1
|
Sharma R, Sharma A, Kakkar V, Saini K, Balakrishna JP, Nirankari VS. Autologous Serum Eye Drops Diluted with Cyclosporine A 0.05% and Sodium Hyaluronate 0.1%: An Experimental Comparative Study. Curr Eye Res 2025; 50:23-31. [PMID: 39099132 DOI: 10.1080/02713683.2024.2385442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/08/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE The purpose of this study was to assess in-vitro efficacy of a suffusion of autologous serum withcyclosporine 0.05% (CsA) and sodium hyaluronate 0.1% (SH). METHODS The expression of proinflammatory markers interleukin 6 (IL-6) and TNF-Alpha (TNF-α) in limbal epithelial cells was evaluated. Also, assessment of the stability of epithelial growth factor and transforming growth factor-beta (EGF, TGF-β) in the 50% combinations with autologous serum (AS) was done. The characteristics (pH, density, osmolality) of the two combinations were also evaluated. Additionally, cytotoxicity effect of given test compounds was evaluated on human limbal epithelial cells (LEpiC). RESULTS The percentage of cells expressing IL-6 subjected to AS + SH and AS + CsA were 6.23% and 5.69% respectively. There was no significant difference in percentage of cells expressing TNF-α between the formulations (5.87%, 5.83% respectively). The growth factors; EGF and TGF-β remained stable forone month duration (on 2 and 4 weeks) at 4 °C without significant difference between the time intervals tested. The results of MTT assay suggested that limbal epithelial cells treated with AS + CsA and AS + SH combinations showed minimal toxicity however it was not significant statistically (p ≤ 0.05). CONCLUSION Two test combinations (AS + CsA, AS + SH) showed stable growth factors (EGF, TGF-β) and good anti-inflammatory property against pro-inflammatory markers. Also, the 2 combinations were found safe on cultured limbal epithelial cells. The novel combination of autologous serum in CsA may provide added benefit in dry eye disease (DED) through their combined anti-inflammatory and epitheliotropic effects.
Collapse
Affiliation(s)
- Rajan Sharma
- Dr. Ashok Sharma's Cornea Centre, Chandigarh (U.T.), India
| | - Ashok Sharma
- Dr. Ashok Sharma's Cornea Centre, Chandigarh (U.T.), India
| | - Vandita Kakkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh (U.T.), India
| | - Komal Saini
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh (U.T.), India
| | | | | |
Collapse
|
2
|
Arts JA, Laberthonnière C, Lima Cunha D, Zhou H. Single-Cell RNA Sequencing: Opportunities and Challenges for Studies on Corneal Biology in Health and Disease. Cells 2023; 12:1808. [PMID: 37443842 PMCID: PMC10340756 DOI: 10.3390/cells12131808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The structure and major cell types of the multi-layer human cornea have been extensively studied. However, various cell states in specific cell types and key genes that define the cell states are not fully understood, hindering our comprehension of corneal homeostasis, related diseases, and therapeutic discovery. Single-cell RNA sequencing is a revolutionary and powerful tool for identifying cell states within tissues such as the cornea. This review provides an overview of current single-cell RNA sequencing studies on the human cornea, highlighting similarities and differences between them, and summarizing the key genes that define corneal cell states reported in these studies. In addition, this review discusses the opportunities and challenges of using single-cell RNA sequencing to study corneal biology in health and disease.
Collapse
Affiliation(s)
- Julian A. Arts
- Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands; (J.A.A.)
| | - Camille Laberthonnière
- Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands; (J.A.A.)
| | - Dulce Lima Cunha
- Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands; (J.A.A.)
| | - Huiqing Zhou
- Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands; (J.A.A.)
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
3
|
De Hoon I, Boukherroub R, De Smedt SC, Szunerits S, Sauvage F. In Vitro and Ex Vivo Models for Assessing Drug Permeation across the Cornea. Mol Pharm 2023. [PMID: 37314950 DOI: 10.1021/acs.molpharmaceut.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drug permeation across the cornea remains a major challenge due to its unique and complex anatomy and physiology. Static barriers such as the different layers of the cornea, as well as dynamic aspects such as the constant renewal of the tear film and the presence of the mucin layer together with efflux pumps, all present unique challenges for effective ophthalmic drug delivery. To overcome some of the current ophthalmic drug limitations, the identification and testing of novel drug formulations such as liposomes, nanoemulsions, and nanoparticles began to be considered and widely explored. In the early stages of corneal drug development reliable in vitro and ex vivo alternatives, are required, to be in line with the principles of the 3Rs (Replacement, Reduction, and Refinement), with such methods being in addition faster and more ethical alternatives to in vivo studies. The ocular field remains limited to a handful of predictive models for ophthalmic drug permeation. In vitro cell culture models are increasingly used when it comes to transcorneal permeation studies. Ex vivo models using excised animal tissue such as porcine eyes are the model of choice to study corneal permeation and promising advancements have been reported over the years. Interspecies characteristics must be considered in detail when using such models. This review updates the current knowledge about in vitro and ex vivo corneal permeability models and evaluates their advantages and limitations.
Collapse
Affiliation(s)
- Inès De Hoon
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Cadenas-Martin M, Arnalich-Montiel F, Miguel MPD. Derivation of Limbal Stem Cells from Human Adult Mesenchymal Stem Cells for the Treatment of Limbal Stem Cell Deficiency. Int J Mol Sci 2023; 24:ijms24032350. [PMID: 36768672 PMCID: PMC9916480 DOI: 10.3390/ijms24032350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Approximately 10 million individuals have blindness due to limbal stem cell (LSCs) deficiency, one of the most challenging problems in ophthalmology. To replenish the LSC pool, an autologous extraocular cell source is appropriate, thereby avoiding the risk of immune rejection, the need for immunosuppression and the risk of damaging the contralateral eye. In recent years, adipose-derived mesenchymal stem cells (ADSCs) have been a key element in ocular regenerative medicine. In this study, we developed a protocol for deriving human LSCs from ADSCs compatible with the standard carrier human amniotic membrane, helping provide a stem cell pool capable of maintaining proper corneal epithelial homeostasis. The best protocol included an ectodermal induction step by culturing ADSCs with media containing fetal bovine serum, transforming growth factor-β inhibitor SB-505124, Wnt inhibitor IWP-2 and FGF2 for 7 days, followed by an LSC induction step of culture in modified supplemental hormonal epithelial medium supplemented with pigment epithelium-derived factor and keratinocyte growth factor for 10 additional days. The optimal differentiation efficiency was achieved when cells were cultured in this manner over vitronectin coating, resulting in up to 50% double-positive αp63/BMI-1 cells. The results of this project will benefit patients with LSC deficiency, aiding the restoration of vision.
Collapse
Affiliation(s)
- Marta Cadenas-Martin
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain
| | - Francisco Arnalich-Montiel
- Ophthalmology Department, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain
| | - Maria P De Miguel
- Ophthalmology Department, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain
- Correspondence: ; Tel.: +34-912-071458
| |
Collapse
|
5
|
Induced Pluripotent Stem Cell-Derived Corneal Cells: Current Status and Application. Stem Cell Rev Rep 2022; 18:2817-2832. [PMID: 35913555 DOI: 10.1007/s12015-022-10435-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
Deficiency and dysfunction of corneal cells leads to the blindness observed in corneal diseases such as limbal stem cell deficiency (LSCD) and bullous keratopathy. