1
|
Fujiwara Y, Yano H, Pan C, Shiota T, Komohara Y. Anticancer immune reaction and lymph node sinus macrophages: a review from human and animal studies. J Clin Exp Hematop 2024; 64:71-78. [PMID: 38925976 PMCID: PMC11303962 DOI: 10.3960/jslrt.24017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/28/2024] Open
Abstract
Lymph nodes are secondary lymphoid organs localized throughout the body that typically appear as bean-like nodules. Numerous antigen-presenting cells, including dendritic cells and macrophages, that mediate host defense responses against pathogens, such as bacteria and viruses, reside within lymph nodes. To react to cancer cell-derived antigens in a variety of cancers, antigen-presenting cells induce cytotoxic T lymphocytes (CTLs). In relation to anticancer immune responses, macrophages in the lymph node sinus have been of particular interest because a number of studies involving both human specimens and animal models have reported that lymph node macrophages expressing CD169 play a key role in activating anticancer CTLs. Recent studies have indicated that dysfunction of lymph node macrophages potentially contributes to immune suppression in elderly patients and immunological "cold" tumors. Therefore, in anticancer therapy, the regulation of lymph node macrophages is a potentially promising approach.
Collapse
|
2
|
Halin Bergström S, Lundholm M, Nordstrand A, Bergh A. Rat prostate tumors induce DNA synthesis in remote organs. Sci Rep 2022; 12:7908. [PMID: 35551231 PMCID: PMC9098422 DOI: 10.1038/s41598-022-12131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Advanced cancers induce systemic responses. However, if such systemic changes occur already when aggressive tumors are small, have not been thoroughly characterized. Here, we examined how localized prostate cancers of different sizes and metastatic potential affected DNA synthesis in the rest of the prostate and in various remote organs. Non-metastatic Dunning R-3327 G (G) tumor cells, metastatic MatLyLu (MLL) tumor cells, or vehicle were injected into the prostate of immunocompetent rats. All animals received daily injections of Bromodeoxyuridine (BrdU), to label cells/daughter cells with active DNA synthesis. Equal sized G- and MLL-tumors, similarly increased BrdU-labeling in the prostate, lymph nodes and liver compared to tumor-free controls. Prior to metastasis, MLL-tumors also increased BrdU-labeling in bone marrow and lungs compared to animals with G-tumors or controls. In animals with MLL-tumors, BrdU-labeling in prostate, lungs, brown adipose tissue and skeletal muscles increased in a tumor-size-dependent way. Furthermore, MLL-tumors induced increased signs of DNA damage (γH2AX staining) and accumulation of CD68 + macrophages in the lungs. In conclusion, small localized prostate cancers increased DNA synthesis in several remote tissues in a tumor type- and size-dependent way. This may suggest the possibility for early diagnosis of aggressive prostate cancer by examining tumor-induced effects in other tissues.
Collapse
Affiliation(s)
- Sofia Halin Bergström
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden.
| | - Marie Lundholm
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| | - Annika Nordstrand
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| |
Collapse
|
3
|
Qian L, Zhang J, Lu S, He X, Feng J, Shi J, Liu Y. Potential key roles of tumour budding: a representative malignant pathological feature of non-small cell lung cancer and a sensitive indicator of prognosis. BMJ Open 2022; 12:e054009. [PMID: 35361643 PMCID: PMC8971788 DOI: 10.1136/bmjopen-2021-054009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To investigate the relationship between tumour budding, clinicopathological characteristics of patients and prognosis in non-small cell lung cancer. STUDY DESIGN A retrospective study was used. PARTICIPANTS We selected 532 patients with non-small cell lung cancer from China, including 380 patients with adenocarcinoma and 152 with squamous cell carcinoma. PRIMARY AND SECONDARY OUTCOME MEASURES Tumour budding was visible using H&E staining as well as pancytokeratin staining. The count data and measurement data were compared using the χ2 test and the t-test, respectively. The overall survival rate was the follow-up result. The survival curves were drawn using the Kaplan-Meier method, and the differences between groups were analysed using the log-rank method. The independent prognostic factor of patients with lung cancer was determined using a multivariate Cox proportional hazard model. RESULTS In patients with lung adenocarcinoma, there was a correlation between tumour budding and spread through air spaces (OR 36.698; 95% CI 13.925 to 96.715; p<0.001), and in patients with squamous cell carcinoma, tumour budding state was closely related to the peritumoural space (OR 11.667; 95% CI 4.041 to 33.683; p<0.001). On Cox regression analysis, multivariate analysis showed that tumour budding, pleural and vascular invasion, spread through air spaces, tumour size, lymph node metastasis, and tumour node metastasis stage were independent risk factors of prognosis for patients with non-small cell lung cancer. CONCLUSIONS As an effective and simple pathological diagnostic index, it is necessary to establish an effective grading system in the clinical diagnosis of lung cancer to verify the value of tumour budding as a prognostic indicator. We hope that this analysis of Chinese patients with non-small cell lung cancer can provide useful reference material for the continued study of tumour budding.
