1
|
Zhang A, Luo X, Li Y, Yan L, Lai X, Yang Q, Zhao Z, Huang G, Li Z, Wu Q, Wang J. Epigenetic changes driven by environmental pollutants in lung carcinogenesis: a comprehensive review. Front Public Health 2024; 12:1420933. [PMID: 39440184 PMCID: PMC11493668 DOI: 10.3389/fpubh.2024.1420933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality globally, with environmental pollutants identified as significant risk factors, especially for nonsmokers. The intersection of these pollutants with epigenetic mechanisms has emerged as a critical area of interest for understanding the etiology and progression of lung cancer. Epigenetic changes, including DNA methylation, histone modifications, and non-coding RNAs, can induce alterations in gene expression without affecting the DNA sequence and are influenced by environmental factors, contributing to the transformation of normal cells into malignant cells. This review assessed the literature on the influence of environmental pollutants on lung cancer epigenetics. A comprehensive search across databases such as PubMed, Web of Science, Cochrane Library, and Embase yielded 3,254 publications, with 22 high-quality papers included for in-depth analysis. These studies demonstrated the role of epigenetic markers, such as DNA methylation patterns of genes like F2RL3 and AHRR and alterations in the miRNA expression profiles, as potential biomarkers for lung cancer diagnosis and treatment. The review highlights the need to expand research beyond homogenous adult male groups typically found in high-risk occupational environments to broader population demographics. Such diversification can reduce biases and enhance the relevance of findings to various clinical contexts, fostering the development of personalized preventive and therapeutic measures. In conclusion, our findings underscore the potential of innovative epigenetic therapies, such as DNA demethylating drugs and histone modification agents, to counter environmental toxins' carcinogenic effects. The growing interest in miRNA therapies and studies aiming to correct aberrant methylation patterns indicate significant strides toward better lung cancer management and a healthier future for global communities.
Collapse
Affiliation(s)
- Aijia Zhang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xuexing Luo
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Yu Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Lunchun Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Department of Comprehensive Surgery, Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangdong-Macao in-Depth Cooperation Zone in Hengqin, Hengqin, China
| | - Xin Lai
- Department of Traditional Chinese Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianxu Yang
- Centre for Epidemiology and Evidence-Based Practice, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Guanghui Huang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Langdon RJ, Yousefi P, Relton CL, Suderman MJ. Epigenetic modelling of former, current and never smokers. Clin Epigenetics 2021; 13:206. [PMID: 34789321 PMCID: PMC8597260 DOI: 10.1186/s13148-021-01191-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation (DNAm) performs excellently in the discrimination of current and former smokers from never smokers, where AUCs > 0.9 are regularly reported using a single CpG site (cg05575921; AHRR). However, there is a paucity of DNAm models which attempt to distinguish current, former and never smokers as individual classes. Derivation of a robust DNAm model that accurately distinguishes between current, former and never smokers would be particularly valuable to epidemiological research (as a more accurate smoking definition vs. self-report) and could potentially translate to clinical settings. Therefore, we appraise 4 DNAm models of ternary smoking status (that is, current, former and never smokers): methylation at cg05575921 (AHRR model), weighted scores from 13 CpGs created by Maas et al. (Maas model), weighted scores from a LASSO model of candidate smoking CpGs from the literature (candidate CpG LASSO model), and weighted scores from a LASSO model supplied with genome-wide 450K data (agnostic LASSO model). Discrimination is assessed by AUC, whilst classification accuracy is assessed by accuracy and kappa, derived from confusion matrices. RESULTS We find that DNAm can classify ternary smoking status with reasonable accuracy, including when applied to external data. Ternary classification using only DNAm far exceeds the classification accuracy of simply assigning all classes as the most prevalent class (63.7% vs. 36.4%). Further, we develop a DNAm classifier which performs well in discriminating current from former smokers (agnostic LASSO model AUC in external validation data: 0.744). Finally, across our DNAm models, we show evidence of enrichment for biological pathways and human phenotype ontologies relevant to smoking, such as haemostasis, molybdenum cofactor synthesis, body fatness and social behaviours, providing evidence of the generalisability of our classifiers. CONCLUSIONS Our findings suggest that DNAm can classify ternary smoking status with close to 65% accuracy. Both the ternary smoking status classifiers and current versus former smoking status classifiers address the present lack of former smoker classification in epigenetic literature; essential if DNAm classifiers are to adequately relate to real-world populations. To improve performance further, additional focus on improving discrimination of current from former smokers is necessary.
