1
|
Chivers SB, Andrade MA, Hammack RJ, Shannonhouse J, Gomez R, Zhang Y, Nguyen B, Shah P, Kim YS, Toney GM, Jeske NA. Peripheral macrophages contribute to nociceptor priming in mice with chronic intermittent hypoxia. Sci Signal 2024; 17:eadn8936. [PMID: 39078919 PMCID: PMC11412124 DOI: 10.1126/scisignal.adn8936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/13/2024] [Indexed: 09/21/2024]
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep disorder that is associated with increased incidence of chronic musculoskeletal pain. We investigated the mechanism of this association in a mouse model of chronic intermittent hypoxia (CIH) that mimics the repetitive hypoxemias of OSA. After 14 days of CIH, both male and female mice exhibited behaviors indicative of persistent pain, with biochemical markers in the spinal cord dorsal horn and sensory neurons of the dorsal root ganglia consistent with hyperalgesic priming. CIH, but not sleep fragmentation alone, induced an increase in macrophage recruitment to peripheral sensory tissues (sciatic nerve and dorsal root ganglia), an increase in inflammatory cytokines in the circulation, and nociceptor sensitization. Peripheral macrophage ablation blocked CIH-induced hyperalgesic priming. The findings suggest that correcting the hypoxia or targeting macrophage signaling might suppress persistent pain in patients with OSA.
Collapse
Affiliation(s)
- Samuel B. Chivers
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mary Ann Andrade
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert J. Hammack
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - John Shannonhouse
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yan Zhang
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Brian Nguyen
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Pankil Shah
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yu Shin Kim
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Glenn M. Toney
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nathaniel A. Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
2
|
Zhang Z, Kalra H, Delzell MC, Jedlicka CR, Vasilyev M, Vasileva A, Tomasson MH, Bates ML. CORP: Sources and degrees of variability in whole animal intermittent hypoxia experiments. J Appl Physiol (1985) 2023; 134:1207-1215. [PMID: 36958346 PMCID: PMC10151045 DOI: 10.1152/japplphysiol.00643.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/25/2023] Open
Abstract
Chamber exposures are commonly used to evaluate the physiological and pathophysiological consequences of intermittent hypoxia in animal models. Researchers in this field use both commercial and custom-built chambers in their experiments. The purpose of this Cores of Reproducibility in Physiology paper is to demonstrate potential sources of variability in these systems that researchers should consider. Evaluating the relationship between arterial oxygen saturation and inspired oxygen concentration, we found that there are important sex-dependent differences in the commonly used C57BL6/J mouse model. The time delay of the oxygen sensor that provides feedback to the system during the ramp-down and ramp-up phases was different, limiting the number of cycles per hour that can be conducted and the overall stability of the oxygen concentration. The time to reach the hypoxic and normoxic hold stages, and the overall oxygen concentration, were impacted by the cycle number. These variables were further impacted by whether there are animals present in the chamber, highlighting the importance of verifying the cycling frequency with animals in the chamber. At ≤14 cycles/h, instability in the chamber oxygen concentration did not impact arterial oxygen saturation but may be important at higher cycle numbers. Taken together, these data demonstrate the important sources of variability that justify reporting and verifying the target oxygen concentration, cycling frequency, and arterial oxygen concentration, particularly when comparing different animal models and chamber configurations.NEW & NOTEWORTHY Intermittent hypoxia exposures are commonly used in physiology and many investigators use chamber systems to perform these studies. Because of the variety of chamber systems and protocols used, it is important to understand the sources of variability in intermittent hypoxia experiments that can impact reproducibility. We demonstrate sources of variability that come from the animal model, the intermittent hypoxia protocol, and the chamber system that can impact reproducibility.
Collapse
Affiliation(s)
- Zishan Zhang
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Hardik Kalra
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Matthew C Delzell
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
- Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri, United States
| | - Charles R Jedlicka
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Mikhail Vasilyev
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Anastasiia Vasileva
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Michael H Tomasson
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Melissa L Bates
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
- Division of Neonatology, Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
3
|
Polsek D, Cash D, Veronese M, Ilic K, Wood TC, Milosevic M, Kalanj-Bognar S, Morrell MJ, Williams SCR, Gajovic S, Leschziner GD, Mitrecic D, Rosenzweig I. The innate immune toll-like-receptor-2 modulates the depressogenic and anorexiolytic neuroinflammatory response in obstructive sleep apnoea. Sci Rep 2020; 10:11475. [PMID: 32651433 PMCID: PMC7351955 DOI: 10.1038/s41598-020-68299-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
The increased awareness of obstructive sleep apnoea’s (OSA) links to Alzheimer’s disease and major psychiatric disorders has recently directed an intensified search for their potential shared mechanisms. We hypothesised that neuroinflammation and the microglial TLR2-system may act as a core process at the intersection of their pathophysiology. Moreover, we postulated that inflammatory-response might underlie development of key behavioural and neurostructural changes in OSA. Henceforth, we set out to investigate effects of 3 weeks’ exposure to chronic intermittent hypoxia in mice with or without functional TRL2 (TLR2+/+, C57BL/6-Tyrc-Brd-Tg(Tlr2-luc/gfp)Kri/Gaj;TLR2−/−,C57BL/6-Tlr2tm1Kir). By utilising multimodal imaging in this established model of OSA, a discernible neuroinflammatory response was demonstrated for the first time. The septal nuclei and forebrain were shown as the initial key seed-sites of the inflammatory cascade that led to wider structural changes in the associated neurocircuitry. Finally, the modulatory role for the functional TLR2-system was suggested in aetiology of depressive, anxious and anorexiolytic symptoms in OSA.