Collapse
Affiliation(s)
- Li Qian
- Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianguo Zhang
- Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shumin Lu
- Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin He
- Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jia Feng
- Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Yifei Liu
- Pathology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
4
|
Anti-Cancer Immune Reaction and Lymph Node Macrophage; A Review from Human and Animal Studies. IMMUNO 2021. [DOI: 10.3390/immuno1030014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lymph nodes are secondary lymphoid organs that appear as bean-like nodules usually <1 cm in size, and they are localized throughout the body. Many antigen-presenting cells such as dendritic cells and macrophages reside in lymph nodes, where they mediate host defense responses against pathogens such as viruses and bacteria. In cancers, antigen-presenting cells induce cytotoxic T lymphocytes (CTLs) to react to cancer cell-derived antigens. Macrophages located in the lymph node sinus are of particular interest in relation to anti-cancer immune responses because many studies using both human specimens and animal models have suggested that lymph node macrophages expressing CD169 play a key role in activating anti-cancer CTLs. The regulation of lymph node macrophages therefore represents a potentially promising novel approach in anti-cancer therapy.
Collapse
|
5
|
Halin Bergström S, Rudolfsson S, Lundholm M, Josefsson A, Wikström P, Bergh A. High-grade tumours promote growth of other less-malignant tumours in the same prostate. J Pathol 2021; 253:396-403. [PMID: 33330991 PMCID: PMC7986692 DOI: 10.1002/path.5604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
Prostate cancer is a multifocal disease, but if and how individual prostate tumours influence each other is largely unknown. We therefore explored signs of direct or indirect tumour–tumour interactions in experimental models and patient samples. Low‐metastatic AT1 and high‐metastatic MatLyLu (MLL) Dunning rat prostate cancer cells were injected into separate lobes of the ventral prostate of immunocompetent rats. AT1 tumours growing in the same prostate as MLL tumours had increased tumour size and proliferation compared to AT1 tumours growing alone. In addition, the vasculature and macrophage density surrounding the AT1 tumours were increased by MLL tumour closeness. In patient prostatectomy samples, selected to contain an index tumour [tumour with the highest grade, International Society of Urological Pathology (ISUP) grade 1, 2, 3 or 4] and a low‐grade satellite tumour (ISUP grade 1), cell proliferation in low‐grade satellite tumours gradually increased with increasing histological grade of the index tumour. The density of blood vessels and CD68+ macrophages also increased around the low‐grade satellite tumour if a high‐grade index tumour was present. This suggests that high‐grade tumours, by changing the prostate microenvironment, may increase the aggressiveness of low‐grade lesions in the organ. Future studies are needed to explore the mechanisms behind tumour–tumour interactions and their clinical importance. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Stina Rudolfsson
- Department of Surgical and Perioperative Sciences, Urology, Umeå University, Umeå, Sweden
| | - Marie Lundholm
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Andreas Josefsson
- Department of Surgical and Perioperative Sciences, Urology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Alhouayek M, Stafberg L, Karlsson J, Bergström SH, Fowler CJ. Effects of orthotopic implantation of rat prostate tumour cells upon components of the N-acylethanolamine and monoacylglycerol signalling systems: an mRNA study. Sci Rep 2020; 10:6314. [PMID: 32286386 PMCID: PMC7156441 DOI: 10.1038/s41598-020-63198-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