Collapse
Affiliation(s)
- Ryan J Langdon
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Paul Yousefi
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew J Suderman
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Jiang W, Wu H, Yu X, Wang Y, Gu W, Wei W, Li B, Jiang X, Wang Y, Hou W, Dong Q, Yan X, Li Y, Sun C, Han T. Third-hand smoke exposure is associated with abnormal serum melatonin level via hypomethylation of CYP1A2 promoter: Evidence from human and animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116669. [PMID: 33652180 DOI: 10.1016/j.envpol.2021.116669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to examine whether and how third-hand smoke (THS) exposure would influence serum melatonin level. 1083 participants with or without exposure to THS were enrolled. Serum ROS, SOD, GSH-Px, and melatonin were measured by ELISA. Methylation microarrays detection and WGCNA were performed to identify hub methylated-sites. The methylation levels of hub-sites were validated in addtional samples. Moreover, mice were exposed to THS for 6 months mimicking exposure of human and the serum, liver, and pineal were collected. Oxidative stress-related indicators in serum, pineal, and liver were measured by ELISA. The expressions of mRNA and protein and methylation levels of hub-gene discovered in human data were further explored by RT-PCR, western-blot, and TBS. The results showed the participants exposed to THS had lower melatonin-level. 820 differentially methylated sites associated with THS were identified. And the hub-site located on the CYP1A2 promoter was identified, which mediated the association between THS and decreased melatonin-level. Decreased peak of serum melatonin, increased ROS and reduced SOD and GSH-Px in pineal and liver, and elevated CYP1A2 expression in liver was also found in the THS-exposed mice. Hypo-methylation of 7 CPG sites on the CYP1A2 promoter was identified, which accelerated the catabolism of melatonin. Overall, THS exposure is associated with abnormal melatonin catabolism through hypo-methylation of CYP1A2-promoter.
Collapse
Affiliation(s)
- Wenbo Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Huanyu Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Xinyang Yu
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Wenbo Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Bai Li
- University of Ottawa, Ottawa K1N 6N5, Canada
| | - XiTao Jiang
- IT and Environment, College of Engineering, Charles Darwin University, Darwin, Northern Territory 0810, Australia
| | - Yue Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Wanying Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Qiuying Dong
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Xuemin Yan
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Ying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Tianshu Han
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China.
| |
Collapse
|
4
|
Silva CP, Kamens HM. Cigarette smoke-induced alterations in blood: A review of research on DNA methylation and gene expression. Exp Clin Psychopharmacol 2021; 29:116-135. [PMID: 32658533 PMCID: PMC7854868 DOI: 10.1037/pha0000382] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Worldwide, smoking remains a threat to public health, causing preventable diseases and premature mortality. Cigarette smoke is a powerful inducer of DNA methylation and gene expression alterations, which have been associated with negative health consequences. Here, we review the current knowledge on smoking-related changes in DNA methylation and gene expression in human blood samples. We identified 30 studies focused on the association between active smoking, DNA methylation modifications, and gene expression alterations. Overall, we identified 1,758 genes with differentially methylated sites (DMS) and differentially expressed genes (DEG) between smokers and nonsmokers, of which 261 were detected in multiple studies (≥4). The most frequently (≥10 studies) reported genes were AHRR, GPR15, GFI1, and RARA. Functional enrichment analysis of the 261 genes identified the aryl hydrocarbon receptor repressor and T cell pathways (T helpers 1 and 2) as influenced by smoking status. These results highlight specific genes for future mechanistic and translational research that may be associated with cigarette smoke exposure and smoking-related diseases. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Constanza P. Silva
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Helen M. Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America.,Correspondence concerning this article should be addressed to Helen M. Kamens, 228 Biobehavioral Health Building, The Pennsylvania State University, University Park, PA 16802; ; Phone number: 814-865-1269; Fax number: 814-863-7525
