1
|
Lin YJ, Chen CH, Chang IYF, Chiang RL, Wang HY, Chiu CH, Chen YYM. Genomic and transcriptomic insights into the virulence and adaptation of shock syndrome-causing Streptococcus anginosus. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 39976625 DOI: 10.1099/mic.0.001535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Streptococcus anginosus is a common isolate of the oral cavity and an opportunistic pathogen for systemic infections. Although the pyogenic infections caused by S. anginosus are similar to those caused by Streptococcus pyogenes, S. anginosus lacks most of the well-characterized virulence factors of S. pyogenes. To investigate the pathogenicity of S. anginosus, we analysed the genome of a newly identified S. anginosus strain, KH1, which was associated with toxic shock-like syndrome in an immunocompetent adolescent. The genome of KH1 contains nine genomic islands, two Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated systems and many phage-related proteins, indicating that the genome is influenced by prophages and horizontal gene transfer. Comparative genome analysis of 355 S. anginosus strains revealed a significant difference between the sizes of the pan genome and core genome, reflecting notable strain variations. We further analysed the transcriptomes of KH1 under conditions mimicking either the oral cavity or the bloodstream. We found that in an artificial saliva medium, the expression of a putative quorum quenching system and pyruvate oxidase for H2O2 production was upregulated, which could optimize the competitiveness of S. anginosus in the oral ecosystem. Conversely, in a modified serum medium, purine and glucan biosynthesis, competence and bacteriocin production were significantly upregulated, likely facilitating the survival of KH1 in the bloodstream. These findings indicate that S. anginosus can utilize diverse mechanisms to adapt to different environmental niches and establish infection, despite its lack of toxin production.
Collapse
Affiliation(s)
- Yu-Juan Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Chih-Ho Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Ruei-Lin Chiang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Hsing-Yi Wang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| |
Collapse
|
2
|
Abán CL, Orosco S, Argañaraz Aybar JN, Albarracín L, Venecia A, Perret L, Ortiz Mayor S, Nishiyama K, Valdéz JC, Kitazawa H, Villena J, Gobbato N. Effect of Lactiplantibacillus plantarum cell-free culture on bacterial pathogens isolated from cystic fibrosis patients: in vitro and in vivo studies. Front Microbiol 2024; 15:1440090. [PMID: 39351305 PMCID: PMC11439784 DOI: 10.3389/fmicb.2024.1440090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 10/04/2024] Open
Abstract
This study aimed to investigate the effects of the cell-free supernatant of Lactiplantibacillus plantarum ATCC® 10241TM on the biofilm-forming capacity of Pseudomonas aeruginosa strains isolated from cystic fibrosis (CF) patients. In addition, the study evaluated the in vivo potential of the cell-free supernatant to modulate inflammation and reduce lung damage in mice infected with P. aeruginosa strains or co-challenged with P. aeruginosa and the Streptococcus milleri group (SMG). The results showed that CF-derived P. aeruginosa strains can infect the respiratory tract of adult mice, inducing local inflammation and lung damage. The severity of these infections was exacerbated when P. aeruginosa was co-administered with SMG. Notably, nebulization with the cell-free supernatant of L. plantarum produced beneficial effects, reducing respiratory infection severity and inflammatory responses induced by P. aeruginosa, both alone or in combination with SMG. Reduced bacterial loads and lung damage were observed in supernatant-treated mice compared to controls. Although further mechanistic studies are necessary, the results show that the cell-free supernatant of L. plantarum ATCC® 10241TM is an interesting adjuvant alternative to treat P. aeruginosa respiratory infections and superinfections in CF patients.
