1
|
Hasani M, Esch K, Zieske K. Controlled Protein-Membrane Interactions Modulate Self-Organization of Min Protein Patterns. Angew Chem Int Ed Engl 2024; 63:e202405046. [PMID: 39023015 DOI: 10.1002/anie.202405046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/09/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Self-organizing protein patterns are crucial for living systems, governing important cellular processes such as polarization and division. While the field of protein self-organization has reached a point where basic pattern-forming mechanisms can be reconstituted in vitro using purified proteins, understanding how cells can dynamically switch and modulate these patterns, especially when transiently needed, remains an interesting frontier. Here, we demonstrate the efficient regulation of self-organizing protein patterns through the modulation of simple biophysical membrane parameters. Our investigation focuses on the impact of membrane affinity changes on Min protein patterns at lipid membranes composed of Escherichia coli lipids or minimal lipid compositions, and we present three major results. First, we observed the emergence of a diverse array of pattern phenotypes, ranging from waves over flower-shaped patterns to snowflake-like structures. Second, we demonstrated the dependency of these patterns on the density of protein-membrane linkers. Finally, we demonstrate that the shape of snowflake-like patterns is fine-tuned by membrane charge. Our results demonstrate the significant influence of membrane linkage as a straightforward biophysical parameter governing protein pattern formation. Our research points towards a simple yet intriguing mechanism by which cells can adeptly tune and switch protein patterns on the mesoscale.
Collapse
Affiliation(s)
- Mergime Hasani
- Biophysics and Optogenetics, Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 7, 91058, Erlangen, Germany
| | - Katharina Esch
- Biophysics and Optogenetics, Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 7, 91058, Erlangen, Germany
| | - Katja Zieske
- Biophysics and Optogenetics, Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 7, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Rajasekaran R, Chang CC, Weix EWZ, Galateo TM, Coyle SM. A programmable reaction-diffusion system for spatiotemporal cell signaling circuit design. Cell 2024; 187:345-359.e16. [PMID: 38181787 PMCID: PMC10842744 DOI: 10.1016/j.cell.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/14/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Cells self-organize molecules in space and time to generate complex behaviors, but we lack synthetic strategies for engineering spatiotemporal signaling. We present a programmable reaction-diffusion platform for designing protein oscillations, patterns, and circuits in mammalian cells using two bacterial proteins, MinD and MinE (MinDE). MinDE circuits act like "single-cell radios," emitting frequency-barcoded fluorescence signals that can be spectrally isolated and analyzed using digital signal processing tools. We define how to genetically program these signals and connect their spatiotemporal dynamics to cell biology using engineerable protein-protein interactions. This enabled us to construct sensitive reporter circuits that broadcast endogenous cell signaling dynamics on a frequency-barcoded imaging channel and to build control signal circuits that synthetically pattern activities in the cell, such as protein condensate assembly and actin filamentation. Our work establishes a paradigm for visualizing, probing, and engineering cellular activities at length and timescales critical for biological function.
Collapse
Affiliation(s)
- Rohith Rajasekaran
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chih-Chia Chang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elliott W Z Weix
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thomas M Galateo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Scott M Coyle
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Carlquist WC, Cytrynbaum EN. The mechanism of MinD stability modulation by MinE in Min protein dynamics. PLoS Comput Biol 2023; 19:e1011615. [PMID: 37976301 PMCID: PMC10691731 DOI: 10.1371/journal.pcbi.1011615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 12/01/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
The patterns formed both in vivo and in vitro by the Min protein system have attracted much interest because of the complexity of their dynamic interactions given the apparent simplicity of the component parts. Despite both the experimental and theoretical attention paid to this system, the details of the biochemical interactions of MinD and MinE, the proteins responsible for the patterning, are still unclear. For example, no model consistent with the known biochemistry has yet accounted for the observed dual role of MinE in the membrane stability of MinD. Until now, a statistical comparison of models to the time course of Min protein concentrations on the membrane has not been carried out. Such an approach is a powerful way to test existing and novel models that are difficult to test using a purely experimental approach. Here, we extract time series from previously published fluorescence microscopy time lapse images of in vitro experiments and fit two previously described and one novel mathematical model to the data. We find that the novel model, which we call the Asymmetric Activation with Bridged Stability Model, fits the time-course data best. It is also consistent with known biochemistry and explains the dual MinE role via MinE-dependent membrane stability that transitions under the influence of rising MinE to membrane instability with positive feedback. Our results reveal a more complex network of interactions between MinD and MinE underlying Min-system dynamics than previously considered.
Collapse
Affiliation(s)
- William C. Carlquist
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Eric N. Cytrynbaum
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Takada S, Yoshinaga N, Doi N, Fujiwara K. Controlling the Periodicity of a Reaction-Diffusion Wave in Artificial Cells by a Two-Way Energy Supplier. ACS NANO 2022; 16:16853-16861. [PMID: 36214379 DOI: 10.1021/acsnano.2c06756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reaction-diffusion (RD) waves, which are dynamic self-organization structures generated by nanosize molecules, are a fundamental mechanism from patterning in nano- and micromaterials to spatiotemporal regulations in living cells, such as cell division and motility. Although the periods of RD waves are the critical element for these functions, the development of a system to control their period is challenging because RD waves result from nonlinear physical dynamics under far-from-equilibrium conditions. Here, we developed an artificial cell system with tunable period of an RD-driven wave (Min protein wave), which determines a cell division site plane in living bacterial cells. The developed system is based on our finding that Min waves are generated by energy consumption of either ATP or dATP, and the period of the wave is different between these two energy suppliers. We showed that the Min-wave period was modulated linearly by the mixing ratio of ATP and dATP and that it was also possible to estimate the mixing ratio of ATP and dATP from the period. Our findings illuminated a previously unidentified principle to control the dissipative dynamics of biomolecules and, simultaneously, built an important framework to construct molecular robots with spatiotemporal units.
Collapse
Affiliation(s)
- Sakura Takada
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Natsuhiko Yoshinaga
- Mathematical Science Group, WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Katahira 2-1-1, Aoba-Ku, Sendai 9808577, Japan
- MathAM-OIL, AIST, Sendai 980-8577, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
5
|
Merino-Salomón A, Babl L, Schwille P. Self-organized protein patterns: The MinCDE and ParABS systems. Curr Opin Cell Biol 2021; 72:106-115. [PMID: 34399108 DOI: 10.1016/j.ceb.2021.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/04/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Self-organized protein patterns are of tremendous importance for biological decision-making processes. Protein patterns have been shown to identify the site of future cell division, establish cell polarity, and organize faithful DNA segregation. Intriguingly, several key concepts of pattern formation and regulation apply to a variety of different protein systems. Herein, we explore recent advances in the understanding of two prokaryotic pattern-forming systems: the MinCDE system, positioning the FtsZ ring precisely at the midcell, and the ParABS system, distributing newly synthesized DNA along with the cell. Despite differences in biological functionality, these two systems have remarkably similar molecular components, mechanisms, and strategies to achieve biological robustness.
Collapse
Affiliation(s)
- Adrián Merino-Salomón
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Leon Babl
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Petra Schwille
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany.
| |
Collapse
|
6
|
Kretschmer S, Heermann T, Tassinari A, Glock P, Schwille P. Increasing MinD's Membrane Affinity Yields Standing Wave Oscillations and Functional Gradients on Flat Membranes. ACS Synth Biol 2021; 10:939-949. [PMID: 33881306 PMCID: PMC8155659 DOI: 10.1021/acssynbio.0c00604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/28/2022]
Abstract
The formation of large-scale patterns through molecular self-organization is a basic principle of life. Accordingly, the engineering of protein patterns and gradients is of prime relevance for synthetic biology. As a paradigm for such pattern formation, the bacterial MinDE protein system is based on self-organization of the ATPase MinD and ATPase-activating protein MinE on lipid membranes. Min patterns can be tightly regulated by tuning physical or biochemical parameters. Among the biochemically engineerable modules, MinD's membrane targeting sequence, despite being a key regulating element, has received little attention. Here we attempt to engineer patterns by modulating the membrane affinity of MinD. Unlike the traveling waves or stationary patterns commonly observed in vitro on flat supported membranes, standing-wave oscillations emerge upon elongating MinD's membrane targeting sequence via rationally guided mutagenesis. These patterns are capable of forming gradients and thereby spatially target co-reconstituted downstream proteins, highlighting their functional potential in designing new life-like systems.
Collapse
Affiliation(s)
- Simon Kretschmer
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Current
affiliation: Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Tamara Heermann
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andrea Tassinari
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Philipp Glock
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Petra Schwille
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
7
|
Mass-sensitive particle tracking to elucidate the membrane-associated MinDE reaction cycle. Nat Methods 2021; 18:1239-1246. [PMID: 34608318 PMCID: PMC8490154 DOI: 10.1038/s41592-021-01260-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
In spite of their great importance in biology, methods providing access to spontaneous molecular interactions with and on biological membranes have been sparse. The recent advent of mass photometry to quantify mass distributions of unlabeled biomolecules landing on surfaces raised hopes that this approach could be transferred to membranes. Here, by introducing a new interferometric scattering (iSCAT) image processing and analysis strategy adapted to diffusing particles, we enable mass-sensitive particle tracking (MSPT) of single unlabeled biomolecules on a supported lipid bilayer. We applied this approach to the highly nonlinear reaction cycles underlying MinDE protein self-organization. MSPT allowed us to determine the stoichiometry and turnover of individual membrane-bound MinD/MinDE protein complexes and to quantify their size-dependent diffusion. This study demonstrates the potential of MSPT to enhance our quantitative understanding of membrane-associated biological systems.
Collapse
|
8
|
Heermann T, Franquelim HG, Glock P, Harrington L, Schwille P. Probing Biomolecular Interactions by a Pattern-Forming Peptide-Conjugate Sensor. Bioconjug Chem 2020; 32:172-181. [PMID: 33314917 PMCID: PMC7872319 DOI: 10.1021/acs.bioconjchem.0c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
As a key mechanism
underpinning many biological processes, protein
self-organization has been extensively studied. However, the potential
to apply the distinctive, nonlinear biochemical properties of such
self-organizing systems to biotechnological problems such as the facile
detection and characterization of biomolecular interactions has not
yet been explored. Here, we describe an in vitro assay
in a 96-well plate format that harnesses the emergent behavior of
the Escherichia coli Min system to
provide a readout of biomolecular interactions. Crucial for the development
of our approach is a minimal MinE-derived peptide that stimulates
MinD ATPase activity only when dimerized. We found that this behavior
could be induced via any pair of foreign, mutually binding molecular
entities fused to the minimal MinE peptide. The resulting MinD ATPase
activity and the spatiotemporal nature of the produced protein patterns
quantitatively correlate with the affinity of the fused binding partners,
thereby enabling a highly sensitive assay for biomolecular interactions.
Our assay thus provides a unique means of quantitatively visualizing
biomolecular interactions and may prove useful for the assessment
of domain interactions within protein libraries and for the facile
investigation of potential inhibitors of protein–protein interactions.
Collapse
Affiliation(s)
- Tamara Heermann
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Henri G Franquelim
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Philipp Glock
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Leon Harrington
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| |
Collapse
|
9
|
Groaz A, Moghimianavval H, Tavella F, Giessen TW, Vecchiarelli AG, Yang Q, Liu AP. Engineering spatiotemporal organization and dynamics in synthetic cells. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1685. [PMID: 33219745 DOI: 10.1002/wnan.1685] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell-sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells-compartmentalization and self-organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self-organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Yang
- University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Kohyama S, Fujiwara K, Yoshinaga N, Doi N. Conformational equilibrium of MinE regulates the allowable concentration ranges of a protein wave for cell division. NANOSCALE 2020; 12:11960-11970. [PMID: 32458918 DOI: 10.1039/d0nr00242a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Min system for determining the cell division position at the center in bacteria has a unique character that uses a protein wave (Min wave) that emerges from its components (MinD and MinE). The Min wave emerges under the coupling of chemical reactions and molecular diffusions of MinDE and appears when the concentrations of MinD and MinE are similar. However, the nanoscale mechanism to determine their concentration ranges has remained elusive. In this study, by using artificial cells as a mimic of cells, we showed that the dominant MinE conformations determined the allowable concentration ranges for the emergence of the Min wave. Furthermore, the deletion of the membrane-binding region of MinE indicated that the region was essential for limiting the concentration ranges to be narrower. These findings illustrate a parameter tuning mechanism underlying complex molecular systems at the nanoscale for spatiotemporal regulation in living cells and show a possibility that the regulation of the equilibrium among molecular conformations can work as a switch for cell division.
Collapse
Affiliation(s)
- Shunshi Kohyama
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Kei Fujiwara
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Natsuhiko Yoshinaga
- Mathematical Science Group, WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 9808577, Japan and MathAM-OIL, AIST, Sendai 980-8577, Japan
| | - Nobuhide Doi
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
11
|
Palanisamy N, Öztürk MA, Akmeriç EB, Di Ventura B. C-terminal eYFP fusion impairs Escherichia coli MinE function. Open Biol 2020; 10:200010. [PMID: 32456552 PMCID: PMC7276532 DOI: 10.1098/rsob.200010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Escherichia coli Min system plays an important role in the proper placement of the septum ring at mid-cell during cell division. MinE forms a pole-to-pole spatial oscillator with the membrane-bound ATPase MinD, resulting in MinD concentration being the lowest at mid-cell. MinC, the direct inhibitor of the septum initiator protein FtsZ, forms a complex with MinD at the membrane, mirroring its polar gradients. Therefore, MinC-mediated FtsZ inhibition occurs away from mid-cell. Min oscillations are often studied in living cells by time-lapse microscopy using fluorescently labelled Min proteins. Here, we show that, despite permitting oscillations to occur in a range of protein concentrations, the enhanced yellow fluorescent protein (eYFP) C-terminally fused to MinE impairs its function. Combining in vivo, in vitro and in silico approaches, we demonstrate that eYFP compromises the ability of MinE to displace MinC from MinD, to stimulate MinD ATPase activity and to directly bind to the membrane. Moreover, we reveal that MinE-eYFP is prone to aggregation. In silico analyses predict that other fluorescent proteins are also likely to compromise several functionalities of MinE, suggesting that the results presented here are not specific to eYFP.
Collapse
Affiliation(s)
- Navaneethan Palanisamy
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Heidelberg Biosciences International Graduate School (HBIGS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Mehmet Ali Öztürk
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Emir Bora Akmeriç
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Barbara Di Ventura
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
12
|
Glock P, Brauns F, Halatek J, Frey E, Schwille P. Design of biochemical pattern forming systems from minimal motifs. eLife 2019; 8:48646. [PMID: 31767054 PMCID: PMC6922632 DOI: 10.7554/elife.48646] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/06/2019] [Indexed: 01/10/2023] Open
Abstract
Although molecular self-organization and pattern formation are key features of life, only very few pattern-forming biochemical systems have been identified that can be reconstituted and studied in vitro under defined conditions. A systematic understanding of the underlying mechanisms is often hampered by multiple interactions, conformational flexibility and other complex features of the pattern forming proteins. Because of its compositional simplicity of only two proteins and a membrane, the MinDE system from Escherichia coli has in the past years been invaluable for deciphering the mechanisms of spatiotemporal self-organization in cells. Here, we explored the potential of reducing the complexity of this system even further, by identifying key functional motifs in the effector MinE that could be used to design pattern formation from scratch. In a combined approach of experiment and quantitative modeling, we show that starting from a minimal MinE-MinD interaction motif, pattern formation can be obtained by adding either dimerization or membrane-binding motifs. Moreover, we show that the pathways underlying pattern formation are recruitment-driven cytosolic cycling of MinE and recombination of membrane-bound MinE, and that these differ in their in vivo phenomenology.
