1
|
Tian G, Huang C, Li Z, Lu Z, Feng C, Zhuang Y, Li G, Liu P, Hu G, Gao X, Guo X. Baicalin mitigates nephropathogenic infectious bronchitis virus infection-induced spleen injury via modulation of mitophagy and macrophage polarization in Hy-Line chick. Vet Microbiol 2023; 286:109891. [PMID: 37866328 DOI: 10.1016/j.vetmic.2023.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Nephropathogenic infectious bronchitis virus (NIBV) infections continue to pose a significant hazard in the poultry industry. Baicalin is a natural flavonoid that has been reported to have antiviral activity, but its function in NIBV infection largely remains unclear. In this study, the antiviral mechanism of baicalin in the spleen of NIBV-infected chicks was mainly elucidated in mitophagy and macrophage polarization. 28-day-old Hy-Line brown chicks were randomly divided into four groups: the group of chicks was treated intranasally (in) with normal saline (0.2 mL) and subsequently divided into two groups: the Con group (basic diet), the Con+BA group (basic diet+10 mg/kg Baicalin); another group of chicks was intranasally infected with SX9 (10-5/0.2 mL) and subsequently divided into two groups: the Dis group (basic diet), the Dis+BA group (basic diet+10 mg/kg Baicalin). Spleen tissues were collected at 3, 7, and 11 days post infection (dpi). NIBV copy number was strikingly decreased in the spleens under BA treatment with infectious time. Histopathological examination showed enlarged and hemorrhagic white pulp and no clearly defined boundary between white pulp and red pulp in the Dis group, which could be improved by BA treatment. Meanwhile, the loss of cristae structure and vacuolization in mitochondria caused by NIBV infection was repaired in the Dis+BA group by ultrastructure observation. In addition, BA treatment inhibited the induction of mitophagy by NIBV infection. BA treatment also promoted innate immunity by enhancing type I IFN levels. Moreover, BA treatment up-regulated M1-related cytokines (iNOS, TNF-α, IL-1β, IL-6) and inhibited M2-related cytokines (ARG2, IL-4, IL-10, Pparg) at the mRNA and protein levels. However, the results from the splenic tissues at 11 dpi are opposite results from 3 and 7 dpi. Immunofluorescence analysis for M1 macrophage marker iNOS and M2 macrophage marker CD163 further validated this result. Collectively, BA inhibited mitophagy and triggered IFN activation, and M1 polarization, which contributed to the inhibition of NIBV infection.
Collapse
Affiliation(s)
- Guanming Tian
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Zhengqing Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Zhihua Lu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Chenlu Feng
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China.
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China.
| |
Collapse
|
2
|
The combination of gene hyperamplification and PD-L1 expression as a biomarker for the clinical benefit of tislelizumab in gastric/gastroesophageal junction adenocarcinoma. Gastric Cancer 2022; 25:943-955. [PMID: 35778636 PMCID: PMC9365737 DOI: 10.1007/s10120-022-01308-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND In solid tumor Phase 1/2 trials (NCT02407990; NCT04068519), tislelizumab demonstrated clinical benefit, including in advanced gastroesophageal adenocarcinoma (GEA). However, the majority of patients with GEA did not respond, highlighting the need to understand mechanisms of resistance and identify predictive biomarkers for response. METHODS All tislelizumab-treated patients with GEA from the Phase 1/2 trials were included (N = 105). Programmed death-ligand 1 (PD-L1) expression (Tumor Area Positivity [TAP] ≥ 5%), interferon gamma (IFNγ)-related gene signature, gene expression profile, tumor mutational burden (TMB), and gene hyperamplification (HA) were analyzed for correlation with tislelizumab. RESULTS A moderate association was observed between PD-L1 TAP ≥ 5%, IFNγ gene signature, TMB-high and efficacy. A potential correlation between hyperamplification (HA +) and worse outcomes with programmed cell death protein 1 (PD-1) inhibition was identified. Hyperamplified genes were mainly enriched in cancer progression pathways, including cell cycle and RTK-RAS-PI3K pathways. Joint PD-L1 TAP ≥ 5% and lack of hyperamplification showed the most favorable benefit with an objective response rate of 29.4%, and median progression-free survival and overall survival of 4.1 and 14.7 months, respectively. Tumors with TAP ≥ 5% and HA - had inflamed immune signatures with increased immune cell infiltration, enhanced anti-tumor cytotoxic activity and antigen presentation signatures. Findings were validated in two independent gastric and gastrointestinal cancer cohorts treated with immune checkpoint inhibitors. CONCLUSIONS In GEA, PD-L1 positivity, IFNγ-related gene signature and TMB-high status were positively associated with tislelizumab clinical benefit, whereas HA was associated with worse clinical outcomes. Combining PD-L1 positivity and HA - may help identify patients more likely to benefit from PD-1 blockade.