There is good evidence that the N-acylethanolamine (NAE)/monoacylglycerol (MAG) signalling systems are involved in the pathogenesis of cancer. However, it is not known how prostate tumours affect these systems in the surrounding non-malignant tissue and vice versa. In the present study we have investigated at the mRNA level 11 components of these systems (three coding for anabolic enzymes, two for NAE/MAG targets and six coding for catabolic enzymes) in rat prostate tissue following orthotopic injection of low metastatic AT1 cells and high metastatic MLL cells. The MLL tumours expressed higher levels of Napepld, coding for a key enzyme in NAE synthesis, and lower levels of Naaa, coding for the NAE hydrolytic enzyme N-acylethanolamine acid amide hydrolase than the AT1 tumours. mRNA levels of the components of the NAE/MAG signalling systems studied in the tissue surrounding the tumours were not overtly affected by the tumours. AT1 cells in culture expressed Faah, coding for the NAE hydrolytic enzyme fatty acid amide hydrolase, at much lower levels than Naaa. However, the ability of the intact cells to hydrolyse the NAE arachidonoylethanolamide (anandamide) was inhibited by an inhibitor of FAAH, but not of NAAA. Treatment of the AT1 cells with interleukin-6, a cytokine known to be involved in the pathogenesis of prostate cancer, did not affect the expression of the components of the NAE/MAG system studied. It is thus concluded that in the model system studied, the tumours show different expressions of mRNA coding for key the components of the NAE/MAG system compared to the host tissue, but that these changes are not accompanied by alterations in the non-malignant tissue.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden.,Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, B1.72.01-1200, Bruxelles, Belgium
| | - Linda Stafberg
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden.,Apotek Hjärtat, Ringvägen 113, SE-118 60, Stockholm, Sweden
| | - Jessica Karlsson
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | | | - Christopher J Fowler
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
7
|
Yang Z, Liu Z. The efficacy of 18F-FDG PET/CT-based diagnostic model in the diagnosis of colorectal cancer regional lymph node metastasis. Saudi J Biol Sci 2019; 27:805-811. [PMID: 32127755 PMCID: PMC7042675 DOI: 10.1016/j.sjbs.2019.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/16/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023] Open
Abstract
In order to assess the efficacy of 18F-FDG PET/CT-based diagnostic model in diagnosing colorectal cancer (CRC) lymph node metastasis (LNM), the 18F-FDG PET/CT medical records of CRC patients were acquired, and the CRC regional LNM diagnostic model was constructed through the combination of image and grain factors of 18F-FDG PET/CT. The specific analysis methods include univariate analysis, multivariate analysis, ROC curve analysis, and statistical analysis. The research results showed statistical differences in TNM staging, intestinal obstructions, tumor infiltration, regional lymph node (LN) SUVmax, regional LN minimum dimension, and remote metastasis between the CRC patients in the LNM positive group and the LNM negative group. Through the comparisons between the diagnostic model proposed in the research and other diagnostic methods, it was found that the AUC (95%CI) and sensitivity of the proposed diagnostic model were the highest, the comprehensive diagnostic efficacy of the diagnostic model was optimal. Therefore, it was concluded that the diagnostic model was of significant application values, which provided the basis for subsequent clinical diagnosis of CRC.
