1
|
Sachslehner AP, Surbek M, Holthaus KB, Steinbinder J, Golabi B, Hess C, Eckhart L. The Evolution of Transglutaminases Underlies the Origin and Loss of Cornified Skin Appendages in Vertebrates. Mol Biol Evol 2024; 41:msae100. [PMID: 38781495 PMCID: PMC11152450 DOI: 10.1093/molbev/msae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Transglutaminases (TGMs) cross-link proteins by introducing covalent bonds between glutamine and lysine residues. These cross-links are essential for epithelial cornification which enables tetrapods to live on land. Here, we investigated which evolutionary adaptations of vertebrates were associated with specific changes in the family of TGM genes. We determined the catalog of TGMs in the main clades of vertebrates, performed a comprehensive phylogenetic analysis of TGMs, and localized the distribution of selected TGMs in tissues. Our data suggest that TGM1 is the phylogenetically oldest epithelial TGM, with orthologs being expressed in the cornified teeth of the lamprey, a basal vertebrate. Gene duplications led to the origin of TGM10 in stem vertebrates, the origin of TGM2 in jawed vertebrates, and an increasing number of epithelium-associated TGM genes in the lineage leading to terrestrial vertebrates. TGM9 is expressed in the epithelial egg tooth, and its evolutionary origin in stem amniotes coincided with the evolution of embryonic development in eggs that are surrounded by a protective shell. Conversely, viviparous mammals have lost both the epithelial egg tooth and TGM9. TGM3 and TGM6 evolved as regulators of cornification in hair follicles and underwent pseudogenization upon the evolutionary loss of hair in cetaceans. Taken together, this study reveals the gain and loss of vertebrate TGM genes in association with the evolution of cornified skin appendages and suggests an important role of TGM9 in the evolution of amniotes.
Collapse
Affiliation(s)
| | - Marta Surbek
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Karim N, Lin LW, Van Eenennaam JP, Fangue NA, Schreier AD, Phillips MA, Rice RH. Epidermal cell cultures from white and green sturgeon (Acipenser transmontanus and medirostris): Expression of TGM1-like transglutaminases and CYP4501A. PLoS One 2022; 17:e0265218. [PMID: 35294467 PMCID: PMC8926185 DOI: 10.1371/journal.pone.0265218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Using a system optimized for propagating human keratinocytes, culture of skin samples from white and green sturgeons generated epithelial cells capable of making cross-linked protein envelopes. Two distinct forms of TGM1-like mRNA were molecularly cloned from the cells of white sturgeon and detected in green sturgeon cells, accounting for their cellular envelope forming ability. The protein translated from each displayed a cluster of cysteine residues resembling the membrane anchorage region expressed in epidermal cells of teleosts and tetrapods. One of the two mRNA forms (called A) was present at considerably higher levels than the other (called B) in both species. Continuous lines of white sturgeon epidermal cells were established and characterized. Size measurements indicated that a substantial fraction of the cells became enlarged, appearing similar to squames in human epidermal keratinocyte cultures. The cultures also expressed CYP1A, a cytochrome P450 enzyme inducible by activation of aryl hydrocarbon receptor 2 in fish. The cells gradually improved in growth rate over a dozen passages while retaining envelope forming ability, TGM1 expression and CYP1A inducibility. These cell lines are thus potential models for studying evolution of fish epidermis leading to terrestrial adaptation and for testing sturgeon sensitivity to environmental stresses such as pollution.
Collapse
Affiliation(s)
- Noreen Karim
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
- * E-mail:
| | - Lo-Wei Lin
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| | - Joel P. Van Eenennaam
- Department of Animal Science, University of California, Davis, California, United States of America
| | - Nann A. Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California, United States of America
| | - Andrea D. Schreier
- Department of Animal Science, University of California, Davis, California, United States of America
| | - Marjorie A. Phillips
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| | - Robert H. Rice
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| |
Collapse
|
3
|
Sachslehner AP, Surbek M, Lachner J, Paudel S, Eckhart L. Identification of Chicken Transglutaminase 1 and In Situ Localization of Transglutaminase Activity in Avian Skin and Esophagus. Genes (Basel) 2021; 12:1565. [PMID: 34680960 PMCID: PMC8535770 DOI: 10.3390/genes12101565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Transglutaminase 1 (TGM1) is a membrane-anchored enzyme that cross-links proteins during terminal differentiation of epidermal and esophageal keratinocytes in mammals. The current genome assembly of the chicken, which is a major model for avian skin biology, does not include an annotated region corresponding to TGM1. To close this gap of knowledge about the genetic control of avian cornification, we analyzed RNA-sequencing reads from organotypic chicken skin and identified TGM1 mRNA. By RT-PCR, we demonstrated that TGM1 is expressed in the skin and esophagus of chickens. The cysteine-rich sequence motif required for palmitoylation and membrane anchorage is conserved in the chicken TGM1 protein, and differentiated chicken keratinocytes display membrane-associated transglutaminase activity. Expression of TGM1 and prominent transglutaminase activity in the esophageal epithelium was also demonstrated in the zebra finch. Altogether, the results of this study indicate that TGM1 is conserved among birds and suggest that chicken keratinocytes may be a useful model for the study of TGM1 in non-mammalian cornification.