Collapse
Affiliation(s)
- Dora Polsek
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Diana Cash
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,BRAIN, Department of Neuroimaging, KCL, London, UK
| | | | - Katarina Ilic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | | | - Milan Milosevic
- School of Public Health, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Svjetlana Kalanj-Bognar
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Mary J Morrell
- The National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Srecko Gajovic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Guy D Leschziner
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,Department of Neurology, Guy's and St Thomas' Hospital (GSTT) and Clinical Neurosciences, KCL, London, UK.,Sleep Disorders Centre, GSTT, London, UK
| | - Dinko Mitrecic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK. .,Sleep Disorders Centre, GSTT, London, UK.
| |
Collapse
|
4
|
Impact of Intermittent Hypoxia on Sepsis Outcomes in a Murine Model. Sci Rep 2019; 9:12900. [PMID: 31501504 PMCID: PMC6733849 DOI: 10.1038/s41598-019-49381-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/22/2019] [Indexed: 12/03/2022] Open
Abstract
Sleep apnea has been associated with a variety of diseases, but its impact on sepsis outcome remains unclear. This study investigated the effect of intermittent hypoxia [IH]–the principal feature of sleep apnea–on murine sepsis. 5-week-old male C57BL6 mice were assigned to groups receiving severe IH (O2 fluctuating from room air to an O2 nadir of 5.7% with a cycle length of 90 seconds), mild IH (room air to 12%, 4 minutes/cycle), or room air for 3 weeks. Sepsis was induced by cecal ligation and puncture and survival was monitored. Sepsis severity was evaluated by murine sepsis scores, blood bacterial load, plasma tumor necrosis factor-α [TNF-α]/interleukin-6 [IL-6] levels and histopathology of vital organs. Compared with normoxic controls, mice subjected to severe IH had earlier mortality, a lower leukocyte count, higher blood bacterial load, higher plasma TNF-α and IL-6 levels, more severe inflammatory changes in the lung, spleen and small intestine. Mice subjected to mild IH did not differ from normoxic controls, except a higher IL-6 level after sepsis induced. The adverse impact of severe IH was reversed following a 10-day normoxic recovery. In conclusion, severe IH, not mild IH, contributed to poorer outcomes in a murine sepsis model.
Collapse
|
5
|
Gao X, Wu S, Dong Y, Huang Y, Chen Y, Qiao Y, Dou Z, Wang B. Role of the endogenous cannabinoid receptor 1 in brain injury induced by chronic intermittent hypoxia in rats. Int J Neurosci 2018; 128:797-804. [PMID: 29264962 DOI: 10.1080/00207454.2017.1420069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE This study investigated the effect of rimonabant, a cannabinoid receptor type 1 antagonist, on calcium/calmodulin- dependent protein kinase II and cannabinoid receptor type 1 in chronic intermittent hypoxia. MATERIALS AND METHODS Healthy male rats were divided into control group, intermittent hypoxia group for 4 or 6 weeks, hypoxic intervention group that received rimonabant (1 mg/kg/d) before exposure to hypoxia for 4 or 6 weeks (n = 10/group). Morphological changes and expressions of the two indexes in the cerebral hippocampus cells were determined by haematoxylin-eosin staining and immunohistochemistry, respectively. RESULTS In the intermittent hypoxia group at 4 weeks, the hippocampal cells were damaged with sparse cytoplasm and unclear boundaries, which are even worse at 6 weeks. In contrast, the hippocampal cells of the hypoxic intervention group were neatly arranged at 4 weeks. At 6 weeks, cells were larger with scarce cytoplasm and nuclear changes indicative of cell death. Calcium/calmodulin-dependent protein kinase II and cannabinoid receptor type 1 expression in the cerebral hippocampus was elevated in the intermittent hypoxia group at 4 weeks with even greater at 6 weeks. Cannabinoid receptor type 1 expression was reduced in the hypoxic intervention group compared to the intermittent hypoxia group. Correlation analysis revealed significant positive correlation of them in the intermittent hypoxia group. CONCLUSIONS Chronic intermittent hypoxia induced structural damage in the hippocampus and increased cannabinoid receptor type 1 and calcium/calmodulin-dependent protein kinase II expression, which may mediate cognitive impairment associated with chronic intermittent hypoxia. Rimonabant had a protective effect against chronic intermittent hypoxia.
Collapse
Affiliation(s)
- Xiaoling Gao
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Shujie Wu
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Yanting Dong
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Yaqiong Huang
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Yan Chen
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Yan Qiao
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Zhanjun Dou
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Bei Wang
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| |
Collapse
|