1
|
Lee C, Kim S, Woo J. A comparative analysis of factors influencing colorectal cancer’s age standardized mortality ratio among Korean women in the hot and cold spots. PLoS One 2022; 17:e0273995. [PMID: 36083985 PMCID: PMC9462820 DOI: 10.1371/journal.pone.0273995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 08/21/2022] [Indexed: 11/18/2022] Open
Abstract
The study aimed at exploring factors that most influence colorectal cancer (CRC) age standardized mortality ratio (ASMR) among Korean women, as reported in previous studies. The factors used the data of 250 municipalities from the Korean Statistical Information Service (KOSIS) from 2010 to 2018. In the exploratory survey, over 70% of women aged 65 and above died of colorectal cancer. After investigating the existing literature and theories, 250 regions were classified into hot and cold spots according to age standardized mortality ratio (ASMR). The Nearest Neighbor Index (NNI), Moran’s I index and The Durbin-Watson test were also utilized. The ASMR’s regional cluster analysis showed that the inland areas were the hot spots and the cold spots were in the southwest coastal areas. The result also showed the differences in dwellers’ lifestyles between these two regions as well as the mean difference between the two. In addition, there was no significant difference in ASMR for breast cancer, CRC deaths, and agricultural product shipments between the two regions. In the multiple regression model, CRC mortality, diabetes, and CRC age standardized incidence ratio (ASIR) were analyzed as major influencing factors, demonstrated a significant result with 30.6% by examining the adjusted R-squared. However, this study showed that factors such as smoking, alcohol consumption, abdominal obesity, breast cancer, and food consumption indicated to have less influence on the occurrence of CRC. The aging rate, amount of food consumption, seafood production, livestock product shipments, and drinking rate were higher in the cold spot than in the hot spot.
Collapse
Affiliation(s)
- ChuelWon Lee
- Medical Device Industry Program in Graduate School, Dongguk University-Seoul, Seoul, Korea
| | - SungMin Kim
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul, Korea
- * E-mail:
| | - JaeHyun Woo
- Medical Device Industry Program in Graduate School, Dongguk University-Seoul, Seoul, Korea
| |
Collapse
|
2
|
Fish Consumption and Colorectal Cancer Risk: Meta-Analysis of Prospective Epidemiological Studies and Review of Evidence from Animal Studies. Cancers (Basel) 2022; 14:cancers14030640. [PMID: 35158907 PMCID: PMC8833371 DOI: 10.3390/cancers14030640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Epidemiological studies on the association between fish consumption and colorectal cancer (CRC) risk have yielded inconsistent results, despite evidence from preclinical studies that long-chain ω-3 polyunsaturated fatty acids inhibit colorectal carcinogenesis. We conducted a meta-analysis of prospective epidemiological studies investigating the association between fish consumption and CRC risk among humans and reviewed studies examining the link between fish components and colorectal carcinogenesis in animal models. Methods: We included studies published until November 2020. We calculated the summary risk ratio (SRR) and 95% confidence intervals (CI) through random effects meta-analysis models in order to summarize evidence from studies among humans. Results: Twenty-five prospective epidemiological studies encompassing 25,777 CRC cases were included. Individuals in the highest (vs. lowest) category of fish consumption had a significantly reduced risk of CRC (SRR 0.94, 95%CI 0.89-0.99). In dose-response meta-analysis, a 50-g increment in the daily consumption of fish was associated with a statistically significant 4% reduction in CRC risk (SRR 0.96, 95%CI 0.92-0.99). Preclinical studies (n = 25) identified multiple mechanisms of action of fish and fish components on colorectal carcinogenesis. Conclusions: Dietary recommendations for cancer prevention should take into account the evidence from epidemiological and preclinical studies that increasing fish consumption may be effective in preventing CRC.
Collapse
|
3
|
Johanson SM, Swann JR, Umu ÖCO, Aleksandersen M, Müller MHB, Berntsen HF, Zimmer KE, Østby GC, Paulsen JE, Ropstad E. Maternal exposure to a human relevant mixture of persistent organic pollutants reduces colorectal carcinogenesis in A/J Min/+ mice. CHEMOSPHERE 2020; 252:126484. [PMID: 32199166 DOI: 10.1016/j.chemosphere.2020.126484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
An increased risk of developing colorectal cancer has been associated with exposure to persistent organic pollutants (POPs) and alteration in the gut bacterial community. However, there is limited understanding about the impact of maternal exposure to POPs on colorectal cancer and gut microbiota. This study characterized the influence of exposure to a human relevant mixture of POPs during gestation and lactation on colorectal cancer, intestinal metabolite composition and microbiota in the A/J Min/+ mouse model. Surprisingly, the maternal POP exposure decreased colonic tumor burden, as shown by light microscopy and histopathological evaluation, indicating a restriction of colorectal carcinogenesis. 1H nuclear magnetic resonance spectroscopy-based metabolomic analysis identified alterations in the metabolism of amino acids, lipids, glycerophospholipids and energy in intestinal tissue. In addition, 16S rRNA sequencing of gut microbiota indicated that maternal exposure modified fecal bacterial composition. In conclusion, the results showed that early-life exposure to a mixture of POPs reduced colorectal cancer initiation and promotion, possibly through modulation of the microbial and biochemical environment. Further studies should focus on the development of colorectal cancer after combined maternal and dietary exposures to environmentally relevant low-dose POP mixtures.
Collapse
Affiliation(s)
- Silje M Johanson
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Jonathan R Swann
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ, United Kingdom.
| | - Özgün C O Umu
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Mona Aleksandersen
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Mette H B Müller
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Hanne F Berntsen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway; National Institute of Occupational Health, P.O. Box 5330 Majorstuen, NO-0304, Oslo, Norway.
| | - Karin E Zimmer
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Gunn C Østby
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Jan E Paulsen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| |
Collapse
|
4
|
Van Hecke T, Goethals S, Vossen E, De Smet S. Long‐Chain
n
‐3 PUFA Content and
n
‐6/
n
‐3 PUFA Ratio in Mammal, Poultry, and Fish Muscles Largely Explain Differential Protein and Lipid Oxidation Profiles Following In Vitro Gastrointestinal Digestion. Mol Nutr Food Res 2019; 63:e1900404. [DOI: 10.1002/mnfr.201900404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/27/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product QualityDepartment of Animal Sciences and Aquatic EcologyGhent University Coupure Links 653 B‐9000 Ghent Belgium
| | - Sophie Goethals
- Laboratory for Animal Nutrition and Animal Product QualityDepartment of Animal Sciences and Aquatic EcologyGhent University Coupure Links 653 B‐9000 Ghent Belgium
| | - Els Vossen
- Laboratory for Animal Nutrition and Animal Product QualityDepartment of Animal Sciences and Aquatic EcologyGhent University Coupure Links 653 B‐9000 Ghent Belgium
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product QualityDepartment of Animal Sciences and Aquatic EcologyGhent University Coupure Links 653 B‐9000 Ghent Belgium
| |
Collapse
|
5
|
Haug A, Vhile SG, Berg J, Hove K, Egelandsdal B. Feeding potentially health promoting nutrients to finishing bulls changes meat composition and allow for product health claims. Meat Sci 2018; 145:461-468. [DOI: 10.1016/j.meatsci.2018.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 01/07/2023]
|