1
|
Payam AF, Khalil S, Chakrabarti S. Synthesis and Characterization of MOF-Derived Structures: Recent Advances and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310348. [PMID: 38660830 DOI: 10.1002/smll.202310348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Due to their facile tunability, metal-organic frameworks (MOFs) are employed as precursors and templates to construct advanced functional materials with unique and desired chemical, physical, mechanical, and morphological properties. By tuning MOF precursor composition and manipulating conversion processes, various MOF-derived materials commonly known as MOF derivatives can be constructed. The possibility of controlled and predictable properties makes MOF derivatives a preferred choice for numerous advanced technological applications. The innovative synthetic designs besides the plethora of interdisciplinary characterization approaches applicable to MOF derivatives provide the opportunity to perform a myriad of experiments to explore the performance and offer key insight to develop the next generation of advanced materials. Though there are many published works of literature describing various synthesis and characterization techniques of MOF derivatives, it is still not clear how the synthesis mechanism works and what are the best techniques to characterize these materials to probe their properties accurately. In this review, the recent development in synthesis techniques and mechanisms for a variety of MOF derivates such as MOF-derived metal oxides, porous carbon, composites/hybrids, and sulfides is summarized. Furthermore, the details of characterization techniques and fundamental working principles are summarized to probe the structural, mechanical, physiochemical, electrochemical, and electronic properties of MOF and MOF derivatives. The future trends and some remaining challenges in the synthesis and characterization of MOF derivatives are also discussed.
Collapse
Affiliation(s)
- Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Sameh Khalil
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Supriya Chakrabarti
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| |
Collapse
|
2
|
Yoo L, Mendoza D, Richard AJ, Stephens JM. KAT8 beyond Acetylation: A Survey of Its Epigenetic Regulation, Genetic Variability, and Implications for Human Health. Genes (Basel) 2024; 15:639. [PMID: 38790268 PMCID: PMC11121512 DOI: 10.3390/genes15050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Lysine acetyltransferase 8, also known as KAT8, is an enzyme involved in epigenetic regulation, primarily recognized for its ability to modulate histone acetylation. This review presents an overview of KAT8, emphasizing its biological functions, which impact many cellular processes and range from chromatin remodeling to genetic and epigenetic regulation. In many model systems, KAT8's acetylation of histone H4 lysine 16 (H4K16) is critical for chromatin structure modification, which influences gene expression, cell proliferation, differentiation, and apoptosis. Furthermore, this review summarizes the observed genetic variability within the KAT8 gene, underscoring the implications of various single nucleotide polymorphisms (SNPs) that affect its functional efficacy and are linked to diverse phenotypic outcomes, ranging from metabolic traits to neurological disorders. Advanced insights into the structural biology of KAT8 reveal its interaction with multiprotein assemblies, such as the male-specific lethal (MSL) and non-specific lethal (NSL) complexes, which regulate a wide range of transcriptional activities and developmental functions. Additionally, this review focuses on KAT8's roles in cellular homeostasis, stem cell identity, DNA damage repair, and immune response, highlighting its potential as a therapeutic target. The implications of KAT8 in health and disease, as evidenced by recent studies, affirm its importance in cellular physiology and human pathology.
Collapse
Affiliation(s)
- Lindsey Yoo
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David Mendoza
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
3
|
Tikhonova EA, Georgiev PG, Maksimenko OG. Functional Role of C-terminal Domains in the MSL2 Protein of Drosophila melanogaster. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:663-673. [PMID: 38831503 DOI: 10.1134/s0006297924040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 06/05/2024]
Abstract
Dosage compensation complex (DCC), which consists of five proteins and two non-coding RNAs roX, specifically binds to the X chromosome in males, providing a higher level of gene expression necessary to compensate for the monosomy of the sex chromosome in male Drosophila compared to the two X chromosomes in females. The MSL2 protein contains the N-terminal RING domain, which acts as an E3 ligase in ubiquitination of proteins and is the only subunit of the complex expressed only in males. Functional role of the two C-terminal domains of the MSL2 protein, enriched with proline (P-domain) and basic amino acids (B-domain), was investigated. As a result, it was shown that the B-domain destabilizes the MSL2 protein, which is associated with the presence of two lysines ubiquitination of which is under control of the RING domain of MSL2. The unstructured proline-rich domain stimulates transcription of the roX2 gene, which is necessary for effective formation of the dosage compensation complex.
Collapse
Affiliation(s)
| | - Pavel G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Oksana G Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
4
|
Li P, Yang L, Park SY, Liu F, Li AH, Zhu Y, Sui H, Gao F, Li L, Ye L, Zou Y, Tian Z, Zhao Y, Costa M, Sun H, Zhao X. Stabilization of MOF (KAT8) by USP10 promotes esophageal squamous cell carcinoma proliferation and metastasis through epigenetic activation of ANXA2/Wnt signaling. Oncogene 2024; 43:899-917. [PMID: 38317006 DOI: 10.1038/s41388-024-02955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Dysregulation of MOF (also known as MYST1, KAT8), a highly conserved H4K16 acetyltransferase, plays important roles in human cancers. However, its expression and function in esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we report that MOF is highly expressed in ESCC tumors and predicts a worse prognosis. Depletion of MOF in ESCC significantly impedes tumor growth and metastasis both in vitro and in vivo, whereas ectopic expression of MOF but not catalytically inactive mutant (MOF-E350Q) promotes ESCC progression, suggesting that MOF acetyltransferase activity is crucial for its oncogenic activity. Further analysis reveals that USP10, a deubiquitinase highly expressed in ESCC, binds to and deubiquitinates MOF at lysine 410, which protects it from proteosome-dependent protein degradation. MOF stabilization by USP10 promotes H4K16ac enrichment in the ANXA2 promoter to stimulate ANXA2 transcription in a JUN-dependent manner, which subsequently activates Wnt/β-Catenin signaling to facilitate ESCC progression. Our findings highlight a novel USP10/MOF/ANXA2 axis as a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Chest Cancer, The Second Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Lingxiao Yang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Sun Young Park
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, 10010, USA
| | - Fanrong Liu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Alex H Li
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, 10010, USA
| | - Yilin Zhu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huacong Sui
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fengyuan Gao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lingbing Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lan Ye
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Chest Cancer, The Second Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yunpeng Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Max Costa
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, 10010, USA
| | - Hong Sun
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, 10010, USA.
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Chest Cancer, The Second Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
KAT8 acetylation-controlled lipolysis affects the invasive and migratory potential of colorectal cancer cells. Cell Death Dis 2023; 14:164. [PMID: 36849520 PMCID: PMC9970984 DOI: 10.1038/s41419-023-05582-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/18/2022] [Accepted: 01/11/2023] [Indexed: 03/01/2023]
Abstract
Epigenetic mechanisms involved in gene expression play an essential role in various cellular processes, including lipid metabolism. Lysine acetyltransferase 8 (KAT8), a histone acetyltransferase, has been reported to mediate de novo lipogenesis by acetylating fatty acid synthase. However, the effect of KAT8 on lipolysis is unclear. Here, we report a novel mechanism of KAT8 on lipolysis involving in its acetylation by general control non-repressed protein 5 (GCN5) and its deacetylation by Sirtuin 6 (SIRT6). KAT8 acetylation at K168/175 residues attenuates the binding activity of KAT8 and inhibits the recruitment of RNA pol II to the promoter region of the lipolysis-related genes adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), subsequently down-regulating lipolysis to affect the invasive and migratory potential of colorectal cancer cells. Our findings uncover a novel mechanism that KAT8 acetylation-controlled lipolysis affects invasive and migratory potential in colorectal cancer cells.
Collapse
|
6
|
Krajewski WA. Histone Modifications, Internucleosome Dynamics, and DNA Stresses: How They Cooperate to “Functionalize” Nucleosomes. Front Genet 2022; 13:873398. [PMID: 35571051 PMCID: PMC9096104 DOI: 10.3389/fgene.2022.873398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Tight packaging of DNA in chromatin severely constrains DNA accessibility and dynamics. In contrast, nucleosomes in active chromatin state are highly flexible, can exchange their histones, and are virtually “transparent” to RNA polymerases, which transcribe through gene bodies at rates comparable to that of naked DNA. Defining mechanisms that revert nucleosome repression, in addition to their value for basic science, is of key importance for the diagnosis and treatment of genetic diseases. Chromatin activity is largely regulated by histone posttranslational modifications, ranging from small chemical groups up to the yet understudied “bulky” ubiquitylation and sumoylation. However, it is to be revealed how histone marks are “translated” to permissive or repressive changes in nucleosomes: it is a general opinion that histone modifications act primarily as “signals” for recruiting the regulatory proteins or as a “neutralizer” of electrostatic shielding of histone tails. Here, we would like to discuss recent evidence suggesting that histone ubiquitylation, in a DNA stress–dependent manner, can directly regulate the dynamics of the nucleosome and their primary structure and can promote nucleosome decomposition to hexasome particles or additionally stabilize nucleosomes against unwrapping. In addition, nucleosome repression/ derepression studies are usually performed with single mononucleosomes as a model. We would like to review and discuss recent findings showing that internucleosomal interactions could strongly modulate the dynamics and rearrangements of nucleosomes. Our hypothesis is that bulky histone modifications, nucleosome inherent dynamics, internucleosome interactions, and DNA torsions could act in cooperation to orchestrate the formation of different dynamic states of arrayed nucleosomes and thus promote chromatin functionality and diversify epigenetic programming methods.
Collapse
|
7
|
Bawankar P, Lence T, Paolantoni C, Haussmann IU, Kazlauskiene M, Jacob D, Heidelberger JB, Richter FM, Nallasivan MP, Morin V, Kreim N, Beli P, Helm M, Jinek M, Soller M, Roignant JY. Hakai is required for stabilization of core components of the m 6A mRNA methylation machinery. Nat Commun 2021; 12:3778. [PMID: 34145251 PMCID: PMC8213727 DOI: 10.1038/s41467-021-23892-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/17/2021] [Indexed: 11/10/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification on mRNA which influences most steps of mRNA metabolism and is involved in several biological functions. The E3 ubiquitin ligase Hakai was previously found in complex with components of the m6A methylation machinery in plants and mammalian cells but its precise function remained to be investigated. Here we show that Hakai is a conserved component of the methyltransferase complex in Drosophila and human cells. In Drosophila, its depletion results in reduced m6A levels and altered m6A-dependent functions including sex determination. We show that its ubiquitination domain is required for dimerization and interaction with other members of the m6A machinery, while its catalytic activity is dispensable. Finally, we demonstrate that the loss of Hakai destabilizes several subunits of the methyltransferase complex, resulting in impaired m6A deposition. Our work adds functional and molecular insights into the mechanism of the m6A mRNA writer complex. The E3 ligase Hakai can interact with the m6A methylation machinery but its function is still unclear. Here, the authors show that Hakai is a conserved component of the m6A methyltransferase complex and provide functional and molecular insights into its role in regulating m6A levels in Drosophila.