Collapse
Affiliation(s)
- Carla Luciana Abán
- National Council of Scientific and Technological Research (CONICET)–CCT (Salta-Jujuy), Salta, Argentina
| | - Silvia Orosco
- Pneumonology Department, Niño Jesus Children Hospital, SIPROSA, Tucuman, Argentina
| | - Julio Nicolás Argañaraz Aybar
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman, Argentina
| | - Leonardo Albarracín
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Analía Venecia
- Institute of Maternity and Gynecology “Nuestra Señora de las Mercedes”, SIPROSA, Tucuman, Argentina
| | - Liliana Perret
- Rehabilitation Department of the Integrated Health Program of the Ministry of Health of the Tucuman Province, Tucuman, Argentina
| | - Sonia Ortiz Mayor
- Hospital Centro de Salud “Zenon Santillan”, SIPROSA, Tucuman, Argentina
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Juan Carlos Valdéz
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Nadia Gobbato
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman, Argentina
| |
Collapse
|
3
|
Grassi L, Asfahl KL, Van den Bossche S, Maenhout I, Sass A, Vande Weygaerde Y, Van Braeckel E, Verhasselt B, Boelens J, Tunney MM, Dandekar AA, Coenye T, Crabbé A. Antibiofilm activity of Prevotella species from the cystic fibrosis lung microbiota against Pseudomonas aeruginosa. Biofilm 2024; 7:100206. [PMID: 38975276 PMCID: PMC11225020 DOI: 10.1016/j.bioflm.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
It is increasingly recognized that interspecies interactions may modulate the pathogenicity of Pseudomonas aeruginosa during chronic lung infections. Nevertheless, while the interaction between P. aeruginosa and pathogenic microorganisms co-infecting the lungs has been widely investigated, little is known about the influence of other members of the lung microbiota on the infection process. In this study, we focused on investigating the impact of Prevotella species isolated from the sputum of people with cystic fibrosis (pwCF) on biofilm formation and virulence factor production by P. aeruginosa. Screening of a representative collection of Prevotella species recovered from clinical samples showed that several members of this genus (8 out 10 isolates) were able to significantly reduce biofilm formation of P. aeruginosa PAO1, without impact on growth. Among the tested isolates, the strongest biofilm-inhibitory activity was observed for Prevotella intermedia and Prevotella nigrescens, which caused a reduction of up to 90% in the total biofilm biomass of several P. aeruginosa isolates from pwCF. In addition, a strain-specific effect of P. nigrescens on the ability of P. aeruginosa to produce proteases and pyocyanin was observed, with significant alterations in the levels of these virulence factors detected in LasR mutant strains. Overall, these results suggest that non-pathogenic bacteria from the lung microbiota may regulate pathogenicity traits of P. aeruginosa, and possibly affect the outcome of chronic lung infections.
Collapse
Affiliation(s)
- Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Kyle L. Asfahl
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Ine Maenhout
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Yannick Vande Weygaerde
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jerina Boelens
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Michael M. Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Kuryłek A, Stasiak M, Kern-Zdanowicz I. Virulence factors of Streptococcus anginosus - a molecular perspective. Front Microbiol 2022; 13:1025136. [PMID: 36386673 PMCID: PMC9643698 DOI: 10.3389/fmicb.2022.1025136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/21/2023] Open
Abstract
Streptococcus anginosus together with S. constellatus and S. intermedius constitute the Streptococcus anginosus group (SAG), until recently considered to be benign commensals of the human mucosa isolated predominantly from oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. For years the virulence potential of SAG was underestimated, mainly due to complications in correct species identification and their assignment to the physiological microbiota. Still, SAG representatives have been associated with purulent infections at oral and non-oral sites resulting in abscesses formation and empyema. Also, life threatening blood infections caused by SAG have been reported. However, the understanding of SAG as potential pathogen is only fragmentary, albeit certain aspects of SAG infection seem sufficiently well described to deserve a systematic overview. In this review we summarize the current state of knowledge of the S. anginosus pathogenicity factors and their mechanisms of action.
Collapse
|
5
|
Quinn AM, Bottery MJ, Thompson H, Friman VP. Resistance evolution can disrupt antibiotic exposure protection through competitive exclusion of the protective species. THE ISME JOURNAL 2022; 16:2433-2447. [PMID: 35859161 PMCID: PMC9477885 DOI: 10.1038/s41396-022-01285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/05/2022]
Abstract
Antibiotic degrading bacteria can reduce the efficacy of drug treatments by providing antibiotic exposure protection to pathogens. While this has been demonstrated at the ecological timescale, it is unclear how exposure protection might alter and be affected by pathogen antibiotic resistance evolution. Here, we utilised a two-species model cystic fibrosis (CF) community where we evolved the bacterial pathogen Pseudomonas aeruginosa in a range of imipenem concentrations in the absence or presence of Stenotrophomonas maltophilia, which can detoxify the environment by hydrolysing β-lactam antibiotics. We found that P. aeruginosa quickly evolved resistance to imipenem via parallel loss of function mutations in the oprD porin gene. While the level of resistance did not differ between mono- and co-culture treatments, the presence of S. maltophilia increased the rate of imipenem resistance evolution in the four μg/ml imipenem concentration. Unexpectedly, imipenem resistance evolution coincided with the extinction of S. maltophilia due to increased production of pyocyanin, which was cytotoxic to S. maltophilia. Together, our results show that pathogen resistance evolution can disrupt antibiotic exposure protection due to competitive exclusion of the protective species. Such eco-evolutionary feedbacks may help explain changes in the relative abundance of bacterial species within CF communities despite intrinsic resistance to anti-pseudomonal drugs.