Collapse
|
3
|
The Colorectal Cancer Tumor Microenvironment and Its Impact on Liver and Lung Metastasis. Cancers (Basel) 2021; 13:cancers13246206. [PMID: 34944826 PMCID: PMC8699466 DOI: 10.3390/cancers13246206] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common cancer worldwide. Metastasis to secondary organs, such as the liver and lungs, is a key driver of CRC-related mortality. The tumor microenvironment, which consists of the primary cancer cells, as well as associated support and immune cells, significantly affects the behavior of CRC cells at the primary tumor site, as well as in metastatic lesions. In this paper, we review the role of the individual components of the tumor microenvironment on tumor progression, immune evasion, and metastasis, and we discuss the implications of these components on antitumor therapies. Abstract Colorectal cancer (CRC) is the third most common malignancy and the second most common cause of cancer-related mortality worldwide. A total of 20% of CRC patients present with distant metastases, most frequently to the liver and lung. In the primary tumor, as well as at each metastatic site, the cellular components of the tumor microenvironment (TME) contribute to tumor engraftment and metastasis. These include immune cells (macrophages, neutrophils, T lymphocytes, and dendritic cells) and stromal cells (cancer-associated fibroblasts and endothelial cells). In this review, we highlight how the TME influences tumor progression and invasion at the primary site and its function in fostering metastatic niches in the liver and lungs. We also discuss emerging clinical strategies to target the CRC TME.
Collapse
|
4
|
Wei Q, Xu Q, Yuan X, Li JJ, Chen L, Luo C, Zhu X, Ying JE. Immunological impact of chemotherapy on the tumor microenvironment in gastric cancer. J Surg Oncol 2021; 123:1708-1715. [PMID: 33684248 DOI: 10.1002/jso.26449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study aimed to investigate alterations in pre- and post-neoadjuvant chemotherapy (NACT) tumor-infiltrating immune cells and subsequent evaluation of the predictive and prognostic value of these changes in gastric cancer (GC). METHODS Fifty patients with GC underwent three cycles of S-1 and oxaliplatin (SOX regimen)-NACT. Paired samples from tumor lesions before and after NACT were available for all patients participating in the study. Immunohistochemistry was performed for T cell subsets (CD3+ and CD8+ ) and macrophages (CD68+ and CD163+ ). RESULTS After NACT, the average expression levels of CD3, CD8, CD68, and CD163 were significantly increased (p < .001). However, neither expression levels pre- nor post-chemotherapy correlated with treatment response. Multivariate Cox regression analysis demonstrated that upregulation of CD8/CD3 levels (hazard ratio [HR] = 0.117; 95% confidence interval [CI] = 0.031-0.446; p = 0.002) and CD163 levels after chemotherapy (HR = 2.258; 95% CI = 1.047-4.867; p = 0.038) were independent prognostic factors of overall survival. CONCLUSION Chemotherapy in GC is useful to induce CD3+ and CD8+ T lymphocytes as well as CD68+ and CD163+ macrophages in the tumor microenvironment in combination with its direct cytotoxic effects. These results indicate that chemotherapy may play a role in tumor immune microenvironment remodeling.
