/fmolb.2017.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease characterized by the dysregulated activity of many pro-inflammatory factors. Thus, bi-specific inhibitors for the simultaneous inhibition of two pro-inflammatory factors can exhibit high therapeutic potential. Here, we developed a novel bi-specific inhibitor targeting the TL1A cytokine and ADAM17/TACE metalloprotease. Biochemical analysis of the bi-specific inhibitor revealed high TL1A binding and TACE inhibition that is similar to the two respective mono-specific inhibitors. Interestingly, cell based assays for TL1A inhibition revealed strong synergism between the inhibitory domains showing an up to 80-fold increase in potency of the bi-specific inhibitor. The dramatic increase in potency is associated with binding to cell membranes through the TACE inhibitory domain leading to increased concentration of the inhibitor on the cell surface. Our study highlights the high potential of the simultaneous targeting of cell surface metalloprotease (TACE) and soluble pro-inflammatory cytokine (TL1A) as a potential therapeutic approach in IBD.
Collapse
Affiliation(s)
- Tomer Weizman
- Department of Life Sciences, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel
| | - Itay Levin
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel
| | - Marianna Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of ScienceRehovot, Israel
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, BeershebaBeersheba, Israel
| |
Collapse
|
7
|
Bittner S, Ehrenschwender M. Multifaceted death receptor 3 signaling-promoting survival and triggering death. FEBS Lett 2017; 591:2543-2555. [DOI: 10.1002/1873-3468.12747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/24/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Sebastian Bittner
- Institute of Clinical Microbiology and Hygiene; University Hospital Regensburg; Germany
| | - Martin Ehrenschwender
- Institute of Clinical Microbiology and Hygiene; University Hospital Regensburg; Germany
| |
Collapse
|