Collapse
|
6
|
Tony-Odigie A, Wilke L, Boutin S, Dalpke AH, Yi B. Commensal Bacteria in the Cystic Fibrosis Airway Microbiome Reduce P. aeruginosa Induced Inflammation. Front Cell Infect Microbiol 2022; 12:824101. [PMID: 35174108 PMCID: PMC8842722 DOI: 10.3389/fcimb.2022.824101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic Pseudomonas aeruginosa infections play an important role in the progress of lung disease in patients suffering from cystic fibrosis (CF). Recent studies indicate that polymicrobial microbiome profiles in the airway are associated with less inflammation. Thus, the hypothesis was raised that certain commensal bacteria might protect the host from inflammation. We therefore performed a screening study with commensals isolated from CF airway microbiome samples to identify potential beneficial commensals. We isolated more than 80 aerobic or facultative anaerobic commensal strains, including strains from genera Streptococcus, Neisseria, Actinomyces, Corynebacterium, Dermabacter, Micrococcus and Rothia. Through a screening experiment of co-infection in human epithelial cell lines, we identified multiple commensal strains, especially strains belonging to Streptococcus mitis, that reduced P. aeruginosa triggered inflammatory responses. The results were confirmed by co-infection experiments in ex-vivo precision cut lung slices (PCLS) from mice. The underlying mechanisms of the complex host-pathogen-commensal crosstalk were investigated from both the host and the bacterial sides with a focus on S. mitis. Transcriptome changes in the host in response to co-infection and mono-infection were evaluated, and the results indicated that several signalling pathways mediating inflammatory responses were downregulated by co-infection with S. mitis and P. aeruginosa compared to P. aeruginosa mono-infection, such as neutrophil extracellular trap formation. The genomic differences among S. mitis strains with and without protective effects were investigated by whole genome sequencing, revealing genes only present in the S. mitis strains showing protective effects. In summary, through both in vitro and ex vivo studies, we could identify a variety of commensal strains that may reduce host inflammatory responses induced by P. aeruginosa infection. These findings support the hypothesis that CF airway commensals may protect the host from inflammation.
Collapse
Affiliation(s)
- Andrew Tony-Odigie
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Leonie Wilke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sébastien Boutin
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Alexander H. Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Buqing Yi
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Buqing Yi,
| |
Collapse
|
7
|
Van den Bossche S, De Broe E, Coenye T, Van Braeckel E, Crabbé A. The cystic fibrosis lung microenvironment alters antibiotic activity: causes and effects. Eur Respir Rev 2021; 30:30/161/210055. [PMID: 34526313 DOI: 10.1183/16000617.0055-2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Chronic airway colonisation by Pseudomonas aeruginosa, a hallmark of cystic fibrosis (CF) lung disease, is associated with increased morbidity and mortality and despite aggressive antibiotic treatment, P. aeruginosa is able to persist in CF airways. In vitro antibiotic susceptibility assays are poor predictors of antibiotic efficacy to treat respiratory tract infections in the CF patient population and the selection of the antibiotic(s) is often made on an empirical base. In the current review, we discuss the factors that are responsible for the discrepancies between antibiotic activity in vitro and clinical efficacy in vivo We describe how the CF lung microenvironment, shaped by host factors (such as iron, mucus, immune mediators and oxygen availability) and the microbiota, influences antibiotic activity and varies widely between patients. A better understanding of the CF microenvironment and population diversity may thus help improve in vitro antibiotic susceptibility testing and clinical decision making, in turn increasing the success rate of antibiotic treatment.
Collapse
Affiliation(s)
| | - Emma De Broe
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Dept of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium.,Dept of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Scialo F, Amato F, Cernera G, Gelzo M, Zarrilli F, Comegna M, Pastore L, Bianco A, Castaldo G. Lung Microbiome in Cystic Fibrosis. Life (Basel) 2021; 11:94. [PMID: 33513903 PMCID: PMC7911450 DOI: 10.3390/life11020094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
The defective mucociliary clearance due to CFTR malfunctioning causes predisposition to the colonization of pathogens responsible for the recurrent inflammation and rapid deterioration of lung function in patients with cystic fibrosis (CF). This has also a profound effect on the lung microbiome composition, causing a progressive reduction in its diversity, which has become a common characteristic of patients affected by CF. Although we know that the lung microbiome plays an essential role in maintaining lung physiology, our comprehension of how the microbial components interact with each other and the lung, as well as how these interactions change during the disease's course, is still at an early stage. Many challenges exist and many questions still to be answered, but there is no doubt that manipulation of the lung microbiome could help to develop better therapies for people affected by CF.