Collapse
Affiliation(s)
- Zhiguang Yang
- Nuclear Medicine Department, Shengjing Hospital Affiliated to China Medical University, Shenyang 110000, China
| | - Zhaoyu Liu
- Radiology Department, Shengjing Hospital Affiliated to China Medical University, Shenyang 110000, China
| |
Collapse
|
8
|
Hammarsten P, Josefsson A, Thysell E, Lundholm M, Hägglöf C, Iglesias-Gato D, Flores-Morales A, Stattin P, Egevad L, Granfors T, Wikström P, Bergh A. Immunoreactivity for prostate specific antigen and Ki67 differentiates subgroups of prostate cancer related to outcome. Mod Pathol 2019; 32:1310-1319. [PMID: 30980038 PMCID: PMC6760646 DOI: 10.1038/s41379-019-0260-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/23/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
Based on gene-expression profiles, prostate tumors can be subdivided into subtypes with different aggressiveness and response to treatment. We investigated if similar clinically relevant subgroups can be identified simply by the combination of two immunohistochemistry markers: one for tumor cell differentiation (prostate specific antigen, PSA) and one for proliferation (Ki67). This was analyzed in men with prostate cancer diagnosed at transurethral resection of the prostate 1975-1991 (n = 331) where the majority was managed by watchful waiting. Ki67 and PSA immunoreactivity was related to outcome and to tumor characteristics previously associated with prognosis. Increased Ki67 and decreased PSA were associated with poor outcome, and they provided independent prognostic information from Gleason score. A combinatory score for PSA and Ki67 immunoreactivity was produced using the median PSA and Ki67 levels as cut-off (for Ki67 the upper quartile was also evaluated) for differentiation into subgroups. Patients with PSA low/Ki67 high tumors showed higher Gleason score, more advanced tumor stage, and higher risk of prostate cancer death compared to other patients. Their tumor epithelial cells were often ERG positive and expressed higher levels of ErbB2, phosphorylated epidermal growth factor receptor (pEGF-R) and protein kinase B (pAkt), and their tumor stroma showed a reactive response with type 2 macrophage infiltration, high density of blood vessels and hyaluronic acid, and with reduced levels of caveolin-1, androgen receptors, and mast cells. In contrast, men with PSA high/Ki67 low tumors were characterized by low Gleason score, and the most favorable outcome amongst PSA/Ki67-defined subgroups. Men with PSA low/Ki67 low tumors showed clinical and tumor characteristics intermediate of the two groups above. A combinatory PSA/Ki67 immunoreactivity score identifies subgroups of prostate cancers with different epithelial and stroma phenotypes and highly different outcome but the clinical usefulness of this approach needs to be validated in other cohorts.
Collapse
Affiliation(s)
- Peter Hammarsten
- 0000 0001 1034 3451grid.12650.30Departments of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Andreas Josefsson
- 0000 0000 9919 9582grid.8761.8Department of Urology, Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elin Thysell
- 0000 0001 1034 3451grid.12650.30Departments of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Marie Lundholm
- 0000 0001 1034 3451grid.12650.30Departments of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Christina Hägglöf
- 0000 0001 1034 3451grid.12650.30Departments of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Diego Iglesias-Gato
- 0000 0001 0674 042Xgrid.5254.6Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amilcar Flores-Morales
- 0000 0001 0674 042Xgrid.5254.6Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pär Stattin
- 0000 0004 1936 9457grid.8993.bDepartment of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Egevad
- 0000 0000 9241 5705grid.24381.3cDepartment of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Torvald Granfors
- 0000 0004 0584 1036grid.413653.6Department of Urology, Central Hospital, Västerås, Sweden
| | - Pernilla Wikström
- 0000 0001 1034 3451grid.12650.30Departments of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Departments of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
9
|
Chatterjee G, Pai T, Hardiman T, Avery-Kiejda K, Scott RJ, Spencer J, Pinder SE, Grigoriadis A. Molecular patterns of cancer colonisation in lymph nodes of breast cancer patients. Breast Cancer Res 2018; 20:143. [PMID: 30458865 PMCID: PMC6247766 DOI: 10.1186/s13058-018-1070-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lymph node (LN) metastasis is an important prognostic parameter in breast carcinoma, a crucial site for tumour–immune cell interaction and a gateway for further dissemination of tumour cells to other metastatic sites. To gain insight into the underlying molecular changes from the pre-metastatic, via initial colonisation to the fully involved LN, we reviewed transcriptional research along the evolving microenvironment of LNs in human breast cancers patients. Gene expression studies were compiled and subjected to pathway-based analyses, with an emphasis on immune cell-related genes. Of 366 studies, 14 performed genome-wide gene expression comparisons and were divided into six clinical-biological scenarios capturing different stages of the metastatic pathway in the LN, as follows: metastatically involved LNs are compared to their patient-matched primary breast carcinomas (scenario 1) or the normal breast tissue (scenario 2). In scenario 3, uninvolved LNs were compared between LN-positive patients and LN-negative patients. Scenario 4 homed in on the residual uninvolved portion of involved LNs and compared it to the patient-matched uninvolved LNs. Scenario 5 contrasted uninvolved and involved LNs, whilst in scenario 6 involved (sentinel) LNs were assessed between patients with other either positive or negative LNs (non-sentinel). Gene lists from these chronological steps of LN metastasis indicated that gene patterns reflecting deficiencies in dendritic cells and hyper-proliferation of B cells parallel to tumour promoting pathways, including cell adhesion, extracellular matrix remodelling, cell motility and DNA repair, play key roles in the changing microenvironment of a pro-metastatic to a metastatically involved LN. Similarities between uninvolved LNs and the residual uninvolved portion of involved LNs hinted that LN alterations expose systemic tumour-related immune responses in breast cancer patients. Despite the diverse settings, gene expression patterns at different stages of metastatic colonisation in LNs were recognised and may provide potential avenues for clinical interventions to counteract disease progression for breast cancer patients.