Collapse
Affiliation(s)
- Qing Wei
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, PR China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, PR China
| | - Qi Xu
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, PR China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, PR China
| | - Xing Yuan
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, PR China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, PR China
| | - Jing-Jing Li
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, PR China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, PR China
| | - Lei Chen
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, PR China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, PR China
| | - Cong Luo
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, PR China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, PR China
| | - Xiu Zhu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, PR China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, PR China
| | - Jie-Er Ying
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, PR China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, PR China
| |
Collapse
|
5
|
Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, Choinzonov E, Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol 2020; 10:566511. [PMID: 33194645 PMCID: PMC7642726 DOI: 10.3389/fonc.2020.566511] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are major innate immune cells that constitute up to 50% of the cell mass of human tumors. TAMs are highly heterogeneous cells that originate from resident tissue-specific macrophages and from newly recruited monocytes. TAMs' variability strongly depends on cancer type, stage, and intratumor heterogeneity. Majority of TAMs are programmed by tumor microenvironment to support primary tumor growth and metastatic spread. However, TAMs can also restrict tumor growth and metastasis. In this review, we summarized the knowledge about the role of TAMs in tumor growth, metastasis and in the response to cancer therapy in patients with five aggressive types of cancer: breast, colorectal, lung, ovarian, and prostate cancers that are frequently metastasize into distant organs resulting in high mortality of the patients. Two major TAM parameters are applied for the evaluation of TAM correlation with the cancer progression: total amount of TAMs and specific phenotype of TAMs identified by functional biomarkers. We summarized the data generated in the wide range of international patient cohorts on the correlation of TAMs with clinical and pathological parameters of tumor progression including lymphatic and hematogenous metastasis, recurrence, survival, therapy efficiency. We described currently available biomarkers for TAMs that can be measured in patients' samples (tumor tissue and blood). CD68 is the major biomarker for the quantification of total TAM amounts, while transmembrane receptors (stabilin-1, CD163, CD206, CD204, MARCO) and secreted chitinase-like proteins (YKL-39, YKL-40) are used as biomarkers for the functional TAM polarization. We also considered that specific role of TAMs in tumor progression can depend on the localization in the intratumoral compartments. We have made the conclusion for the role of TAMs in primary tumor growth, metastasis, and therapy sensitivity for breast, colorectal, lung, ovarian, and prostate cancers. In contrast to other cancer types, majority of clinical studies indicate that TAMs in colorectal cancer have protective role for the patient and interfere with primary tumor growth and metastasis. The accumulated data are essential for using TAMs as biomarkers and therapeutic targets to develop cancer-specific immunotherapy and to design efficient combinations of traditional therapy and new immunomodulatory approaches.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Gulnara Tuguzbaeva
- Department of Pathophysiology, Bashkir State Medical University, Ufa, Russia
| | - Anastasia Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Marina Stakheyeva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Valentin Pavlov
- Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Evgeniy Choinzonov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
| |
Collapse
|
6
|
Qian H, Wu X, Chen Q, Li T, Wang W, Jia J, Yu C, Li K, Sai Y, Su W, Liu Y. Effects of Food on the Pharmacokinetic Properties of Surufatinib: A Phase I, Single-dose, Randomized, Open-label Crossover Study in Healthy Subjects. Clin Ther 2020; 42:1778-1786. [PMID: 32800383 DOI: 10.1016/j.clinthera.2020.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/12/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Surufatinib is a potent and orally active small-molecule tyrosine kinase inhibitor targeting VEGFRs 1 to 3, FGFR-1, and CSF-1R, and thus may exert antitumor and antiangiogenic effects. The objective of this study was to determine the tolerability and effects of food intake on the pharmacokinetic properties of surufatinib in healthy Chinese subjects. METHODS A total of 24 healthy Chinese male subjects aged between 18 and 55 years were enrolled. Subjects were administered a single dose of surufatinib 250-mg capsules in the fasted and fed states in succession. Pharmacokinetic analysis was performed through the collection of blood samples at predose and at several time points after surufatinib administration. Tolerability assessments comprised physical examination including vital sign measurements, laboratory testing, and ECG to determine adverse events (AEs). FINDINGS The 90% CIs of the geometric mean ratios of AUC0-t and AUC0-∞ in the fasted and fed states was within 0.80 to 1.25; and for Cmax, within 0.70 to 1.43, indicating that food had no effect on the bioavailability of surufatinib in these healthy Chinese male subjects. Food intake delayed the time to peak absorption of surufatinib, as the median Tmax in the fed state was longer than that in the fasted state (4.0 vs 2.0 h). Surufatinib was marginally excreted from urine (mean [SD] cumulative excretion fraction, 1.2% [0.4%]). AEs occurred in 7 of the 24 subjects (29.2%) and included upper respiratory tract infection, dizziness, merycism, intervertebral disc protrusion, influenza-like disease, hematuria, prostatitis, and elevated blood urea nitrogen. All AEs were grade 1 or 2. IMPLICATIONS The bioavailability of surufatinib was not affected by food intake prior to dosing. However, food intake led to delated Tmax of surufatinib. The tolerability of a single oral dose of surufatinib 250 mg in the fasted and fed states was favorable in these healthy Chinese male subjects. These results indicate that surufatinib capsules could be administered before or after meals. ClinicalTrials.gov identifier: NCT02320409.
