1
|
Astaraki S, Atighi MR, Shams-Bakhsh M. High-throughput sequencing revealed the symptomatic common bean (Phaseolus vulgaris L.) virome in Iran. Sci Rep 2025; 15:1621. [PMID: 39794435 PMCID: PMC11724015 DOI: 10.1038/s41598-025-85281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Common bean (Phaseolus vulgaris L.) is a crop rich in protein, minerals, and starch. Viruses are a significant limiting factor in increasing the production of legumes, particularly common beans. Accurate and timely detection of plant viruses is essential for minimizing disease damage and ensuring food security. To investigate common bean field viruses in Iran, 300 samples of common bean plants showing viral-like symptoms were collected over 3 years, 2020, 2021, and 2022. This study is the first to use total RNA-seq for a virome analysis of common beans in Iran. The results of the total RNA-seq indicated that the common bean samples were infected with sesame curly top virus (SeCTV), beet curly top Iran virus (BCTIV), tomato leaf curl Palampur virus (ToLCPalV), cucumber mosaic virus (CMV), bean common mosaic virus (BCMV), phaseolus vulgaris endornavirus 1 (PvEV1) and phaseolus vulgaris endornavirus 2 (PvEV2). This is the first report of PvEV1 and PvEV2 in Iran. Moreover, these findings revealed the presence of SeCTV and ToLCPalV for the first time in the western part of the country. Furthermore, the analysis of the nucleotide sequences and the phylogeny tree obtained from the complete genome of the two BCTIV isolates in this study, compared to other isolates, indicated the presence of a new strain of BCTIV in the common bean fields. During the three-year study, the detection rate of viruses indicated that BCTIV and BCTV were more prevalent in Lorestan province than in Markazi province. The research findings showed that common bean fields in the central and western regions of the country were infected with seven viruses, with DNA viruses being more prevalent in Lorestan province than in Markazi province. This information should be taken into account when developing management strategies and breeding plans.
Collapse
Affiliation(s)
- Sajad Astaraki
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Atighi
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Masoud Shams-Bakhsh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Brine TJ, Crawshaw S, Murphy AM, Pate AE, Carr JP, Wamonje FO. Identification and characterization of Phaseolus vulgaris endornavirus 1, 2 and 3 in common bean cultivars of East Africa. Virus Genes 2023; 59:741-751. [PMID: 37563541 PMCID: PMC10500008 DOI: 10.1007/s11262-023-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Persistent viruses include members of the family Endornavirus that cause no apparent disease and are transmitted exclusively via seed or pollen. It is speculated that these RNA viruses may be mutualists that enhance plant resilience to biotic and abiotic stresses. Using reverse transcription coupled polymerase chain reactions, we investigated if common bean (Phaseolus vulgaris L.) varieties popular in east Africa were hosts for Phaseolus vulgaris endornavirus (PvEV) 1, 2 or 3. Out of 26 bean varieties examined, four were infected with PvEV1, three were infected with both PvEV1 and PvEV2 and three had infections of all three (PvEV) 1, 2 and 3. Notably, this was the first identification of PvEV3 in common bean from Africa. Using high-throughput sequencing of two east African bean varieties (KK022 and KK072), we confirmed the presence of these viruses and generated their genomes. Intra- and inter-species sequence comparisons of these genomes with comparator sequences from GenBank revealed clear species demarcation. In addition, phylogenetic analyses based on sequences generated from the helicase domains showed that geographical distribution does not correlate to genetic relatedness or the occurrence of endornaviruses. These findings are an important first step towards future investigations to determine if these viruses engender positive effects in common bean, a vital crop in east Africa.
Collapse
Affiliation(s)
- Thomas J Brine
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Sam Crawshaw
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
- Pest and Pathogen Ecology, National Institute of Agricultural Botany, East Malling, ME19 6BJ, UK.
| |
Collapse
|
3
|
Brine TJ, Viswanathan SB, Murphy AM, Pate AE, Wamonje FO, Carr JP. Investigating the interactions of endornaviruses with each other and with other viruses in common bean, Phaseolus vulgaris. Virol J 2023; 20:216. [PMID: 37737192 PMCID: PMC10515030 DOI: 10.1186/s12985-023-02184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Plant viruses of the genus Alphaendornavirus are transmitted solely via seed and pollen and generally cause no apparent disease. It has been conjectured that certain plant endornaviruses may confer advantages on their hosts through improved performance (e.g., seed yield) or resilience to abiotic or biotic insult. We recently characterised nine common bean (Phaseolus vulgaris L.) varieties that harboured either Phaseolus vulgaris endornavirus (PvEV1) alone, or PvEV1 in combination with PvEV2 or PvEV1 in combination with PvEV2 and PvEV3. Here, we investigated the interactions of these endornaviruses with each other, and with three infectious pathogenic viruses: cucumber mosaic virus (CMV), bean common mosaic virus (BCMV), and bean common mosaic necrosis virus (BCMNV). RESULTS In lines harbouring PvEV1, PvEV1 and PvEV2, or PvEV1, PvEV2 plus PvEV3, the levels of PvEV1 and PvEV3 RNA were very similar between lines, although there were variations in PvEV2 RNA accumulation. In plants inoculated with infectious viruses, CMV, BCMV and BCMNV levels varied between lines, but this was most likely due to host genotype differences rather than to the presence or absence of endornaviruses. We tested the effects of endornaviruses on seed production and seedborne transmission of infectious pathogenic viruses but found no consistent relationship between the presence of endornaviruses and seed yield or protection from seedborne transmission of infectious pathogenic viruses. CONCLUSIONS It was concluded that endornaviruses do not interfere with each other's accumulation. There appears to be no direct synergy or competition between infectious pathogenic viruses and endornaviruses, however, the effects of host genotype may obscure interactions between endornaviruses and infectious viruses. There is no consistent effect of endornaviruses on seed yield or susceptibility to seedborne transmission of other viruses.
Collapse
Affiliation(s)
- Thomas J Brine
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Pest and Pathogen Ecology, National Institute of Agricultural Botany, East Malling, ME19 6BJ, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
4
|
Rashid S, Wani F, Ali G, Sofi TA, Dar ZA, Hamid A. Viral metatranscriptomic approach to study the diversity of virus(es) associated with Common Bean (Phaseolus vulgaris L.) in the North-Western Himalayan region of India. Front Microbiol 2022; 13:943382. [PMID: 36212886 PMCID: PMC9532741 DOI: 10.3389/fmicb.2022.943382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Plant viruses are a major threat to legume production worldwide. In recent years, new virus strains have emerged with increasing frequencies in various legume cropping systems, which demands the development of cutting-edge virus surveillance techniques. In this study, we surveyed the common bean fields of Kashmir valley for virus infection using a total of 140 symptomatic and non-symptomatic leaf samples collected from different locations. The genetic diversity of viruses was examined by high-throughput sequencing (HTS) with three viruses being identified, namely, Bean Common Mosaic Virus (BCMV), Bean Common Mosaic Necrosis Virus (BCMNV), and Clover Yellow Vein Virus (ClYVV). BCMNV and ClYVV are new reports from India. De novo assembly of transcriptome constructed near-complete genomes of these viruses. RT-PCR results confirmed the presence of these viruses with an emerge incidence of 56. 4% for BCMV, 27.1% for BCMNV and 16.4 for ClYVV in the valley. Several samples were found to contain multiple virus infections with BCMV being the most predominant. Recombination events were detected in the genomes of BCMV and ClYVV, but not BCMNV. Phylogenetic and pairwise identity matrix evidence suggests viral import from multiple countries. Our results demonstrate that HTS followed by multiplex PCR assay is a simple, rapid, and reliable approach for simultaneous diagnosis of plant viruses.
Collapse
Affiliation(s)
- Shahjahan Rashid
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Farhana Wani
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Gowhar Ali
- Department of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Tariq A. Sofi
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Zahoor Ahmed Dar
- Department of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Aflaq Hamid
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
- *Correspondence: Aflaq Hamid
| |
Collapse
|
5
|
Mulenga RM, Miano DW, Al Rwahnih M, Kaimoyo E, Akello J, Nzuve FM, Simulundu E, Alabi T, Chikoti PC, Alabi OJ. Survey for Virus Diversity in Common Bean ( Phaseolus vulgaris) Fields and the Detection of a Novel Strain of Cowpea polerovirus 1 in Zambia. PLANT DISEASE 2022; 106:2380-2391. [PMID: 35188414 DOI: 10.1094/pdis-11-21-2533-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The production of common bean (Phaseolus vulgaris L.) is adversely affected by virus-like diseases globally, but little is known about the occurrence, distribution, and diversity of common bean-infecting viruses in Zambia. Consequently, field surveys were conducted during the 2018 season in 128 fields across six provinces of Zambia and 640 common bean leaf tissue samples were collected with (n = 585) or without (n = 55) symptoms. The prevalence of symptomatic fields was 100%, but incidence of symptomatic plants ranged from 32 to 67.5%. Metagenomic analyses of nine composite samples and a single plant sample of interest revealed the occurrence of isolates of Bean common mosaic necrosis virus, Bean common mosaic virus, Cowpea aphid-borne mosaic virus, Peanut mottle virus, Southern bean mosaic virus (SBMV), Cucumber mosaic virus, Phaseolus vulgaris alphaendornavirus 1 (PvEV-1), PvEV-2, Ethiopian tobacco bushy top virus (ETBTV), and a novel strain of Cowpea polerovirus 1 (CPPV1-Pv) of 5,902 nt in length. While CPPV1-Pv was consistently detected in mixed infection with ETBTV and its satellite RNA molecule, based on results of mechanical transmission assays it does not appear to be involved in disease etiology, suggesting that its role may be limited to being a helper virus for the umbravirus. Screening of the survey samples by real-time PCR for the viruses detected by high-throughput sequencing revealed the prevalence of single (65.2% or 417/640) over mixed (1.9% or 12/640) infections in the samples. SBMV was the most frequently detected virus, occurring in ∼29.4% (188/640) of the samples and at a prevalence rate of 58.6% (75/128) across fields. The results showed that diverse virus species are present in Zambian common bean fields and the information will be useful for the management of common bean viral diseases.
Collapse
Affiliation(s)
- Rabson M Mulenga
- Zambia Agriculture Research Institute, Chilanga, 10101 Lusaka, Zambia
- Department of Plant Sciences and Crop Protection, University of Nairobi, Nairobi 00625, Kenya
| | - Douglas W Miano
- Department of Plant Sciences and Crop Protection, University of Nairobi, Nairobi 00625, Kenya
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Evans Kaimoyo
- School of Biological Sciences, Great East Road Campus, University of Zambia, 10101 Lusaka, Zambia
| | - Juliet Akello
- School of Veterinary Medicine, Great East Road Campus, University of Zambia, 10101 Lusaka, Zambia
| | - Felister M Nzuve
- Department of Plant Sciences and Crop Protection, University of Nairobi, Nairobi 00625, Kenya
| | - Edgar Simulundu
- International Institute of Tropical Agriculture, Southern African Research Hub, Chongwe District 10100, Lusaka Province, Zambia
| | - Tunrayo Alabi
- International Institute of Tropical Agriculture, Ibadan 200001, Nigeria
| | - Patrick C Chikoti
- Zambia Agriculture Research Institute, Chilanga, 10101 Lusaka, Zambia
| | - Olufemi J Alabi
- Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596, U.S.A
| |
Collapse
|
6
|
Mwaipopo B, Rajamäki ML, Ngowi N, Nchimbi-Msolla S, Njau PJR, Valkonen JPT, Mbanzibwa DR. Next-Generation Sequencing-Based Detection of Common Bean Viruses in Wild Plants from Tanzania and Their Mechanical Transmission to Common Bean Plants. PLANT DISEASE 2021; 105:2541-2550. [PMID: 33449805 DOI: 10.1094/pdis-07-20-1420-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Viral diseases are a major threat for common bean production. According to recent surveys, >15 different viruses belonging to 11 genera were shown to infect common bean (Phaseolus vulgaris L.) in Tanzania. Virus management requires an understanding of how viruses survive from one season to the next. During this study, we explored the possibility