Collapse
Affiliation(s)
- Philipp Glock
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Fridtjof Brauns
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany.,Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Jacob Halatek
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany.,Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany.,Biological Computation Group, Microsoft Research, Cambridge, United Kingdom
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany.,Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Petra Schwille
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
13
|
Ramm B, Heermann T, Schwille P. The E. coli MinCDE system in the regulation of protein patterns and gradients. Cell Mol Life Sci 2019; 76:4245-4273. [PMID: 31317204 PMCID: PMC6803595 DOI: 10.1007/s00018-019-03218-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
Molecular self-organziation, also regarded as pattern formation, is crucial for the correct distribution of cellular content. The processes leading to spatiotemporal patterns often involve a multitude of molecules interacting in complex networks, so that only very few cellular pattern-forming systems can be regarded as well understood. Due to its compositional simplicity, the Escherichia coli MinCDE system has, thus, become a paradigm for protein pattern formation. This biological reaction diffusion system spatiotemporally positions the division machinery in E. coli and is closely related to ParA-type ATPases involved in most aspects of spatiotemporal organization in bacteria. The ATPase MinD and the ATPase-activating protein MinE self-organize on the membrane as a reaction matrix. In vivo, these two proteins typically oscillate from pole-to-pole, while in vitro they can form a variety of distinct patterns. MinC is a passenger protein supposedly operating as a downstream cue of the system, coupling it to the division machinery. The MinCDE system has helped to extract not only the principles underlying intracellular patterns, but also how they are shaped by cellular boundaries. Moreover, it serves as a model to investigate how patterns can confer information through specific and non-specific interactions with other molecules. Here, we review how the three Min proteins self-organize to form patterns, their response to geometric boundaries, and how these patterns can in turn induce patterns of other molecules, focusing primarily on experimental approaches and developments.
Collapse
Affiliation(s)
- Beatrice Ramm
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Tamara Heermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
14
|
Kretschmer S, Ganzinger KA, Franquelim HG, Schwille P. Synthetic cell division via membrane-transforming molecular assemblies. BMC Biol 2019; 17:43. [PMID: 31126285 PMCID: PMC6533746 DOI: 10.1186/s12915-019-0665-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reproduction, i.e. the ability to produce new individuals from a parent organism, is a hallmark of living matter. Even the simplest forms of reproduction require cell division: attempts to create a designer cell therefore should include a synthetic cell division machinery. In this review, we will illustrate how nature solves this task, describing membrane remodelling processes in general and focusing on bacterial cell division in particular. We discuss recent progress made in their in vitro reconstitution, identify open challenges, and suggest how purely synthetic building blocks could provide an additional and attractive route to creating artificial cell division machineries.
Collapse
|
15
|
Halatek J, Brauns F, Frey E. Self-organization principles of intracellular pattern formation. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0107. [PMID: 29632261 PMCID: PMC5904295 DOI: 10.1098/rstb.2017.0107] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli, Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans. By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as ‘activators’, ‘inhibitors’ or ‘substrate depletion’. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction–diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics. This article is part of the theme issue ‘Self-organization in cell biology’.
Collapse
Affiliation(s)
- J Halatek
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - F Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - E Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| |
Collapse
|
16
|
Kretschmer S, Harrington L, Schwille P. Reverse and forward engineering of protein pattern formation. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0104. [PMID: 29632258 DOI: 10.1098/rstb.2017.0104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2017] [Indexed: 12/18/2022] Open
Abstract
Living systems employ protein pattern formation to regulate important life processes in space and time. Although pattern-forming protein networks have been identified in various prokaryotes and eukaryotes, their systematic experimental characterization is challenging owing to the complex environment of living cells. In turn, cell-free systems are ideally suited for this goal, as they offer defined molecular environments that can be precisely controlled and manipulated. Towards revealing the molecular basis of protein pattern formation, we outline two complementary approaches: the biochemical reverse engineering of reconstituted networks and the de novo design, or forward engineering, of artificial self-organizing systems. We first illustrate the reverse engineering approach by the example of the Escherichia coli Min system, a model system for protein self-organization based on the reversible and energy-dependent interaction of the ATPase MinD and its activating protein MinE with a lipid membrane. By reconstituting MinE mutants impaired in ATPase stimulation, we demonstrate how large-scale Min protein patterns are modulated by MinE activity and concentration. We then provide a perspective on the de novo design of self-organizing protein networks. Tightly integrated reverse and forward engineering approaches will be key to understanding and engineering the intriguing phenomenon of protein pattern formation.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Simon Kretschmer
- Department of Cellular and Molecular Biophysics, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Leon Harrington
- Department of Cellular and Molecular Biophysics, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
17
|
Wettmann L, Kruse K. The Min-protein oscillations in Escherichia coli: an example of self-organized cellular protein waves. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0111. [PMID: 29632263 DOI: 10.1098/rstb.2017.0111] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
In the rod-shaped bacterium Escherichia coli, selection of the cell centre as the division site involves pole-to-pole oscillations of the proteins MinC, MinD and MinE. This spatio-temporal pattern emerges from interactions among the Min proteins and with the cytoplasmic membrane. Combining experimental studies in vivo and in vitro together with theoretical analysis has led to a fairly good understanding of Min-protein self-organization. In different geometries, the system can, in addition to standing waves, also produce travelling planar and spiral waves as well as coexisting stable stationary distributions. Today it stands as one of the best-studied examples of cellular self-organization of proteins.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Lukas Wettmann
- Theoretische Physik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany
| | - Karsten Kruse
- Departments of Biochemistry and Theoretical Physics, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
18
|
Vendel KJA, Tschirpke S, Shamsi F, Dogterom M, Laan L. Minimal in vitro systems shed light on cell polarity. J Cell Sci 2019; 132:132/4/jcs217554. [PMID: 30700498 DOI: 10.1242/jcs.217554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell polarity - the morphological and functional differentiation of cellular compartments in a directional manner - is required for processes such as orientation of cell division, directed cellular growth and motility. How the interplay of components within the complexity of a cell leads to cell polarity is still heavily debated. In this Review, we focus on one specific aspect of cell polarity: the non-uniform accumulation of proteins on the cell membrane. In cells, this is achieved through reaction-diffusion and/or cytoskeleton-based mechanisms. In reaction-diffusion systems, components are transformed into each other by chemical reactions and are moving through space by diffusion. In cytoskeleton-based processes, cellular components (i.e. proteins) are actively transported by microtubules (MTs) and actin filaments to specific locations in the cell. We examine how minimal systems - in vitro reconstitutions of a particular cellular function with a minimal number of components - are designed, how they contribute to our understanding of cell polarity (i.e. protein accumulation), and how they complement in vivo investigations. We start by discussing the Min protein system from Escherichia coli, which represents a reaction-diffusion system with a well-established minimal system. This is followed by a discussion of MT-based directed transport for cell polarity markers as an example of a cytoskeleton-based mechanism. To conclude, we discuss, as an example, the interplay of reaction-diffusion and cytoskeleton-based mechanisms during polarity establishment in budding yeast.
Collapse
Affiliation(s)
- Kim J A Vendel
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Sophie Tschirpke
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Fayezeh Shamsi
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Marileen Dogterom
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Liedewij Laan
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| |
Collapse
|
19
|
Mörsdorf D, Müller P. Tuning Protein Diffusivity with Membrane Tethers. Biochemistry 2019; 58:177-181. [PMID: 30562001 PMCID: PMC6344912 DOI: 10.1021/acs.biochem.8b01150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/09/2018] [Indexed: 12/18/2022]
Abstract
Diffusion is essential for biochemical processes because it dominates molecular movement on small scales. Enzymatic reactions, for example, require fast exchange of substrate and product molecules in the local environment of the enzyme to ensure efficient turnover. On larger spatial scales, diffusion of secreted signaling proteins is thought to limit the spatial extent of tissue differentiation during embryonic development. While it is possible to measure diffusion in vivo, specifically interfering with diffusion processes and testing diffusion models directly remains challenging. The development of genetically encoded nanobodies that bind specific proteins has provided the opportunity to alter protein localization and reduce protein mobility. Here, we extend the nanobody toolbox with a membrane-tethered low-affinity diffusion regulator that can be used to tune the effective diffusivity of extracellular molecules over an order of magnitude in living embryos. This opens new avenues for future applications to functionally interfere with diffusion-dependent processes.