| |
Collapse
|
5
|
Romero-Garcia S, Prado-Garcia H, Carlos-Reyes A. Role of DNA Methylation in the Resistance to Therapy in Solid Tumors. Front Oncol 2020; 10:1152. [PMID: 32850327 PMCID: PMC7426728 DOI: 10.3389/fonc.2020.01152] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in chemotherapeutic treatments against cancer, some types of highly aggressive and invasive cancer develop drug resistance against conventional therapies, which continues to be a major problem in the fight against cancer. In recent years, studies of alterations of DNA methylome have given us a better understanding of the role of DNA methylation in the development of tumors. DNA methylation (DNAm) is an epigenetic change that promotes the covalent transfer of methyl groups to DNA. This process suppresses gene expression through the modulation of the transcription machinery access to the chromatin or through the recruitment of methyl binding proteins. DNAm is regulated mainly by DNA methyltransferases. Aberrant DNAm contributes to tumor progression, metastasis, and resistance to current anti-tumoral therapies. Aberrant DNAm may occur through hypermethylation in the promoter regions of tumor suppressor genes, which leads to their silencing, while hypomethylation in the promoter regions of oncogenes can activate them. In this review, we discuss the impact of dysregulated methylation in certain genes, which impact signaling pathways associated with apoptosis avoidance, metastasis, and resistance to therapy. The analysis of methylome has revealed patterns of global methylation, which regulate important signaling pathways involved in therapy resistance in different cancer types, such as breast, colon, and lung cancer, among other solid tumors. This analysis has provided gene-expression signatures of methylated region-specific DNA that can be used to predict the treatment outcome in response to anti-cancer therapy. Additionally, changes in cancer methylome have been associated with the acquisition of drug resistance. We also review treatments with demethylating agents that, in combination with standard therapies, seem to be encouraging, as tumors that are in early stages can be successfully treated. On the other hand, tumors that are in advanced stages can be treated with these combination schemes, which could sensitize tumor cells that are resistant to the therapy. We propose that rational strategies, which combine specific demethylating agents with conventional treatment, may improve overall survival in cancer patients.
Collapse
Affiliation(s)
- Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Heriberto Prado-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Angeles Carlos-Reyes
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
6
|
Lee JE, Kim HR, Lee MH, Kim NH, Wang KM, Lee SH, Park O, Hong EJ, Youn JW, Kim YY. Smoking-Related DNA Methylation is Differentially Associated with Cadmium Concentration in Blood. Biochem Genet 2020; 58:617-630. [PMID: 32347401 PMCID: PMC7378121 DOI: 10.1007/s10528-020-09965-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
Tobacco smoking, a risk factor for several human diseases, can lead to alterations in DNA methylation. Smoking is a key source of cadmium exposure; however, there are limited studies examining DNA methylation alterations following smoking-related cadmium exposure. To identify such cadmium exposure-related DNA methylation, we performed genome-wide DNA methylation profiling using DNA samples from 50 smokers and 50 non-smokers. We found that a total of 136 CpG sites (including 70 unique genes) were significantly differentially methylated in smokers as compared to that in non-smokers. The CpG site cg05575921 in the AHRR gene was hypomethylated (Δ ß > - 0.2) in smokers, which was in accordance with previous studies. The rs951295 (within RNA gene LOC105370802) and cg00587941 sites were under-methylated by > 15% in smokers, whereas cg11314779 (within CELF6) and cg02126896 were over-methylated by ≥ 15%. We analyzed the association between blood cadmium concentration and DNA methylation level for 50 smokers and 50 non-smokers. DNA methylation rates of 307 CpG sites (including 207 unique genes) were significantly correlated to blood cadmium concentration (linear regression P value < 0.001). The four significant loci (cg05575921 and cg23576855 in AHRR, cg03636183 in F2RL3, and cg21566642) were under-methylated by > 10% in smokers compared to that in non-smokers. In conclusion, our study demonstrated that DNA methylation levels of rs951295, cg00587941, cg11314779, and cg02126896 sites may be new putative indicators of smoking status. Furthermore, we showed that these four loci may be differentially methylated by cadmium exposure due to smoking.