that alternative host plants have a central role in the survival of common bean viruses. We used next-generation sequencing (NGS) techniques to sequence virus-derived small interfering RNAs together with conventional reverse-transcription PCRs (RT-PCRs) to detect viruses in wild plants. Leaf samples for RNA extraction and NGS were collected from 1,430 wild plants around and within common bean fields in four agricultural zones in Tanzania. At least partial genome sequences of viruses potentially belonging to 25 genera were detected. The greatest virus diversity was detected in the eastern and northern zones, whereas wild plants in the Lake zone and especially in the southern highlands zone showed only a few viruses. The RT-PCR analysis of all collected plant samples confirmed the presence of yam bean mosaic virus and peanut mottle virus in wild legume plants. Of all viruses detected, only two viruses, cucumber mosaic virus and a novel bromovirus related to cowpea chlorotic mottle virus and brome mosaic virus, were mechanically transmitted from wild plants to common bean plants. The data generated during this study are crucial for the development of viral disease management strategies and predicting crop viral disease outbreaks in different agricultural regions in Tanzania and beyond.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Beatrice Mwaipopo
- Disease Control Unit, Tanzania Agricultural Research Institute - Mikocheni Centre, Dar es Salaam, Tanzania
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - Neema Ngowi
- Disease Control Unit, Tanzania Agricultural Research Institute - Mikocheni Centre, Dar es Salaam, Tanzania
| | - Susan Nchimbi-Msolla
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Paul J R Njau
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Deusdedith R Mbanzibwa
- Disease Control Unit, Tanzania Agricultural Research Institute - Mikocheni Centre, Dar es Salaam, Tanzania
| |
Collapse
|
7
|
Ibaba JD, Gubba A. High-Throughput Sequencing Application in the Diagnosis and Discovery of Plant-Infecting Viruses in Africa, A Decade Later. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1376. [PMID: 33081084 PMCID: PMC7602839 DOI: 10.3390/plants9101376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
High-throughput sequencing (HTS) application in the field of plant virology started in 2009 and has proven very successful for virus discovery and detection of viruses already known. Plant virology is still a developing science in most of Africa; the number of HTS-related studies published in the scientific literature has been increasing over the years as a result of successful collaborations. Studies using HTS to identify plant-infecting viruses have been conducted in 20 African countries, of which Kenya, South Africa and Tanzania share the most published papers. At least 29 host plants, including various agricultural economically important crops, ornamentals and medicinal plants, have been used in viromics analyses and have resulted in the detection of previously known viruses and novel ones from almost any host. Knowing that the effectiveness of any management program requires knowledge on the types, distribution, incidence, and genetic of the virus-causing disease, integrating HTS and efficient bioinformatics tools in plant virology research projects conducted in Africa is a matter of the utmost importance towards achieving and maintaining sustainable food security.
Collapse
Affiliation(s)
- Jacques Davy Ibaba
- Discipline of Plant Pathology, School of Agricultural, Earth and Environmental Sciences, Agriculture Campus, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa;
| | | |
Collapse
|
8
|
Discovery of Cucumis melo endornavirus by deep sequencing of human stool samples in Brazil. Virus Genes 2019; 55:332-338. [PMID: 30915664 DOI: 10.1007/s11262-019-01648-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023]
Abstract
The nearly complete genome sequences of two Cucumis melo endornavirus (CmEV) strains were obtained using deep sequencing while investigating fecal samples for the presence of gastroenteritis viruses. The Brazilian CmEV BRA/TO-23 (aa positions 116-5027) and BRA/TO-74 (aa positions 26-5057) strains were nearly identical to the reference CmEV CL-01 (USA) and SJ1 (South Korea) strains, showing 97% and 98% of nucleotide and amino acid identity, respectively. Endornaviruses are not known to be associated with human disease and their presence may simply reflect recent dietary consumption. Metagenomic analyses offered an opportunity to identify for the first time in Brazil a newly described endornavirus species.
