1
|
Ogi M, Yamagishi T, Tsukano H, Nishio N, Hishida R, Takahashi K, Horii A, Shibuki K. Associative responses to visual shape stimuli in the mouse auditory cortex. PLoS One 2019; 14:e0223242. [PMID: 31581242 PMCID: PMC6776301 DOI: 10.1371/journal.pone.0223242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022] Open
Abstract
Humans can recall various aspects of a characteristic sound as a whole when they see a visual shape stimulus that has been intimately associated with the sound. In subjects with audio-visual associative memory, auditory responses that code the associated sound may be induced in the auditory cortex in response to presentation of the associated visual shape stimulus. To test this possibility, mice were pre-exposed to a combination of an artificial sound mimicking a cat’s “meow” and a visual shape stimulus of concentric circles or stars for more than two weeks, since such passive exposure is known to be sufficient for inducing audio-visual associative memory in mice. After the exposure, we anesthetized the mice, and presented them with the associated visual shape stimulus. We found that associative responses in the auditory cortex were induced in response to the visual stimulus. The associative auditory responses were observed when complex sounds such as “meow” were used for formation of audio-visual associative memory, but not when a pure tone was used. These results suggest that associative auditory responses in the auditory cortex represent the characteristics of the complex sound stimulus as a whole.
Collapse
Affiliation(s)
- Manabu Ogi
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Tatsuya Yamagishi
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Nana Nishio
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Kuniyuki Takahashi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Arata Horii
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata, Japan
- * E-mail:
| |
Collapse
|