Collapse
Affiliation(s)
- Jae-Eun Lee
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Hye-Ryun Kim
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Mee-Hee Lee
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Nam-Hee Kim
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Kyoung-Min Wang
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Sang-Hyeop Lee
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Ok Park
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Eun-Jung Hong
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Jong-Woo Youn
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Young-Youl Kim
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea.
| |
Collapse
|
7
|
Tantoh DM, Wu MC, Chuang CC, Chen PH, Tyan YS, Nfor ON, Lu WY, Liaw YP. AHRR cg05575921 methylation in relation to smoking and PM 2.5 exposure among Taiwanese men and women. Clin Epigenetics 2020; 12:117. [PMID: 32736658 PMCID: PMC7394684 DOI: 10.1186/s13148-020-00908-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbon (PAH)-rich substances like cigarette smoke and PM2.5 induce aryl hydrocarbon receptor (AHR)-mediated aryl hydrocarbon receptor repressor (AHRR) methylation. AHRR cg05575921 and coagulation factor II (thrombin) receptor-like 3 (F2RL3) cg03636183 methylation patterns are well-established biomarkers for smoking. Even though AHRR cg05575921 methylation has recently been associated with PM2.5, the interaction between smoking and PM2.5 on AHRR methylation is yet to be fully explored. We evaluated AHRR and F2RL3 CpG sites to identify potential significant markers in relation to PM2.5 and smoking in Taiwanese adults. METHODS DNA methylation and smoking data of 948 participants aged 30-70 years were obtained from the Taiwan Biobank Database (2008-2015), while PM2.5 data were obtained from the Air Quality Monitoring Database (2006-2011). RESULTS Smoking and PM2.5 were independently associated with hypomethylation (lower levels) of AHRR cg05575921, AHRR cg23576855, F2RL3 cg03636183, and F2LR3 cg21911711 after multiple-comparison correction (Bonferroni P < 0.00028409). Cg05575921 was the most hypomethylated AHRR CpG site, while cg03636183 was the most hypomethylated F2RL3 CpG site. Overall, cg05575921 was the most hypomethylated CpG site: β = - 0.03909, P < 0.0001; - 0.17536, P < 0.0001 for former and current smoking, respectively (P-trendsmoking < 0.0001) and - 0.00141, P < 0.0001 for PM2.5. After adjusting for F2RL3 cg03636183, smoking and PM2.5 remained significantly associated with cg05575921 hypomethylation: β - 0.02221, P < 0.0001; - 0.11578, P < 0.0001 for former and current smoking, respectively (P-trendsmoking < 0.0001) and - 0.0070, P = 0.0120 for PM2.5. After stratification by sex, smoking and PM2.5 remained associated (P < 0.05) with cg05575921 hypomethylation in both men (β = - 0.04274, - 0.17700, and - 0.00163 for former smoking, current smoking, and PM2.5, respectively) and women (β = - 0.01937, - 0.17255, and - 0.00105 for former smoking, current smoking, and PM2.5, respectively). After stratification by residential area, former and current smoking remained associated (P < 0.05) with cg05575921 hypomethylation: β = - 0.03918 and - 0.17536, respectively (P-trendsmoking < 0.0001). Living in the central and southern areas was also associated (P < 0.05) with cg05575921 hypomethylation: β = - 0.01356 and - 0.01970, respectively (P-trendarea < 0.0001). CONCLUSION Smoking and PM2.5 were independently associated with hypomethylation of cg05575921, cg23576855, cg03636183, and cg21911711. The most hypomethylated CpG site was cg05575921 and its association with smoking and PM2.5 was dose-dependent.
Collapse
Affiliation(s)
- Disline Manli Tantoh
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, Taichung City, 40201, Taiwan
| | - Ming-Chi Wu
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung City, Taiwan
- School of Medical Informatics, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Chun-Chao Chuang
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung City, Taiwan
| | - Pei-Hsin Chen
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, Taichung City, 40201, Taiwan
| | - Yeu Sheng Tyan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung City, Taiwan
- Medical Imaging and Big Data Center, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, Taichung City, 40201, Taiwan
| | - Wen-Yu Lu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, Taichung City, 40201, Taiwan
| | - Yung-Po Liaw
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan.