Collapse
Affiliation(s)
- David Mörsdorf
- Friedrich Miescher Laboratory of the
Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Patrick Müller
- Friedrich Miescher Laboratory of the
Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
20
|
Glock P, Ramm B, Heermann T, Kretschmer S, Schweizer J, Mücksch J, Alagöz G, Schwille P. Stationary Patterns in a Two-Protein Reaction-Diffusion System. ACS Synth Biol 2019; 8:148-157. [PMID: 30571913 DOI: 10.1021/acssynbio.8b00415] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Patterns formed by reaction-diffusion mechanisms are crucial for the development or sustenance of most organisms in nature. Patterns include dynamic waves, but are more often found as static distributions, such as animal skin patterns. Yet, a simplistic biological model system to reproduce and quantitatively investigate static reaction-diffusion patterns has been missing so far. Here, we demonstrate that the Escherichia coli Min system, known for its oscillatory behavior between the cell poles, is under certain conditions capable of transitioning to quasi-stationary protein distributions on membranes closely resembling Turing patterns. We systematically titrated both proteins, MinD and MinE, and found that removing all purification tags and linkers from the N-terminus of MinE was critical for static patterns to occur. At small bulk heights, dynamic patterns dominate, such as in rod-shaped microcompartments. We see implications of this work for studying pattern formation in general, but also for creating artificial gradients as downstream cues in synthetic biology applications.
Collapse
Affiliation(s)
- Philipp Glock
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Beatrice Ramm
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Tamara Heermann
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Simon Kretschmer
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Jakob Schweizer
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Jonas Mücksch
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Gökberk Alagöz
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Petra Schwille
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| |
Collapse
|
21
|
Ke L, Cao LJ, Geng MT, Wang CC, Yao Y, Xiao Y, Huang W, Li RM, Min Y, Guo JC. Identification and expression analysis of MinD gene involved in plastid division in cassava. Biosci Biotechnol Biochem 2018; 83:76-86. [PMID: 30286695 DOI: 10.1080/09168451.2018.1520075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cassava is a tropical crop known for its starchy root and excellent properties. Considering that starch biosynthesis in the amyloplast is affected by its division, it appears conceivable that the regulation of plastid division plays an important role in starch accumulation. As a member of the Min system genes, MinD participated in the spatial regulation of the position of the plastid division site.In our studies, sequence analysis and phylogenetic analysis showed that MeMinD has been highly conserved during the evolutionary process. Subcellular localisation indicated that MeMinD carries a chloroplast transit peptide and was localised in the chloroplast. Overexpression of MeMinD resulted in division site misplacement and filamentous formation in E. coli, indicating that MeMinD protein was functional across species. MeMinD exhibited different spatial and temporal expression patterns which was highly expressed in the source compared to that in the sink organ.
Collapse
Affiliation(s)
- Lei Ke
- a Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource , Institute of Tropical Agriculture and Forestry, Hainan University , Haikou , China
| | - Liang-Jing Cao
- b Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Haikou , China
| | - Meng-Ting Geng
- a Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource , Institute of Tropical Agriculture and Forestry, Hainan University , Haikou , China
| | - Cong-Cong Wang
- a Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource , Institute of Tropical Agriculture and Forestry, Hainan University , Haikou , China
| | - Yuan Yao
- b Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Haikou , China
| | - Yu Xiao
- a Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource , Institute of Tropical Agriculture and Forestry, Hainan University , Haikou , China
| | - Wu Huang
- a Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource , Institute of Tropical Agriculture and Forestry, Hainan University , Haikou , China
| | - Rui-Mei Li
- b Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Haikou , China
| | - Yi Min
- a Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource , Institute of Tropical Agriculture and Forestry, Hainan University , Haikou , China
| | - Jian-Chun Guo
- b Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Haikou , China
| |
Collapse
|
22
|
Ramm B, Glock P, Schwille P. In Vitro Reconstitution of Self-Organizing Protein Patterns on Supported Lipid Bilayers. J Vis Exp 2018. [PMID: 30102292 PMCID: PMC6126581 DOI: 10.3791/58139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many aspects of the fundamental spatiotemporal organization of cells are governed by reaction-diffusion type systems. In vitro reconstitution of such systems allows for detailed studies of their underlying mechanisms which would not be feasible in vivo. Here, we provide a protocol for the in vitro reconstitution of the MinCDE system of Escherichia coli, which positions the cell division septum in the cell middle. The assay is designed to supply only the components necessary for self-organization, namely a membrane, the two proteins MinD and MinE and energy in the form of ATP. We therefore fabricate an open reaction chamber on a coverslip, on which a supported lipid bilayer is formed. The open design of the chamber allows for optimal preparation of the lipid bilayer and controlled manipulation of the bulk content. The two proteins, MinD and MinE, as well as ATP, are then added into the bulk volume above the membrane. Imaging is possible by many optical microscopies, as the design supports confocal, wide-field and TIRF microscopy alike. In a variation of the protocol, the lipid bilayer is formed on a patterned support, on cell-shaped PDMS microstructures, instead of glass. Lowering the bulk solution to the rim of these compartments encloses the reaction in a smaller compartment and provides boundaries that allow mimicking of in vivo oscillatory behavior. Taken together, we describe protocols to reconstitute the MinCDE system both with and without spatial confinement, allowing researchers to precisely control all aspects influencing pattern formation, such as concentration ranges and addition of other factors or proteins, and to systematically increase system complexity in a relatively simple experimental setup.
