1
|
Jauhal AA, Constantine R, Newcomb RD. A Comparative Genomics Approach to Understanding the Evolution of Olfaction in Cetaceans. J Mol Evol 2024; 92:912-929. [PMID: 39581917 DOI: 10.1007/s00239-024-10217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024]
Abstract
Major evolutionary transitions, such as the shift of cetaceans from terrestrial to marine life, can put pressure on sensory systems to adapt to a new set of relevant stimuli. Relatively little is known about the role of smell in the evolution of mysticetes (baleen whales). While their toothed cousins, the odontocetes, lack the anatomical features to smell, it is less clear whether baleen whales have retained this sense, and if so, when the pressure on olfaction diverged in the cetacean evolutionary lineage. We examined eight genes encoding olfactory signal transduction pathway components and key chaperones for signs of inactivating mutations and selective pressures. All of the genes we examined were intact in all eight mysticete genomes examined, despite inactivating mutations in odontocete homologs in multiple genes. We also tested several models representing various hypotheses regarding the evolutionary history of olfaction in cetaceans. Our results support a model where olfactory ability is specifically reduced in the odontocete lineage following their split from stem cetaceans and serve to clarify the evolutionary history of olfaction in cetaceans.
Collapse
Affiliation(s)
- April A Jauhal
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- The New Zealand Institute for Plant & Food Research, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Rochelle Constantine
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research, Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
2
|
Ojiro I, Katsuyama H, Kaneko R, Ogasawara S, Murata T, Terada Y, Ito K. Enhancement of transcription efficiency by TAR-Tat system increases the functional expression of human olfactory receptors. PLoS One 2024; 19:e0306029. [PMID: 38917199 PMCID: PMC11198769 DOI: 10.1371/journal.pone.0306029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Humans have approximately 400 different olfactory receptors (hORs) and recognize odorants through the repertoire of hOR responses. Although the cell surface expression of hORs is critical to evaluate their response, hORs are poorly expressed on the surface of heterologous cells. To address this problem, previous studies have focused on hOR transportation to the membrane. Nevertheless, the response pattern of hORs to odorants has yet to be successfully linked, and the response sensitivity still remains to be improved. In this study, we demonstrate that increasing the transcriptional level can result in a significant increase in cell surface and functional expression of hORs. We used the TAR-Tat system, which increases the transcription efficiency through positive feedback, and found that OR1A1, OR6N2, and OR51M1 exhibited robust expression. Moreover, this system induces enhanced hOR responses to odorants, thus defining four hORs as novel n-hexanal receptors and n-hexanal is an inverse agonist to one of them. Our results suggested that using the TAR-Tat system and increasing the transcriptional level of hORs can help understanding the relationship between hORs and odorants that were previously undetectable. This finding could facilitate the understanding of the sense of smell by decoding the repertoire of hOR responses.