Collapse
Affiliation(s)
- Attila Placido Sachslehner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (A.P.S.); (M.S.); (J.L.)
| | - Marta Surbek
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (A.P.S.); (M.S.); (J.L.)
| | - Julia Lachner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (A.P.S.); (M.S.); (J.L.)
| | - Surya Paudel
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (A.P.S.); (M.S.); (J.L.)
| |
Collapse
|
4
|
Yang M, Zhang Z, He Y, Li C, Wang J, Ma X. Study on the structure characterization and moisturizing effect of Tremella polysaccharide fermented from GCMCC5.39. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Dong YW, Blanchard TS, Noll A, Vasquez P, Schmitz J, Kelly SP, Wright PA, Whitehead A. Genomic and physiological mechanisms underlying skin plasticity during water to air transition in an amphibious fish. J Exp Biol 2021; 224:jeb235515. [PMID: 33328287 PMCID: PMC7860121 DOI: 10.1242/jeb.235515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
The terrestrial radiation of vertebrates required changes in skin that resolved the dual demands of maintaining a mechanical and physiological barrier while also facilitating ion and gas transport. Using the amphibious killifish Kryptolebias marmoratus, we found that transcriptional regulation of skin morphogenesis was quickly activated upon air exposure (1 h). Rapid regulation of cell-cell adhesion complexes and pathways that regulate stratum corneum formation was consistent with barrier function and mechanical reinforcement. Unique blood vessel architecture and regulation of angiogenesis likely supported cutaneous respiration. Differences in ionoregulatory transcripts and ionocyte morphology were correlated with differences in salinity acclimation and resilience to air exposure. Evolutionary analyses reinforced the adaptive importance of these mechanisms. We conclude that rapid plasticity of barrier, respiratory and ionoregulatory functions in skin evolved to support the amphibious lifestyle of K. marmoratus; similar processes may have facilitated the terrestrial radiation of other contemporary and ancient fishes.
Collapse
Affiliation(s)
- Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, People's Republic of China
| | - Tessa S Blanchard
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Picasso Vasquez
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| | - Juergen Schmitz
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149 Münster, Germany
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON, Canada, M3J 1P3
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Andrew Whitehead
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Hall M, Kültz D, Almaas E. Identification of key proteins involved in stickleback environmental adaptation with system-level analysis. Physiol Genomics 2020; 52:531-548. [PMID: 32956024 DOI: 10.1152/physiolgenomics.00078.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using abundance measurements of 1,490 proteins from four separate populations of three-spined sticklebacks, we implemented a system-level approach to correlate proteome dynamics with environmental salinity and temperature and the fish's population and morphotype. We identified robust and accurate fingerprints that classify environmental salinity, temperature, morphotype, and the population sample origin, observing that proteins with specific functions are enriched in these fingerprints. Highly apparent functions represented in all fingerprints include ion transport, proteostasis, growth, and immunity, suggesting that these functions are most diversified in populations inhabiting different environments. Applying a differential network approach, we analyzed the network of protein interactions that differs between populations. Looking at specific population combinations of differential interaction, we identify sets of connected proteins. We find that these sets and their corresponding enriched functions reflect key processes that have diverged between the four populations. Moreover, the extent of divergence, i.e., the number of enriched functions that differ between populations, is highest when all three environmental parameters are different between two populations. Key nodes in the differential interaction network signify functions that are also inherent in the fingerprints, most prominently proteostasis-related functions. However, the differential interaction network also reveals additional functions that have diverged between populations, notably cytoskeletal organization and morphogenesis. The strength of these analyses is that the results are purely data driven. With such an unbiased approach applied on a large proteomic data set, we find the strongest signals given by the data, making it possible to develop more discriminatory and complex biomarkers for specific contexts of interest.
Collapse
Affiliation(s)
- Martina Hall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway.,K. G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, California
| | - Eivind Almaas
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway.,K. G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Meng Q, Watanabe Y, Suzuki R, Oguri R, Tatsukawa H, Hitomi K. Transglutaminase orthologues in medaka fish - biochemical characterization and establishment of gene-deficient mutants. Anal Biochem 2020; 604:113610. [DOI: 10.1016/j.ab.2020.113610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
|