Collapse
Affiliation(s)
- Gaurav Chatterjee
- Cancer Bioinformatics, King's College London, Innovation Hub, Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,Department of Pathology, Tata Memorial Centre, 8th Floor, Annexe Building, Mumbai, India
| | - Trupti Pai
- Cancer Bioinformatics, King's College London, Innovation Hub, Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,Department of Pathology, Tata Memorial Centre, 8th Floor, Annexe Building, Mumbai, India
| | - Thomas Hardiman
- Cancer Bioinformatics, King's College London, Innovation Hub, Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Kelly Avery-Kiejda
- Priority Research Centre for Cancer, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Rodney J Scott
- Priority Research Centre for Cancer, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital, 2nd Floor, Borough Wing, London, SE1 9RT, UK
| | - Sarah E Pinder
- School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Anita Grigoriadis
- Cancer Bioinformatics, King's College London, Innovation Hub, Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK. .,School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK. .,Breast Cancer Now Research Unit, Innovation Hub, Cancer Centre at Guy's Hospital, King's College London, Faculty of Life Sciences and Medicine, London, SE1 9RT, UK.
| |
Collapse
|
10
|
Bergström SH, Järemo H, Nilsson M, Adamo HH, Bergh A. Prostate tumors downregulate microseminoprotein-beta (MSMB) in the surrounding benign prostate epithelium and this response is associated with tumor aggressiveness. Prostate 2018; 78:257-265. [PMID: 29250809 DOI: 10.1002/pros.23466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Microseminoprotein-beta (MSMB) is a major secretory product from prostate epithelial cells. MSMB synthesis is decreased in prostate tumors in relation to tumor grade. MSMB levels are also reduced in the circulation and MSMB is therefore used as a serum biomarker for prostate cancer. We hypothesized that cancers induce a reduction in MSMB synthesis also in the benign parts of the prostate, and that the magnitude of this response is related to tumor aggressiveness. Reduced levels of MSMB in the circulation could therefore be a consequence of reduced MSMB expression not only in tumor tissue but also in the benign prostate tissue. METHODS MSMB expression was analyzed in prostatectomy specimens from 36 patients using immunohistochemistry and qRT-PCR. MSMB expression in the benign prostate tissue was analyzed in relation to Gleason score, tumor stage, and distance to the tumor. Furthermore, Dunning rat prostate tumors with different aggressiveness were implanted into the prostate of Copenhagen rats to study if this affected the MSMB expression in the tumor-adjacent benign rat prostate tissue. RESULTS In prostatectomy specimens, MSMB expression was reduced in prostate tumors but also in the tumor-adjacent benign parts of the prostate. The reduction in tumor MSMB was related to tumor grade and stage, and the reduction in the benign parts of the prostate to tumor grade, stage, and distance to the tumor. Implantation of Dunning cancer cells into the rat prostate resulted in reduced MSMB protein levels in the tumor-adjacent benign prostate tissue. Rapidly growing and metastatic MatLyLu tumors had a more pronounced effect than slow-growing non-metastatic G tumors. CONCLUSION Our data suggest that aggressive prostate tumors suppress MSMB synthesis in the benign prostate and that this could explain why serum levels of MSMB are decreased in prostate cancer patients. This study suggests that markers for aggressive cancer can be found among factors altered in parallel in prostate tumors and in the adjacent benign tissue.