Collapse
Affiliation(s)
- Filippo Scialo
- Dipartimento di Scienze Mediche Traslazionali, University of Campania “L. Vanvitelli”, 80131 Napoli, Italy;
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
| | - Felice Amato
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| | - Gustavo Cernera
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| | - Monica Gelzo
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| | - Federica Zarrilli
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| | - Marika Comegna
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| | - Lucio Pastore
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| | - Andrea Bianco
- Dipartimento di Scienze Mediche Traslazionali, University of Campania “L. Vanvitelli”, 80131 Napoli, Italy;
| | - Giuseppe Castaldo
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| |
Collapse
|
9
|
Material properties of interfacial films of mucoid and nonmucoid Pseudomonas aeruginosa isolates. Acta Biomater 2020; 118:129-140. [PMID: 33053427 DOI: 10.1016/j.actbio.2020.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/20/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Chronic lung infection with bacterial biofilms is a leading cause of death in cystic fibrosis (CF) patients. Pseudomonas aeruginosa, one of the many species colonizing the lung airways, can undergo pathoadaptation, leading to a mucoid phenotype with interesting material properties. We hypothesize that the surface properties and extracellular materials of mucoid P. aeruginosa cells greatly influence the mechanical behavior of their films at fluid interfaces. In this study, we investigate the interfacial properties of films formed by nonmucoid (PANT) and mucoid (PASL) strains of P. aeruginosa isolated from CF patients. We use pendant drop elastometry to analyze the interfacial response of the films formed by PANT and PASL at the hexadecane-water interface. The dynamic rheological analyses of the films highlight the distinctive signature of the mucoid strains at fluid interfaces. The mucoid films exhibit greater relaxation following a compressive strain than a tensile one, while a full hysteresis response is achieved by the nonmucoid films; this indicates that the material properties of the PANT films are conserved under both compression and tension. The wrinkling and shape analyses of the interfacial bacterial films elucidate that the mucoid strain exhibits remarkable viscoelastic properties, enabling the remodeling of the living films and dissipation of the compressive stress. The comparative analysis of the material properties of mucoid and nonmucoid P. aeruginosa cells indicates that mucoid switch can play an important role in protecting the bacteria from interfacial stresses. Further characterization of interfacial bacterial films will provide new insights into the development of methods for controlling interfacial films of bacteria.
Collapse
|
10
|
Scott JE, O'Toole GA. The Yin and Yang of Streptococcus Lung Infections in Cystic Fibrosis: a Model for Studying Polymicrobial Interactions. J Bacteriol 2019; 201:e00115-19. [PMID: 30885933 PMCID: PMC6509657 DOI: 10.1128/jb.00115-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The streptococci are increasingly recognized as a core component of the cystic fibrosis (CF) lung microbiome, yet the role that they play in CF lung disease is unclear. The presence of the Streptococcus milleri group (SMG; also known as the anginosus group streptococci [AGS]) correlates with exacerbation when these microbes are the predominant species in the lung. In contrast, microbiome studies have indicated that an increased relative abundance of streptococci in the lung, including members of the oral microflora, correlates with impacts on lung disease less severe than those caused by other CF-associated microflora, indicating a complex role for this genus in the context of CF. Recent findings suggest that streptococci in the CF lung microenvironment may influence the growth and/or virulence of other CF pathogens, as evidenced by increased virulence factor production by Pseudomonas aeruginosa when grown in coculture with oral streptococci. Conversely, the presence of P. aeruginosa can enhance the growth of streptococci, including members of the SMG, a phenomenon that could be exacerbated by the fact that streptococci are not susceptible to some of the frontline antibiotics used to treat P. aeruginosa infections. Collectively, these studies indicate the necessity for further investigation into the role of streptococci in the CF airway to determine how these microbes, alone or via interactions with other CF-associated pathogens, might influence CF lung disease, for better or for worse. We also propose that the interactions of streptococci with other CF pathogens is an ideal model to study clinically relevant microbial interactions.