Collapse
Affiliation(s)
- Ichie Ojiro
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hibiki Katsuyama
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ryusei Kaneko
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Yuko Terada
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Keisuke Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
3
|
Kotliar IB, Lorenzen E, Schwenk JM, Hay DL, Sakmar TP. Elucidating the Interactome of G Protein-Coupled Receptors and Receptor Activity-Modifying Proteins. Pharmacol Rev 2023; 75:1-34. [PMID: 36757898 PMCID: PMC9832379 DOI: 10.1124/pharmrev.120.000180] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are known to interact with several other classes of integral membrane proteins that modulate their biology and pharmacology. However, the extent of these interactions and the mechanisms of their effects are not well understood. For example, one class of GPCR-interacting proteins, receptor activity-modifying proteins (RAMPs), comprise three related and ubiquitously expressed single-transmembrane span proteins. The RAMP family was discovered more than two decades ago, and since then GPCR-RAMP interactions and their functional consequences on receptor trafficking and ligand selectivity have been documented for several secretin (class B) GPCRs, most notably the calcitonin receptor-like receptor. Recent bioinformatics and multiplexed experimental studies suggest that GPCR-RAMP interactions might be much more widespread than previously anticipated. Recently, cryo-electron microscopy has provided high-resolution structures of GPCR-RAMP-ligand complexes, and drugs have been developed that target GPCR-RAMP complexes. In this review, we provide a summary of recent advances in techniques that allow the discovery of GPCR-RAMP interactions and their functional consequences and highlight prospects for future advances. We also provide an up-to-date list of reported GPCR-RAMP interactions based on a review of the current literature. SIGNIFICANCE STATEMENT: Receptor activity-modifying proteins (RAMPs) have emerged as modulators of many aspects of G protein-coupled receptor (GPCR)biology and pharmacology. The application of new methodologies to study membrane protein-protein interactions suggests that RAMPs interact with many more GPCRs than had been previously known. These findings, especially when combined with structural studies of membrane protein complexes, have significant implications for advancing GPCR-targeted drug discovery and the understanding of GPCR pharmacology, biology, and regulation.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Jochen M Schwenk
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Debbie L Hay
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| |
Collapse
|
4
|
Xu R, Cong X, Zheng Q, Xu L, Ni MJ, de March CA, Matsunami H, Golebiowski J, Ma M, Yu Y. Interactions among key residues regulate mammalian odorant receptor trafficking. FASEB J 2022; 36:e22384. [PMID: 35639289 DOI: 10.1096/fj.202200116rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/11/2022]
Abstract
Odorant receptors (ORs) expressed in mammalian olfactory sensory neurons are essential for the sense of smell. However, structure-function studies of many ORs are hampered by unsuccessful heterologous expression. To understand and eventually overcome this bottleneck, we performed heterologous expression and functional assays of over 80 OR variants and chimeras. Combined with literature data and machine learning, we found that the transmembrane domain 4 (TM4) and its interactions with neighbor residues are important for OR functional expression. The data highlight critical roles of T4.62 therein. ORs that fail to reach the cell membrane can be rescued by modifications in TM4. Consequently, such modifications in MOR256-3 (Olfr124) also alter OR responses to odorants. T1614.62 P causes the retention of MOR256-3 in the endoplasmic reticulum (ER), while T1614.62 P/T1484.49 A reverses the retention and makes receptor trafficking to cell membrane. This study offers new clues toward wide-range functional studies of mammalian ORs.
Collapse
Affiliation(s)
- Rui Xu
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Xiaojing Cong
- Institut de Chimie de Nice UMR7272, CNRS, Université Côte d'Azur, Nice, France.,Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 5, 34094, France
| | - Qian Zheng
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Lun Xu
- Ear, Nose & Throat Institute, Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mengjue J Ni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jérôme Golebiowski
- Institut de Chimie de Nice UMR7272, CNRS, Université Côte d'Azur, Nice, France.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yiqun Yu
- Ear, Nose & Throat Institute, Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China.,Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Hot Spot Mutagenesis Improves the Functional Expression of Unique Mammalian Odorant Receptors. Int J Mol Sci 2021; 23:ijms23010277. [PMID: 35008703 PMCID: PMC8745346 DOI: 10.3390/ijms23010277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
Vertebrate animals detect odors through olfactory receptors (ORs), members of the G protein-coupled receptor (GPCR) family. Due to the difficulty in the heterologous expression of ORs, studies of their odor molecule recognition mechanisms have progressed poorly. Functional expression of most ORs in heterologous cells requires the co-expression of their chaperone proteins, receptor transporting proteins (RTPs). Yet, some ORs were found to be functionally expressed without the support of RTP (RTP-independent ORs). In this study, we investigated whether amino acid residues highly conserved among RTP-independent ORs improve the functional expression of ORs in heterologous cells. We found that a single amino acid substitution at one of two sites (NBW3.39 and 3.43) in their conserved residues (E and L, respectively) significantly improved the functional expression of ORs in heterologous cells. E3.39 and L3.43 also enhanced the membrane expression of RTP-dependent ORs in the absence of RTP. These changes did not alter the odorant responsiveness of the tested ORs. Our results showed that specific sites within transmembrane domains regulate the membrane expression of some ORs.