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, Taichung City, 40201, Taiwan.
- Medical Imaging and Big Data Center, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| |
Collapse
|
8
|
Park SA, Lee DH, Lim HS. Factors Influencing Exposure to Secondhand Smoke: Passive Inhalation in Student Nurses. Osong Public Health Res Perspect 2019; 10:78-84. [PMID: 31065534 PMCID: PMC6481578 DOI: 10.24171/j.phrp.2019.10.2.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objectives To examine the factors affecting passive exposure to secondhand smoke (SHS) in non-smoking student nurses. Methods A cross-sectional study was performed in 196 college students who had not smoked cigarettes in the past 12 months. Urinary cotinine levels were examined to identify exposure to SHS, and social factors were identified that influenced exposure to SHS, including requests that smokers extinguish cigarettes. Logistic regression analysis was used to predict the factors influencing SHS. Results Urinary cotinine measurements showed that 32 students (16.3%) were exposed to SHS. Risk factors that increased exposure to SHS affected 80 students (40.8%) in the previous 7 days. Students who were exposed to SHS were 4.45-times more likely to have increased urinary cotinine levels than those who were not exposed. Students who asked others to extinguish their cigarettes were 0.34 times less likely to test positive than those who did not. Conclusion Urinary cotinine was a useful biomarker for identifying exposure to SHS, with respect to the influence of demographic, health-related, and smoking-related factors. In non-smoking nursing students, avoiding exposure to SHS was attributed to self-assertive behavior by requesting smokers to extinguish cigarettes.
Collapse
Affiliation(s)
- Sun-A Park
- Division of Nursing Science, University of Suwon, Hwaseong, Korea
| | - Do-Hoon Lee
- Department of Laboratory Medicine, Center for Diagnostic Oncology, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Hee-Su Lim
- Department of Nursing, Seoul Women's College of Nursing, Seoul, Korea
| |
Collapse
|
9
|
Tantoh DM, Lee KJ, Nfor ON, Liaw YC, Lin C, Chu HW, Chen PH, Hsu SY, Liu WH, Ho CC, Lung CC, Wu MF, Liaw YC, Debnath T, Liaw YP. Methylation at cg05575921 of a smoking-related gene (AHRR) in non-smoking Taiwanese adults residing in areas with different PM 2.5 concentrations. Clin Epigenetics 2019; 11:69. [PMID: 31060609 PMCID: PMC6503351 DOI: 10.1186/s13148-019-0662-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND DNA methylation is associated with cancer, metabolic, neurological, and autoimmune disorders. Hypomethylation of aryl hydrocarbon receptor repressor (AHRR) especially at cg05575921 is associated with smoking and lung cancer. Studies on the association between AHRR methylation at cg05575921 and sources of polycyclic aromatic hydrocarbon (PAH) other than smoking are limited. The aim of our study was to assess the pattern of blood DNA methylation at cg05575921 in non-smoking Taiwanese adults living in areas with different PM2.5 levels. METHODS Data on blood DNA methylation, smoking, and residence were retrieved from the Taiwan Biobank dataset (2008-2015). Current and former smokers, as well as individuals with incomplete information were excluded from the current study. The final analysis included 708 participants (279 men and 429 women) aged 30-70 years. PM2.5 levels have been shown to increase as one moves from the northern through central towards southern Taiwan. Based on this trend, the study areas were categorized into northern, north-central, central, and southern regions. RESULTS Living in PM2.5 areas was associated with lower methylation levels: compared with the northern area (reference area), living in north-central, central, and southern areas was associated with lower methylation levels at cg05575921. However, only methylation levels in those living in central and southern areas were significant (β = - 0.01003, P = 0.009 and β = - 0.01480, P < 0.001, respectively. Even though methylation levels in those living in the north-central area were not statistically significant, the test for linear trend was significant (P < 0.001). When PM2.5 was included in the regression model, a unit increase in PM2.5 was associated with 0.00115 (P < 0.001) lower cg05575921 methylation levels. CONCLUSION Living in PM2.5 areas was inversely associated with blood AHRR methylation levels at cg05575921. The methylation levels were lowest in participants residing in southern followed by central and north-central areas. Moreover, when PM2.5 was included in the regression model, it was inversely associated with methylation levels at cg05575921. Blood methylation at cg05575921 (AHRR) in non-smokers might indicate different exposures to PM2.5 and lung cancer which is a PM2.5-related disease.