Collapse
Affiliation(s)
- Hongjie Qian
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Xue Wu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Qian Chen
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Tingting Li
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Wei Wang
- Department of Emergency, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Jingying Jia
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Chen Yu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Ke Li
- Hutchison MediPharma Ltd, Shanghai, China
| | - Yang Sai
- Hutchison MediPharma Ltd, Shanghai, China
| | - Weiguo Su
- Hutchison MediPharma Ltd, Shanghai, China
| | - Yanmei Liu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China.
| |
Collapse
|
7
|
Najmuddin SUFS, Amin ZM, Tan SW, Yeap SK, Kalyanasundram J, Ani MAC, Veerakumarasivam A, Chan SC, Chia SL, Yusoff K, Alitheen NB. Cytotoxicity study of the interleukin-12-expressing recombinant Newcastle disease virus strain, rAF-IL12, towards CT26 colon cancer cells in vitro and in vivo. Cancer Cell Int 2020; 20:278. [PMID: 32612457 PMCID: PMC7325054 DOI: 10.1186/s12935-020-01372-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background Oncolytic viruses have emerged as an alternative therapeutic modality for cancer as they can replicate specifically in tumour cells and induce toxic effects leading to apoptosis. Despite the great potentials and promising results shown in multiple studies, it appears that their efficacy is still moderate and deemed as not sufficient in clinical studies. In addressing this issue, genetic/molecular engineering approach has paved its way to improve the therapeutic efficacy as observed in the case of herpes simplex virus (HSV) expressing granulocyte–macrophage colony-stimulating factor (GM-CSF). This study aimed to explore the cytotoxicity effects of recombinant NDV strain AF2240-i expressing interleukin-12 (rAF-IL12) against CT26 colon cancer cells. Methods The cytotoxicity effect of rAF-IL12 against CT26 colon cancer cell line was determined by MTT assay. Based on the IC50 value from the anti-proliferative assay, further downward assays such as Annexin V FITC and cell cycle progression were carried out and measured by flow cytometry. Then, the in vivo study was conducted where the rAF-IL12 viral injections were given at the intra-tumoral site of the CT26 tumour-burden mice. At the end of the experiment, serum biochemical, T cell immunophenotyping, serum cytokine, histopathology of tumour and organ section, TUNEL assay, and Nanostring gene expression analysis were performed. Results The rAF-IL12 induced apoptosis of CT26 colon cancer cells in vitro as revealed in the Annexin V FITC analysis and also arrested the cancer cells progression at G1 phase of the cell cycle analysis. On the other hand, the rAF-IL12 significantly (p < 0.05) inhibited the growth of CT26 tumour in Balb/c mice and had regulated the immune system by increasing the level of CD4 + , CD8 + , IL-2, IL-12, and IFN-γ. Furthermore, the expression level of apoptosis-related genes (bax and p53) was up-regulated as a result of the rAF-IL12 treatment. Additionally, the rAF-IL12 had also down-regulated the expression level of KRAS, BRAF, MAPK1, Notch1, CCL2, and VEGF oncogenes. Besides, rAF-IL12 intra-tumoral delivery was considered safe and not hazardous to the host as evidenced in pathophysiology of the normal tissues and organs of the mice as well as from the serum biochemistry profile of liver and kidney. Conclusions These results indicated that rAF-IL12 had better anti-tumoral and cytotoxicity effects compared to its parental wild-type, AF2240-i in combatting the CT26 colon cancer model.