Collapse
Affiliation(s)
- Beatrice Ramm
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry
| | - Philipp Glock
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry;
| |
Collapse
|
23
|
MinE conformational switching confers robustness on self-organized Min protein patterns. Proc Natl Acad Sci U S A 2018; 115:4553-4558. [PMID: 29666276 PMCID: PMC5939084 DOI: 10.1073/pnas.1719801115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Many fundamental cellular processes are spatially regulated by self-organized protein patterns, which are often based on nucleotide-binding proteins that switch their nucleotide state upon interaction with a second, activating protein. For reliable function, these protein patterns must be robust against parameter changes, although the basis for such robustness is generally elusive. Here we take a combined theoretical and experimental approach to the Escherichia coli Min system, a paradigmatic system for protein self-organization. By mathematical modeling and in vitro reconstitution of mutant proteins, we demonstrate that the robustness of pattern formation is dramatically enhanced by an interlinked functional switching of both proteins, rather than one. Such interlinked functional switching could be a generic means of obtaining robustness in biological pattern-forming systems. Protein patterning is vital for many fundamental cellular processes. This raises two intriguing questions: Can such intrinsically complex processes be reduced to certain core principles and, if so, what roles do the molecular details play in individual systems? A prototypical example for protein patterning is the bacterial Min system, in which self-organized pole-to-pole oscillations of MinCDE proteins guide the cell division machinery to midcell. These oscillations are based on cycling of the ATPase MinD and its activating protein MinE between the membrane and the cytoplasm. Recent biochemical evidence suggests that MinE undergoes a reversible, MinD-dependent conformational switch from a latent to a reactive state. However, the functional relevance of this switch for the Min network and pattern formation remains unclear. By combining mathematical modeling and in vitro reconstitution of mutant proteins, we dissect the two aspects of MinE’s switch, persistent membrane binding and a change in MinE’s affinity for MinD. Our study shows that the MinD-dependent change in MinE’s binding affinity for MinD is essential for patterns to emerge over a broad and physiological range of protein concentrations. Mechanistically, our results suggest that conformational switching of an ATPase-activating protein can lead to the spatial separation of its distinct functional states and thereby confer robustness on an intracellular protein network with vital roles in bacterial cell division.
Collapse
|
24
|
Mizuuchi K, Vecchiarelli AG. Mechanistic insights of the Min oscillator via cell-free reconstitution and imaging. Phys Biol 2018; 15:031001. [PMID: 29188788 DOI: 10.1088/1478-3975/aa9e5e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The MinD and MinE proteins of Escherichia coli self-organize into a standing-wave oscillator on the membrane to help align division at mid-cell. When unleashed from cellular confines, MinD and MinE form a spectrum of patterns on artificial bilayers-static amoebas, traveling waves, traveling mushrooms, and bursts with standing-wave dynamics. We recently focused our cell-free studies on bursts because their dynamics recapitulate many features of Min oscillation observed in vivo. The data unveiled a patterning mechanism largely governed by MinE regulation of MinD interaction with membrane. We proposed that the MinD to MinE ratio on the membrane acts as a toggle switch between MinE-stimulated recruitment and release of MinD from the membrane. In this review, we summarize cell-free data on the Min system and expand upon a molecular mechanism that provides a biochemical explanation as to how these two 'simple' proteins can form the remarkable spectrum of patterns.
Collapse
Affiliation(s)
- Kiyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States of America
| | | |
Collapse
|