Collapse
Affiliation(s)
| | - Helena Järemo
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Maria Nilsson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Hanibal Hani Adamo
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Strömvall K, Sundkvist K, Ljungberg B, Halin Bergström S, Bergh A. Reduced number of CD169 + macrophages in pre-metastatic regional lymph nodes is associated with subsequent metastatic disease in an animal model and with poor outcome in prostate cancer patients. Prostate 2017; 77:1468-1477. [PMID: 28880401 PMCID: PMC5656907 DOI: 10.1002/pros.23407] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tumor-derived antigens are captured by CD169+ (SIGLEC1+ ) sinus macrophages in regional lymph nodes (LNs), and are presented to effector cells inducing an anti-tumor immune response. Reduced CD169 expression in pre-metastatic regional LNs is associated with subsequent metastatic disease and a poor outcome in several tumor types, but if this is the case in prostate cancer has not been explored. METHODS CD169 expression was measured with immunohistochemistry in metastasis-free regional LNs from 109 prostate cancer patients treated with prostatectomy (January 1996 to April 2002). Possible associations of CD169 expression with PSA-relapse, prostate cancer death, Gleason score, and other clinical data were assessed using Kaplan-Meier survival- and Cox regression analysis. In addition, the Dunning rat prostate tumor model was used to examine CD169 expression in pre-metastatic LNs draining either highly metastatic MatLyLu- or poorly metastatic AT1-tumors. RESULTS In patients with low CD169 immunostaining in metastasis-free regional LNs, 8 of the 27 patients died from prostate cancer compared with only three of the 82 patients with high immunostaining (P < 0.001). CD169 expression in regional LNs was not associated with PSA-relapse. Rats with highly metastatic tumors had decreased CD169 immunoreactivity in pre-metastatic regional LNs compared with rats with poorly metastatic tumors. CONCLUSION Low expression of CD169 in metastasis-free regional LNs indicates a reduced anti-tumor immune response. If verified in other studies, CD169 expression in regional LNs could, in combination with other factors, potentially be used as a marker of prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Kerstin Strömvall
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Kristoffer Sundkvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | | | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Highly aggressive rat prostate tumors rapidly precondition regional lymph nodes for subsequent metastatic growth. PLoS One 2017; 12:e0187086. [PMID: 29073272 PMCID: PMC5658154 DOI: 10.1371/journal.pone.0187086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/15/2017] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to examine in what ways MatLyLu (MLL) rat prostate tumors with high metastatic capacity influence regional lymph nodes prior to metastatic establishment compared to AT1 rat prostate tumors with low metastatic potential. MLL or AT1 tumor cells were injected into the ventral prostate of immunocompetent rats. Tumor and lymph node morphology, and lymph node mRNA expression of macrophage associated markers, T-cell associated markers, and cytokines were examined over time until the first microscopic signs of metastases (at day 14 for MLL- and at day 28 for AT1-tumors). Already at day 3 after tumor cell injection, when the tumors were extremely small and occupied less than 1% of the prostate volume, MLL- and AT1-tumors provoked different immune responses in both the prostate and the regional lymph nodes. MLL-tumors induced expression of immunosuppressive cytokines, suppressed T-cell accumulation, and directed T-cells towards an immunosuppressive phenotype. AT1-tumors caused a response more similar to that in vehicle-injected animals, with accumulation of T-cells in tumors and regional lymph nodes. Prostate tumors with high metastatic potential were able to precondition regional lymph nodes to subsequent metastatic growth in ways different from tumors with less metastatic potential. This may indicate the existence of a time-window when pre-metastatic changes in regional lymph nodes can aid in the prognostication of locally aggressive and potentially metastatic prostate cancer.
Collapse
|