Collapse
Affiliation(s)
| | - Zahiah Mohamed Amin
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia
| | - Sheau Wei Tan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia
| | - Swee Keong Yeap
- Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor Darul Ehsan Malaysia
| | - Jeevanathan Kalyanasundram
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia
| | - Muhamad Alhapis Che Ani
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia
| | | | - Soon Choy Chan
- School of Foundation Studies, Perdana University, Block B and D1, MAEPS Building, MARDI Complex, Jalan MAEPS Perdana, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Suet Lin Chia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia.,Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia
| | - Khatijah Yusoff
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia.,Malaysian Genome Institute, National Institute of Biotechnology, Kajang, Jalan Bangi, 43000 Selangor Darul Ehsan Malaysia
| | - Noorjahan Banu Alitheen
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia.,Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia
| |
Collapse
|
8
|
Izzotti A, Ceccaroli C, Geretto M, Ruggieri FG, Schenone S, Di Maria E. Predicting Response to Neoadjuvant Therapy in Colorectal Cancer Patients the Role of Messenger-and Micro-RNA Profiling. Cancers (Basel) 2020; 12:cancers12061652. [PMID: 32580435 PMCID: PMC7352797 DOI: 10.3390/cancers12061652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer patients' responses to neoadjuvant therapy undergo broad inter-individual variations. The aim of this systematic review is to identify a molecular signature that is predictive of colon cancer downstaging and/or downgrading after neoadjuvant therapy. Among the hundreds analysed in the available studies, only 19 messenger-RNAs (mRNAs) and six micro-RNAs (miRNAs) were differentially expressed in responders versus non-responders in two or more independent studies. Therefore, a mRNA/miRNA signature can be designed accordingly, with limitations caused by the retrospective nature of these studies, the heterogeneity in study designs and the downgrading/downstaging assessment criteria. This signature can be proposed to tailor neoadjuvant therapy regimens on an individual basis.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: ; Tel.: +39-010-353-8522
| | | | - Marta Geretto
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy;
| | | | - Sara Schenone
- Department of Health Sciences, University of Genova, 16132 Genova, Italy; (S.S.); (E.D.M.)
| | - Emilio Di Maria
- Department of Health Sciences, University of Genova, 16132 Genova, Italy; (S.S.); (E.D.M.)
- Unit of Medical Genetics, Galliera Hospital, 16128 Genoa, Italy
| |
Collapse
|
9
|
Narayanan S, Kawaguchi T, Peng X, Qi Q, Liu S, Yan L, Takabe K. Tumor Infiltrating Lymphocytes and Macrophages Improve Survival in Microsatellite Unstable Colorectal Cancer. Sci Rep 2019; 9:13455. [PMID: 31530839 PMCID: PMC6748965 DOI: 10.1038/s41598-019-49878-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 08/31/2019] [Indexed: 12/18/2022] Open
Abstract
Due to the loss of DNA repair mechanisms in colorectal cancer (CRC) with microsatellite instability (MSI), somatic mutations accumulate within DNA; making them more prone to attack by tumor infiltrating lymphocytes (TIL) and macrophages. We hypothesize that MSI-High (MSI-H) patients have favorable survival due to increased tumor immunogenicity. The Cancer Genome Atlas (TCGA) was used to evaluate gene expression from 283 patients with CRC, comparing MSI-H and microsatellite stable (MSS) patients. CIBERSORT algorithm estimated the fraction of immune cell types. We found that low expression of DNA repair genes (MLH1, MLH3, PMS1, PMS2, ATR, PRKDC, ATM, BRCA2) associated with MSI-H. MSI-H was directly associated with Helper T-cells (p = 0.034) and M1 macrophages (p < 0.0001). MSI-H tumors associated with diminished intra-tumoral heterogeneity as well as higher expression of checkpoint molecules PD-1, PD-L1, CTLA4, LAG3 and TIM3 (p < 0.0001). Improved OS was seen in patients with low ATM, PMS2 and MLH3. In the TCGA CRC cohort, decreased expression of DNA repair genes associated with MSI-H. MSI-H patients had improved survival, likely due to higher TIL and M1 macrophage infiltration as well as lower intra-tumoral heterogeneity. MSI-H also associates with expression of immune checkpoint molecules with potential for development of therapeutic targets.