Collapse
Affiliation(s)
- Praveen Bawankar
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tina Lence
- Institute of Molecular Biology (IMB), Mainz, Germany.,Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.,Department of Life Science, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | | | - Dominik Jacob
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Florian M Richter
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mohanakarthik P Nallasivan
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Violeta Morin
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Nastasja Kreim
- Bioinformatics core facility, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany.,Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK. .,Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.
| | - Jean-Yves Roignant
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany. .,Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Burrell JA, Stephens JM. KAT8, lysine acetyltransferase 8, is required for adipocyte differentiation in vitro. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166103. [PMID: 33617987 DOI: 10.1016/j.bbadis.2021.166103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
KAT8 is a lysine acetyltransferase (KAT) that plays a role in a variety of cellular functions ranging from DNA damage repair to apoptosis. The role of KAT8 in adipocyte development and function has not been studied. Notably, a large genome-wide association study identified KAT8 as part of a novel locus that significantly contributed to body mass index and other metabolic phenotypes. Hence, we examined the expression and regulation of KAT8 during adipocyte development. KAT8 mRNA and protein levels were examined over a time course of adipocyte development, and KAT8 was found to be present in both the cytosol and nucleus of 3T3-L1 adipocytes. Although KAT8 expression was not highly regulated by adipogenesis, its expression was required for the adipogenesis of 3T3-L1 cells. Loss of KAT8 expression in preadipocytes inhibited their ability to differentiate as judged by both lipid accumulation and adipocyte marker gene expression. However, if KAT8 was knocked down after clonal expansion, its absence did not inhibit adipocyte differentiation. Also, loss of KAT8 in adipocytes did not impact lipid accumulation or the expression of adiponectin or other fat markers. Although our data demonstrate that KAT8 is required for adipocyte differentiation, further studies are necessary to determine the functions and regulation of KAT8 in adipose tissue.
Collapse
Affiliation(s)
- Jasmine A Burrell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
9
|
Krajewski WA. "Direct" and "Indirect" Effects of Histone Modifications: Modulation of Sterical Bulk as a Novel Source of Functionality. Bioessays 2019; 42:e1900136. [PMID: 31805213 DOI: 10.1002/bies.201900136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Indexed: 12/26/2022]
Abstract
The chromatin-regulatory principles of histone post-translational modifications (PTMs) are discussed with a focus on the potential alterations in chromatin functional state due to steric and mechanical constraints imposed by bulky histone modifications such as ubiquitin and SUMO. In the classical view, PTMs operate as recruitment platforms for histone "readers," and as determinants of chromatin array compaction. Alterations of histone charges by "small" chemical modifications (e.g., acetylation, phosphorylation) could regulate nucleosome spontaneous dynamics without globally affecting nucleosome structure. These fluctuations in nucleosome wrapping can be exploited by chromatin-processing machinery. In contrast, ubiquitin and SUMO are comparable in size to histones, and it seems logical that these PTMs could conflict with canonical nucleosome organization. An experimentally testable hypothesis that by adding sterical bulk these PTMs can robustly alter nucleosome primary structure is proposed. The model presented here stresses the diversity of mechanisms by which histone PTMs regulate chromatin dynamics, primary structure and, hence, functionality.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N. K. Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| |
Collapse
|
10
|
Albig C, Tikhonova E, Krause S, Maksimenko O, Regnard C, Becker PB. Factor cooperation for chromosome discrimination in Drosophila. Nucleic Acids Res 2019; 47:1706-1724. [PMID: 30541149 PMCID: PMC6393291 DOI: 10.1093/nar/gky1238] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/05/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022] Open
Abstract
Transcription regulators select their genomic binding sites from a large pool of similar, non-functional sequences. Although general principles that allow such discrimination are known, the complexity of DNA elements often precludes a prediction of functional sites. The process of dosage compensation in Drosophila allows exploring the rules underlying binding site selectivity. The male-specific-lethal (MSL) Dosage Compensation Complex (DCC) selectively binds to some 300 X chromosomal ‘High Affinity Sites’ (HAS) containing GA-rich ‘MSL recognition elements’ (MREs), but disregards thousands of other MRE sequences in the genome. The DNA-binding subunit MSL2 alone identifies a subset of MREs, but fails to recognize most MREs within HAS. The ‘Chromatin-linked adaptor for MSL proteins’ (CLAMP) also interacts with many MREs genome-wide and promotes DCC binding to HAS. Using genome-wide DNA-immunoprecipitation we describe extensive cooperativity between both factors, depending on the nature of the binding sites. These are explained by physical interaction between MSL2 and CLAMP. In vivo, both factors cooperate to compete with nucleosome formation at HAS. The male-specific MSL2 thus synergises with a ubiquitous GA-repeat binding protein for refined X/autosome discrimination.