Collapse
|
6
|
Andresen AMS, Gjøen T. Chitosan nanoparticle formulation attenuates poly (I:C) induced innate immune responses against inactivated virus vaccine in Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100915. [PMID: 34634571 DOI: 10.1016/j.cbd.2021.100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Many vaccine formulations, in particular vaccines based on inactivated virus, needs adjuvants to boost immunogenicity. In aquaculture, mineral and plant oil are used as adjuvant in commercial vaccines, and the advent of oil-adjuvanted vaccines was crucial to aquaculture development. Nevertheless, some of these approved vaccines display suboptimal performance in the field compared to experimental conditions. Therefore, there is a need to improve adjuvants and delivery methods for fish vaccines against viruses. We used RNA sequencing of Atlantic salmon head kidney to analyse the difference in gene expression 24 h after injection of different experimental vaccine formulations. We compared five different formulations in addition to a PBS control: inactivated virus alone (group V), soluble poly (I:C) (group P), nanoparticles containing poly (I:C) (group N), soluble poly (I:C) + inactivated virus (group PV) and finally nanoparticles containing poly (I:C) + inactivated virus (group NV). Our results showed poly (I:C)'s ability as adjuvant and its capacity influence innate immune genes expression in Atlantic salmon. Soluble poly (I:C) upregulated multiple immune related genes and was more effective compared to poly (I:C) formulated into chitosan nanoparticles (more than 10 fold increase in differentially expressed genes, DEGs). However, inclusion of inactivated ISA virus in the nanoparticle vaccine, increased the number of DEGs fivefold suggesting a synergistic effect of adjuvant and antigen. Our results indicate that the way poly (I:C) is formulated and the presence of antigen is important for the magnitude of the innate immune response in Atlantic salmon.
Collapse
Affiliation(s)
| | - Tor Gjøen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Longo V, Parrinello D, Longo A, Parisi MG, Parrinello N, Colombo P, Cammarata M. The conservation and diversity of ascidian cells and molecules involved in the inflammatory reaction: The Ciona robusta model. FISH & SHELLFISH IMMUNOLOGY 2021; 119:384-396. [PMID: 34687879 DOI: 10.1016/j.fsi.2021.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/27/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Ascidians are marine invertebrate chordates belonging to the earliest branch (Tunicata) in the chordate phylum, therefore, they are of interest for studying the evolution of immune systems. Due to the known genome, the non-colonial Ciona robusta, previously considered to be C. intestinalis type A, is a model species for the study of inflammatory response. The internal defense of ascidians mainly relies on hemocytes circulating in the hemolymph and pharynx. Hemocytes can be in vivo challenged by LPS injection and various granulocyte and vacuolated cell populations differentiated to produce and release inflammatory factors. Molecular biology and gene expression studies revealed complex defense mechanisms involving different inflammatory hemocytes. Furthermore, cloning procedures allowed sequence analyses and molecular studies disclose immune-related gene families including TOLL-like receptors, galectins, C-type lectins, collectins, interlectins, pentraxine-like, peroxinectins, complement factors-like, TNFα-like, IL-17-like, TGF-like, MIF-like. These genes are promptly upregulated by the inflammatory stimulus and show a time course of transcription similar to each other. Domains sequence similarity and phylogenetic relationships with the vertebrate counterparts are shedding some light on immune-related gene evolution. Selective bioassays as well as bioinformatic approaches have allowed the characterization of antimicrobial peptides and the identification of post transcriptional molecular mechanisms able of influencing dynamics of gene regulation are described. In synthesis, the purpose of this article is to further explore the topic of hemocyte and molecules related to internal defence of ascidians involved in the inflammatory reaction, as well as to discuss current and future study options through a detailed literature review.