Collapse
Affiliation(s)
- Sumana Narayanan
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tsutomu Kawaguchi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xuan Peng
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Qianya Qi
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
10
|
Dzobo K, Senthebane DA, Thomford NE, Rowe A, Dandara C, Parker MI. Not Everyone Fits the Mold: Intratumor and Intertumor Heterogeneity and Innovative Cancer Drug Design and Development. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:17-34. [PMID: 29356626 DOI: 10.1089/omi.2017.0174] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Disruptive innovations in medicine are game-changing in nature and bring about radical shifts in the way we understand human diseases, their treatment, and/or prevention. Yet, disruptive innovations in cancer drug design and development are still limited. Therapies that cure all cancer patients are in short supply or do not exist at all. Chief among the causes of this predicament is drug resistance, a mechanism that is much more dynamic than previously understood. Drug resistance has limited the initial success experienced with biomarker-guided targeted therapies as well. A major contributor to drug resistance is intratumor heterogeneity. For example, within solid tumors, there are distinct subclones of cancer cells, presenting profound complexity to cancer treatment. Well-known contributors to intratumor heterogeneity are genomic instability, the microenvironment, cellular genotype, cell plasticity, and stochastic processes. This expert review explains that for oncology drug design and development to be more innovative, we need to take into account intratumor heterogeneity. Initially thought to be the preserve of cancer cells, recent evidence points to the highly heterogeneous nature and diverse locations of stromal cells, such as cancer-associated fibroblasts (CAFs) and cancer-associated macrophages (CAMs). Distinct subpopulations of CAFs and CAMs are now known to be located immediately adjacent and distant from cancer cells, with different subpopulations exerting different effects on cancer cells. Disruptive innovation and precision medicine in clinical oncology do not have to be a distant reality, but can potentially be achieved by targeting these spatially separated and exclusive cancer cell subclones and CAF subtypes. Finally, we emphasize that disruptive innovations in drug discovery and development will likely come from drugs whose effect is not necessarily tumor shrinkage.
Collapse
Affiliation(s)
- Kevin Dzobo
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town, South Africa .,2 Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Dimakatso Alice Senthebane
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town, South Africa .,2 Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Nicholas Ekow Thomford
- 3 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Arielle Rowe
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town, South Africa
| | - Collet Dandara
- 3 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - M Iqbal Parker
- 2 Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
11
|
The combination of cantharidin and antiangiogenic therapeutics presents additive antitumor effects against pancreatic cancer. Oncogenesis 2018; 7:94. [PMID: 30478299 PMCID: PMC6255842 DOI: 10.1038/s41389-018-0102-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/14/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023] Open
Abstract
Cantharidin, one of the active components of mylabris, is believed to have antitumor activity. Cantharidin selectively inhibits protein phosphatase 2A (PP2A), which can repress multiple oncogenic kinases (ERK, JNK, PKC, and NF-κB). Researches in vitro have shown that cantharidin suppresses cell viability and metastasis in pancreatic cancer cells. This study aims to investigate the effects of cantharidin on pancreatic cancer xenografts in vivo. Xenograft models were established using cells stably expressing luciferase. Xenograft growth was evaluated by living imaging. Gene expression was determined using a microarray, real-time PCR, a RayBiotech antibody array, and the Milliplex assay. Surprisingly, cantharidin significantly accelerated xenograft growth. Living imaging showed a rapid distribution of D-luciferin in cantharidin-treated xenografts, suggesting a rich blood supply. Immunohistochemistry confirmed increased angiogenesis. Microarray and antibody array identified upregulated proangiogenic and downregulated antiangiogenic factors. The Milliplex assay suggested elevated secretion of IL-6, IL-8, TNF-α, and VEGF. Inhibitors of ERK, JNK, PKC, and NF-κB pathway attenuated the cantharidin-induced changes to proangiogenic gene expression. PKC pathway-inhibiting tamoxifen or antiangiogenic therapeutics, including Ginsenoside Rg3, bevacizumab, Apatinib, and Endostar, antagonized the proangiogenic effect of cantharidin or its derivatives. These regimens presented remarkable additive antitumor effects in vivo. Although cantharidin presents antitumor effects in vitro and has been applied in clinical practice, we revealed an unfavorable proangiogenic side effect. We recommend that the clinical application of cantharidin should be performed on the premise of antivascularization therapy.