Collapse
Affiliation(s)
- Disline Manli Tantoh
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Kuan-Jung Lee
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Yi-Chia Liaw
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Hsin Chen
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Shu-Yi Hsu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Wen-Hsiu Liu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Chen-Chang Ho
- Department of Physical Education, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Chi Lung
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Ming-Fang Wu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Yi-Ching Liaw
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tonmoy Debnath
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan.
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| |
Collapse
|
10
|
Mohammad‐Hasani A, Hosseinzadeh Colagar A, Fallah A. Association of the human aryl hydrocarbon receptor repressor (
AhRR
)‐c.565C>G transversion with male infertility: A case‐control study from Iran. J Cell Biochem 2018; 120:8999-9005. [DOI: 10.1002/jcb.28171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Azadeh Mohammad‐Hasani
- Department of Molecular and Cell Biology Faculty of Basic Sciences, University of Mazandaran Babolsar Iran
| | | | - Ali Fallah
- Department of Molecular and Cell Biology Faculty of Basic Sciences, University of Mazandaran Babolsar Iran
| |
Collapse
|
11
|
de Vries M, van der Plaat DA, Nedeljkovic I, Verkaik-Schakel RN, Kooistra W, Amin N, van Duijn CM, Brandsma CA, van Diemen CC, Vonk JM, Marike Boezen H. From blood to lung tissue: effect of cigarette smoke on DNA methylation and lung function. Respir Res 2018; 19:212. [PMID: 30390659 PMCID: PMC6215675 DOI: 10.1186/s12931-018-0904-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023] Open
Abstract
Background Genetic and environmental factors play a role in the development of COPD. The epigenome, and more specifically DNA methylation, is recognized as important link between these factors. We postulate that DNA methylation is one of the routes by which cigarette smoke influences the development of COPD. In this study, we aim to identify CpG-sites that are associated with cigarette smoke exposure and lung function levels in whole blood and validate these CpG-sites in lung tissue. Methods The association between pack years and DNA methylation was studied genome-wide in 658 current smokers with >5 pack years using robust linear regression analysis. Using mediation analysis, we subsequently selected the CpG-sites that were also associated with lung function levels. Significant CpG-sites were validated in lung tissue with pyrosequencing and expression quantitative trait methylation (eQTM) analysis was performed to investigate the association between DNA methylation and gene expression. Results 15 CpG-sites were significantly associated with pack years and 10 of these were additionally associated with lung function levels. We validated 5 CpG-sites in lung tissue and found several associations between DNA methylation and gene expression. Conclusion This study is the first to validate a panel of CpG-sites that are associated with cigarette smoking and lung function levels in whole blood in the tissue of interest: lung tissue. Electronic supplementary material The online version of this article (10.1186/s12931-018-0904-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maaike de Vries
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Hanzeplein 1, Groningen, 9713, GZ, The Netherlands. .,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.