Collapse
Affiliation(s)
- Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | | - Nicolò Parrinello
- Department of Earth and Marine Science, University of Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy.
| | - Matteo Cammarata
- Department of Earth and Marine Science, University of Palermo, Italy
| |
Collapse
|
8
|
Boys IN, Mar KB, Schoggins JW. Functional-genomic analysis reveals intraspecies diversification of antiviral receptor transporter proteins in Xenopus laevis. PLoS Genet 2021; 17:e1009578. [PMID: 34014925 PMCID: PMC8172065 DOI: 10.1371/journal.pgen.1009578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/02/2021] [Accepted: 05/04/2021] [Indexed: 12/05/2022] Open
Abstract
The Receptor Transporter Protein (RTP) family is present in most, if not all jawed vertebrates. Most of our knowledge of this protein family comes from studies on mammalian RTPs, which are multi-function proteins that regulate cell-surface G-protein coupled receptor levels, influence olfactory system development, regulate immune signaling, and directly inhibit viral infection. However, mammals comprise less than one-tenth of extant vertebrate species, and our knowledge about the expression, function, and evolution of non-mammalian RTPs is limited. Here, we explore the evolutionary history of RTPs in vertebrates. We identify signatures of positive selection in many vertebrate RTP clades and characterize multiple, independent expansions of the RTP family outside of what has been described in mammals. We find a striking expansion of RTPs in the African clawed frog, Xenopus laevis, with 11 RTPs in this species as opposed to 1 to 4 in most other species. RNA sequencing revealed that most X. laevis RTPs are upregulated following immune stimulation. In functional assays, we demonstrate that at least three of these X. laevis RTPs inhibit infection by RNA viruses, suggesting that RTP homologs may serve as antiviral effectors outside of Mammalia.
Collapse
Affiliation(s)
- Ian N. Boys
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Katrina B. Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
9
|
Longo V, Longo A, Martorana A, Lauria A, Augello G, Azzolina A, Cervello M, Colombo P. Identification of an LPS-Induced Chemo-Attractive Peptide from Ciona robusta. Mar Drugs 2020; 18:md18040209. [PMID: 32290587 PMCID: PMC7230320 DOI: 10.3390/md18040209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Previously published work has demonstrated that the LPS injection of Ciona robusta leads to the overexpression of a truncated form of an immune-related mRNA (C8short) by means of Ciona robusta (CR) alternative polyadenylation (APA) (CR-APA). Methods: The 3D structure of the C8short-derived Ciona robusta chemo-attractive peptide (CrCP) was evaluated by homology modeling. The biological activity of the CrCP was studied in vitro using a primary human dermal cell line (HuDe). Real-Time PCR was used to investigate the expression levels of genes involved in cell motility. NF-κB signaling was studied by western blotting. Results: In silico modeling showed that CrCP displayed structural characteristics already reported for a short domain of the vertebrate CRK gene, suggesting its possible involvement in cell migration mechanisms. In vitro assays demonstrated that CrCP was capable of inducing the motility of HuDe cells in both wound healing and chemo-attractive experiments. qPCR demonstrated the capability of CrCP to modulate the expression of the matrix metalloproteinase-7 (MMP-7) and E-cadherin genes. Finally, western blot analysis demonstrated that treatment with CrCP induced activation of the NF-κB signaling pathway. Conclusion: Our results describe the characterization of the 3D structure and chemo-attractive activity of an LPS-induced CrCP peptide from Ciona robusta.
Collapse
Affiliation(s)
- Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy; (V.L.); (A.L.); (G.A.); (A.A.); (M.C.)
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy; (V.L.); (A.L.); (G.A.); (A.A.); (M.C.)
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (A.L.)
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (A.L.)
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy; (V.L.); (A.L.); (G.A.); (A.A.); (M.C.)
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy; (V.L.); (A.L.); (G.A.); (A.A.); (M.C.)
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy; (V.L.); (A.L.); (G.A.); (A.A.); (M.C.)
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy; (V.L.); (A.L.); (G.A.); (A.A.); (M.C.)
- Correspondence: ; Tel.: +39-91-6809535
| |
Collapse
|