Collapse
|
12
|
Narayanan S, Kawaguchi T, Yan L, Peng X, Qi Q, Takabe K. Cytolytic Activity Score to Assess Anticancer Immunity in Colorectal Cancer. Ann Surg Oncol 2018; 25:2323-2331. [PMID: 29770915 DOI: 10.1245/s10434-018-6506-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Elevated tumor-infiltrating lymphocytes (TILs) within the tumor microenvironment is a known positive prognostic factor in colorectal cancer (CRC). We hypothesized that since cytotoxic T cells release cytolytic proteins such as perforin (PRF1) and pro-apoptotic granzymes (GZMA) to attack cancer cells, a cytolytic activity score (CYT) would be a useful tool to assess anticancer immunity. METHODS Genomic expression data were obtained from 456 patients from The Cancer Genome Atlas (TCGA). CYT was defined by GZMA and PRF1 expression, and CIBERSORT was used to evaluate intratumoral immune cell composition. RESULTS High CYT was associated with high microsatellite instability (MSI-H), as well as high levels of activated memory CD4+T cells, gamma-delta T cells, and M1 macrophages. CYT-high CRC patients had improved overall survival (p = 0.019) and disease-free survival (p = 0.016) compared with CYT-low CRC patients, especially in TIL-positive tumors. Multivariate analysis demonstrated that CYT- high associates with improved survival independently after controlling for age, lymphovascular invasion, colonic location, microsatellite instability, and TIL positivity. The levels of immune checkpoint molecules (ICMs)-programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), lymphocyte-activation gene 3 (LAG3), T cell immunoglobulin and mucin domain 3 (TIM3), and indoleamine 2,3-dioxygenase 1 (IDO1)-correlated significantly with CYT (p < 0.0001); with improved survival in CYT-high and ICM-low patients, and poorer survival in ICM-high patients. CONCLUSIONS High CYT within CRC is associated with improved survival, likely due to increased immunity and cytolytic activity of T cells and M1 macrophages. High CYT is also associated with high expression of ICMs; thus, further studies to elucidate the role of CYT as a predictive biomarker of the efficacy of immune checkpoint blockade are warranted.
Collapse
Affiliation(s)
- Sumana Narayanan
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Tsutomu Kawaguchi
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Xuan Peng
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Qianya Qi
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Surgery, University at Buffalo, The State University of New York Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA. .,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan. .,Department of Surgery, Yokohama City University, Yokohama, Japan. .,Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan. .,Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|
13
|
Bruno A, Bassani B, D'Urso DG, Pitaku I, Cassinotti E, Pelosi G, Boni L, Dominioni L, Noonan DM, Mortara L, Albini A. Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer. FASEB J 2018; 32:5365-5377. [PMID: 29763380 DOI: 10.1096/fj.201701103r] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NK cells are effector lymphocytes involved in tumor immunosurveillance; however, in patients with solid malignancies, NK cells have compromised functions. We have previously reported that lung tumor-associated NK cells (TANKs; peripheral blood) and tumor-infiltrating NK cells (TINKs) show proangiogenic, decidual NK-like (dNK) phenotype. In this study, we functionally and molecularly investigated TINKs and TANKs from blood and tissue samples of patients with colorectal cancer (CRC), a neoplasm in which inflammation and angiogenesis have clinical relevance, and compared them to NK cells from controls and patients with nononcologic inflammatory bowel disease. CRC TINKs/TANKs showed decreased expression for the activatory marker NKG2D, impaired degranulation activity, a decidual-like NK polarization toward the CD56brightCD16dim/-CD9+CD49+ subset. TINKs and TANKs secreted cytokines with proangiogenic activities, and induce endothelial cell proliferation, migration, adhesion, and the formation of capillary-like structures in vitro. dNK cells release specific proangiogenic factors; among which, angiogenin and invasion-associated enzymes related to the MMP9-TIMP1/2 axis. Here, we describe, for the first time, to our knowledge, the expression of angiogenin, MMP2/9, and TIMP by TANKs in patients with CRC. This phenotype could be relevant to the invasive capabilities and proangiogenic functions of CRC-NK cells and become a novel biomarker. STAT3/STAT5 activation was observed in CRC-TANKs, and treatment with pimozide, a STAT5 inhibitor, reduced endothelial cell capability to form capillary-like networks, inhibiting VEGF and angiogenin production without affecting the levels of TIMP1, TIMP2, and MMP9, indicating that STAT5 is involved in cytokine modulation but not invasion-associated molecules. Combination of Stat5 or MMP inhibitors with immunotherapy could help repolarize CRC TINKs and TANKs to anti-tumor antimetastatic ones.-Bruno, A., Bassani, B., D'Urso, D. G., Pitaku, I., Cassinotti, E., Pelosi, G., Boni, L., Dominioni, L., Noonan, D. M., Mortara, L., Albini, A. Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer.
Collapse
Affiliation(s)
- Antonino Bruno
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Barbara Bassani
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Davide Giuseppe D'Urso
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Ilvana Pitaku
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Elisa Cassinotti
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luigi Boni
- Department of Medical-Surgical Physiopathology and Transplantation, University of Milan-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca' Granda, Polyclinic Hospital, Milan, Italy
| | - Lorenzo Dominioni
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Douglas M Noonan
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; and
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; and
| | - Adriana Albini
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy.,Department of Medicine and Surgery, University Milano-Bicocca, Monza, Italy
| |
Collapse
|