Collapse
Affiliation(s)
- Christian Albig
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität Munich, 82151 Martinsried, Germany.,Graduate School for Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität Munich, 81377 Munich, Germany
| | - Evgeniya Tikhonova
- Group of Molecular Organization of Genome, Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Silke Krause
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität Munich, 82151 Martinsried, Germany
| | - Oksana Maksimenko
- Group of Molecular Organization of Genome, Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Catherine Regnard
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität Munich, 82151 Martinsried, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität Munich, 82151 Martinsried, Germany
| |
Collapse
|
11
|
Krajewski WA. Effects of DNA Superhelical Stress on the Stability of H2B-Ubiquitylated Nucleosomes. J Mol Biol 2018; 430:5002-5014. [PMID: 30267746 DOI: 10.1016/j.jmb.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/27/2018] [Accepted: 09/21/2018] [Indexed: 01/31/2023]
Abstract
On the nucleosome level, histone posttranslational modifications function mainly as the regulatory signals; in addition, some posttranslational modifications can enhance nucleosome stochastic folding, which is restricted in "canonic" nucleosomes. Recently, it has been shown in vitro that symmetric or asymmetric nucleosome ubiquitylation at H2BK34 (and H2BK120, to a lesser extent) can destabilize one of the nucleosomal H2A-H2B dimers and promote nucleosome conversion to a hexasome particle [Krajewski et al. (2018). Nucleic Acids Res., 46, 7631-7642]. Such lability of H2Bub nucleosomes raises a question of whether they could accommodate transient changes in DNA torsional tensions, which are generated by virtually any process that manipulates DNA strands. Using positively or negatively supercoiled DNA minicircles and homogeneously-modified H2Bub histones, we have found that DNA topology could strongly and selectively affect nucleosome stability depending on its ubiquitylation state (here the term "nucleosome stability" means the nucleosome property to maintain its structural integrity and dynamics characteristic to "canonic" nucleosomes). The results point to a role for H2B ubiquitylation in amplifying or mitigating the effects of a DNA torque on the nucleosome stability and dynamics.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119334, Russia.
| |
Collapse
|
12
|
Samata M, Akhtar A. Dosage Compensation of the X Chromosome: A Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding RNAs. Annu Rev Biochem 2018; 87:323-350. [PMID: 29668306 DOI: 10.1146/annurev-biochem-062917-011816] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X chromosome regulation represents a prime example of an epigenetic phenomenon where coordinated regulation of a whole chromosome is required. In flies, this is achieved by transcriptional upregulation of X chromosomal genes in males to equalize the gene dosage differences in females. Chromatin-bound proteins and long noncoding RNAs (lncRNAs) constituting a ribonucleoprotein complex known as the male-specific lethal (MSL) complex or the dosage compensation complex mediate this process. MSL complex members decorate the male X chromosome, and their absence leads to male lethality. The male X chromosome is also enriched with histone H4 lysine 16 acetylation (H4K16ac), indicating that the chromatin compaction status of the X chromosome also plays an important role in transcriptional activation. How the X chromosome is specifically targeted and how dosage compensation is mechanistically achieved are central questions for the field. Here, we review recent advances, which reveal a complex interplay among lncRNAs, the chromatin landscape, transcription, and chromosome conformation that fine-tune X chromosome gene expression.
Collapse
Affiliation(s)
- Maria Samata
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany; .,Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany;
| |
Collapse
|