Collapse
|
9
|
Alves-Freitas DMT, Pinheiro-Lima B, Faria JC, Lacorte C, Ribeiro SG, Melo FL. Double-Stranded RNA High-Throughput Sequencing Reveals a New Cytorhabdovirus in a Bean Golden Mosaic Virus-Resistant Common Bean Transgenic Line. Viruses 2019; 11:E90. [PMID: 30669683 PMCID: PMC6357046 DOI: 10.3390/v11010090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Using double-strand RNA (dsRNA) high-throughput sequencing, we identified five RNA viruses in a bean golden mosaic virus (BGMV)-resistant common bean transgenic line with symptoms of viral infection. Four of the identified viruses had already been described as infecting common bean (cowpea mild mottle virus, bean rugose mosaic virus, Phaseolus vulgaris alphaendornavirus 1, and Phaseolus vulgaris alphaendornavirus 2) and one is a putative new plant rhabdovirus (genus Cytorhabdovirus), tentatively named bean-associated cytorhabdovirus (BaCV). The BaCV genome presented all five open reading frames (ORFs) found in most rhabdoviruses: nucleoprotein (N) (ORF1) (451 amino acids, aa), phosphoprotein (P) (ORF2) (445 aa), matrix (M) (ORF4) (287 aa), glycoprotein (G) (ORF5) (520 aa), and an RNA-dependent RNA polymerase (L) (ORF6) (114 aa), as well as a putative movement protein (P3) (ORF3) (189 aa) and the hypothetical small protein P4. The predicted BaCV proteins were compared to homologous proteins from the closest cytorhabdoviruses, and a low level of sequence identity (15⁻39%) was observed. The phylogenetic analysis shows that BaCV clustered with yerba mate chlorosis-associated virus (YmCaV) and rice stripe mosaic virus (RSMV). Overall, our results provide strong evidence that BaCV is indeed a new virus species in the genus Cytorhabdovirus (family Rhabdoviridae), the first rhabdovirus to be identified infecting common bean.
Collapse
Affiliation(s)
| | - Bruna Pinheiro-Lima
- Embrapa Recursos Genéticos e Biotecnologia, 70.770-917 Brasília, Brazil.
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, Brazil.
| | | | - Cristiano Lacorte
- Embrapa Recursos Genéticos e Biotecnologia, 70.770-917 Brasília, Brazil.
| | - Simone G Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, 70.770-917 Brasília, Brazil.
| | - Fernando L Melo
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, Brazil.
- Departamento de Fitopatologia, Universidade de Brasília, 70910-900 Brasília, Brazil.
| |
Collapse
|
10
|
Endornaviruses: persistent dsRNA viruses with symbiotic properties in diverse eukaryotes. Virus Genes 2019; 55:165-173. [DOI: 10.1007/s11262-019-01635-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
|
11
|
Mutuku JM, Wamonje FO, Mukeshimana G, Njuguna J, Wamalwa M, Choi SK, Tungadi T, Djikeng A, Kelly K, Domelevo Entfellner JB, Ghimire SR, Mignouna HD, Carr JP, Harvey JJW. Metagenomic Analysis of Plant Virus Occurrence in Common Bean ( Phaseolus vulgaris) in Central Kenya. Front Microbiol 2018; 9:2939. [PMID: 30581419 PMCID: PMC6293961 DOI: 10.3389/fmicb.2018.02939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
Two closely related potyviruses, bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV), are regarded as major constraints on production of common bean (Phaseolus vulgaris L.) in Eastern and Central Africa, where this crop provides a high proportion of dietary protein as well as other nutritional, agronomic, and economic benefits. Previous studies using antibody-based assays and indicator plants indicated that BCMV and BCMNV are both prevalent in bean fields in the region but these approaches cannot distinguish between these potyviruses or detect other viruses that may threaten the crop. In this study, we utilized next generation shotgun sequencing for a metagenomic examination of viruses present in bean plants growing at two locations in Kenya: the University of Nairobi Research Farm in Nairobi's Kabete district and at sites in Kirinyaga County. RNA was extracted from leaves of bean plants exhibiting apparent viral symptoms and sequenced on the Illumina MiSeq platform. We detected BCMNV, cucumber mosaic virus (CMV), and Phaseolus vulgaris alphaendornaviruses 1 and 2 (PvEV1 and 2), with CMV present in the Kirinyaga samples. The CMV strain detected in this study was most closely related to Asian strains, which suggests that it may be a recent introduction to the region. Surprisingly, and in contrast to previous surveys, BCMV was not detected in plants at either location. Some plants were infected with PvEV1 and 2. The detection of PvEV1 and 2 suggests these seed transmitted viruses may be more prevalent in Eastern African bean germplasm than previously thought.