Collapse
Affiliation(s)
- Jessie E Scott
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
11
|
Scott JE, Li K, Filkins LM, Zhu B, Kuchma SL, Schwartzman JD, O'Toole GA. Pseudomonas aeruginosa Can Inhibit Growth of Streptococcal Species via Siderophore Production. J Bacteriol 2019; 201:e00014-19. [PMID: 30718303 PMCID: PMC6436353 DOI: 10.1128/jb.00014-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 12/30/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that causes patients to accumulate thick, dehydrated mucus in the lung and develop chronic, polymicrobial infections due to reduced mucociliary clearance. These chronic polymicrobial infections and subsequent decline in lung function are significant factors in the morbidity and mortality of CF. Pseudomonas aeruginosa and Streptococcus spp. are among the most prevalent organisms in the CF lung; the presence of P. aeruginosa correlates with lung function decline, and the Streptococcus milleri group (SMG), a subgroup of the viridans streptococci, is associated with exacerbations in patients with CF. Here we characterized the interspecies interactions that occur between these two genera. We demonstrated that multiple P. aeruginosa laboratory strains and clinical CF isolates promote the growth of multiple SMG strains and oral streptococci in an in vitro coculture system. We investigated the mechanism by which P. aeruginosa enhances growth of streptococci by screening for mutants of P. aeruginosa PA14 that are unable to enhance Streptococcus growth, and we identified the P. aeruginosapqsL::TnM mutant, which failed to promote growth of Streptococcus constellatus and S. sanguinis Characterization of the P. aeruginosa ΔpqsL mutant revealed that this strain cannot promote Streptococcus growth. Our genetic data and growth studies support a model whereby the P. aeruginosa ΔpqsL mutant overproduces siderophores and thus likely outcompetes Streptococcus sanguinis for limited iron. We propose a model whereby competition for iron represents one important means of interaction between P. aeruginosa and Streptococcus spp.IMPORTANCE Cystic fibrosis (CF) lung infections are increasingly recognized for their polymicrobial nature. These polymicrobial infections may alter the biology of the organisms involved in CF-related infections, leading to changes in growth, virulence, and/or antibiotic tolerance, and could thereby affect patient health and response to treatment. In this study, we demonstrate interactions between P. aeruginosa and streptococci using a coculture model and show that one interaction between these microbes is likely competition for iron. Thus, these data indicate that one CF pathogen may influence the growth of another, and they add to our limited knowledge of polymicrobial interactions in the CF airway.
Collapse
Affiliation(s)
- Jessie E Scott
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kewei Li
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Laura M Filkins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bin Zhu
- VCU Philips Institute for Oral Health Research, Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sherry L Kuchma
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joseph D Schwartzman
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
12
|
Malke H. Genetics and Pathogenicity Factors of Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0002-2017. [PMID: 30873932 PMCID: PMC11590425 DOI: 10.1128/microbiolspec.gpp3-0002-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/17/2022] Open
Abstract
Of the eight phylogenetic groups comprising the genus Streptococcus, Lancefield group C and G streptococci (GCS and GGS, resp.) occupy four of them, including the Pyogenic, Anginosus, and Mitis groups, and one Unnamed group so far. These organisms thrive as opportunistic commensals in both humans and animals but may also be associated with clinically serious infections, often resembling those due to their closest genetic relatives, the group A streptoccci (GAS). Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 12 species, several of which being subdivided into subspecies. This review summarizes these advances, citing 264 early and recent references. It focuses on the molecular structure and genetic regulation of clinically important proteins associated with the cell wall, cytoplasmic membrane and extracellular environment. The article also addresses the question of how, based on the current knowledge, basic research and translational medicine might proceed to further advance our understanding of these multifaceted organisms. Particular emphasis in this respect is placed on streptokinase as the protein determining the host specificity of infection and the Rsh-mediated stringent response with its potential for supporting bacterial survival under nutritional stress conditions.
Collapse
Affiliation(s)
- Horst Malke
- Friedrich Schiller University Jena, Faculty of Biology and Pharmacy, D-07743 Jena, Germany, and University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73190
| |
Collapse
|
13
|
Correction: Modulation of behaviour and virulence of a high alginate expressing Pseudomonas aeruginosa strain from cystic fibrosis by oral commensal bacterium Streptococcus anginosus. PLoS One 2017; 12:e0176577. [PMID: 28426833 PMCID: PMC5398692 DOI: 10.1371/journal.pone.0176577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|