| | - Diana A van der Plaat
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Hanzeplein 1, Groningen, 9713, GZ, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Ivana Nedeljkovic
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rikst Nynke Verkaik-Schakel
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynaecology, Groningen, The Netherlands
| | - Wierd Kooistra
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Cleo C van Diemen
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Hanzeplein 1, Groningen, 9713, GZ, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - H Marike Boezen
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Hanzeplein 1, Groningen, 9713, GZ, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|
12
|
Park SL, Patel YM, Loo LWM, Mullen DJ, Offringa IA, Maunakea A, Stram DO, Siegmund K, Murphy SE, Tiirikainen M, Le Marchand L. Association of internal smoking dose with blood DNA methylation in three racial/ethnic populations. Clin Epigenetics 2018; 10:110. [PMID: 30139389 PMCID: PMC6108111 DOI: 10.1186/s13148-018-0543-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death. While cigarette smoking is the primary cause of this malignancy, risk differs across racial/ethnic groups. For the same number of cigarettes smoked, Native Hawaiians compared to whites are at greater risk and Japanese Americans are at lower risk of developing lung cancer. DNA methylation of specific CpG sites (e.g., in AHRR and F2RL3) is the most common blood epigenetic modification associated with smoking status. However, the influence of internal smoking dose, measured by urinary nicotine equivalents (NE), on DNA methylation in current smokers has not been investigated, nor has a study evaluated whether for the same smoking dose, circulating leukocyte DNA methylation patterns differ by race. METHODS We conducted an epigenome-wide association study (EWAS) of NE in 612 smokers from three racial/ethnic groups: whites (n = 204), Native Hawaiians (n = 205), and Japanese Americans (n = 203). Genome-wide DNA methylation profiling of blood leukocyte DNA was measured using the Illumina 450K BeadChip array. Average β value, the ratio of signal from a methylated probe relative to the sum of the methylated and unmethylated probes at that CpG, was the dependent variables in linear regression models adjusting for age, sex, race (for pan-ethnic analysis), and estimated cell-type distribution. RESULTS We found that NE was significantly associated with six differentially methylated CpG sites (Bonferroni corrected p < 1.48 × 10-7): four in or near the FOXK2, PBX1, FNDC7, and FUBP3 genes and two in non-annotated genetic regions. Higher levels of NE were associated with increasing methylation beta-valuesin all six sites. For all six CpG sites, the association was only observed in Native Hawaiians, suggesting that the influence of smoking dose on DNA methylation patterns is heterogeneous across race/ethnicity (p interactions < 8.8 × 10-8). We found two additional CpG sites associated with NE in only Native Hawaiians. CONCLUSIONS In conclusion, internal smoking dose was associated with increased DNA methylation in circulating leukocytes at specific sites in Native Hawaiian smokers but not in white or Japanese American smokers.
Collapse
Affiliation(s)
- Sungshim L Park
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT 1509G, Los Angeles, CA, 90033, USA.
| | - Yesha M Patel
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT 1509G, Los Angeles, CA, 90033, USA
| | - Lenora W M Loo
- Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Daniel J Mullen
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Ite A Offringa
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Alika Maunakea
- University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA
| | - Daniel O Stram
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT 1509G, Los Angeles, CA, 90033, USA
| | - Kimberly Siegmund
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT 1509G, Los Angeles, CA, 90033, USA
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Maarit Tiirikainen
- Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| |
Collapse
|
13
|
Andersen GB, Tost J. A Summary of the Biological Processes, Disease-Associated Changes, and Clinical Applications of DNA Methylation. Methods Mol Biol 2018; 1708:3-30. [PMID: 29224136 DOI: 10.1007/978-1-4939-7481-8_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA methylation at cytosines followed by guanines, CpGs, forms one of the multiple layers of epigenetic mechanisms controlling and modulating gene expression through chromatin structure. It closely interacts with histone modifications and chromatin remodeling complexes to form the local genomic and higher-order chromatin landscape. DNA methylation is essential for proper mammalian development, crucial for imprinting and plays a role in maintaining genomic stability. DNA methylation patterns are susceptible to change in response to environmental stimuli such as diet or toxins, whereby the epigenome seems to be most vulnerable during early life. Changes of DNA methylation levels and patterns have been widely studied in several diseases, especially cancer, where interest has focused on biomarkers for early detection of cancer development, accurate diagnosis, and response to treatment, but have also been shown to occur in many other complex diseases. Recent advances in epigenome engineering technologies allow now for the large-scale assessment of the functional relevance of DNA methylation. As a stable nucleic acid-based modification that is technically easy to handle and which can be analyzed with great reproducibility and accuracy by different laboratories, DNA methylation is a promising biomarker for many applications.
Collapse
Affiliation(s)
- Gitte Brinch Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France.
| |
Collapse
|