Collapse
Affiliation(s)
- J. Musembi Mutuku
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Francis O. Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Gerardine Mukeshimana
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Mark Wamalwa
- Biotechnology Department, Kenyatta University, Nairobi, Kenya
| | - Seung-Kook Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Vegetable Research, National Institute of Horticultural and Herbal Science, Rural Development Agency, Wanju County, South Korea
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Appolinaire Djikeng
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Krys Kelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Sita R. Ghimire
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Hodeba D. Mignouna
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Jagger J. W. Harvey
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
12
|
Mwaipopo B, Nchimbi-Msolla S, Njau PJR, Mark D, Mbanzibwa DR. Comprehensive Surveys of Bean common mosaic virus and Bean common mosaic necrosis virus and Molecular Evidence for Occurrence of Other Phaseolus vulgaris Viruses in Tanzania. PLANT DISEASE 2018; 102:2361-2370. [PMID: 30252625 PMCID: PMC7779967 DOI: 10.1094/pdis-01-18-0198-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Virus diseases are among the main biotic factors constraining common bean (Phaseolus vulgaris L.) production in Tanzania. Disease management requires information on types, distribution, incidence, and genetic variation of the causal viruses, which is currently limited. Thus, a countrywide comprehensive survey was conducted. Use of a next-generation sequencing technique enabled simultaneous detection of 15 viruses belonging to 11 genera. De novo assembly resulted in many contigs, including complete or nearly complete sequences of Bean common mosaic virus (BCMV), Bean common mosaic necrosis virus (BCMNV), and Southern bean mosaic virus (SBMV). Some viruses (for example, SBMV and Tomato leaf curl Uganda virus-related begomovirus) were detected for the first time in common bean in Tanzania. Visually assessed virus-like disease incidence ranged from 0 to 98% but reverse-transcription polymerase chain reaction-based incidence of BCMV and BCMNV (7,756 samples) was mostly less than 40%. The Sanger-based nucleotide sequences encoding coat proteins of BCMV and BCMNV isolates were 90.2 to 100% and 97.1 to 100% identical to each other, respectively. Phylogenetic analysis showed that BCMV isolates were more diverse than BCMNV isolates. The information generated in this study will contribute to the development of molecular diagnostic tools and strategies for management of virus diseases nationally and internationally. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Collapse
Affiliation(s)
- Beatrice Mwaipopo
- Disease Control Unit, Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania; and Crop Science and Horticulture Department, Sokoine University of Agriculture, Chuo Kikuu, Morogoro, Tanzania
| | - Susan Nchimbi-Msolla
- Crop Science and Horticulture Department, Sokoine University of Agriculture, Chuo Kikuu, Morogoro, Tanzania
| | - Paul J R Njau
- Crop Science and Horticulture Department, Sokoine University of Agriculture, Chuo Kikuu, Morogoro, Tanzania
| | - Deogratius Mark
- Disease Control Unit, Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - Deusdedith R Mbanzibwa
- Disease Control Unit, Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| |
Collapse
|
13
|
Genomic sequence of a novel endornavirus from Phaseolus vulgaris and occurrence in mixed infections with two other endornaviruses. Virus Res 2018; 257:63-67. [DOI: 10.1016/j.virusres.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
|
14
|
Nordenstedt N, Marcenaro D, Chilagane D, Mwaipopo B, Rajamäki ML, Nchimbi-Msolla S, Njau PJR, Mbanzibwa DR, Valkonen JPT. Correction: Pathogenic seedborne viruses are rare but Phaseolus vulgaris endornaviruses are common in bean varieties grown in Nicaragua and Tanzania. PLoS One 2017; 12:e0184263. [PMID: 28850599 PMCID: PMC5574620 DOI: 10.1371/journal.pone.0184263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|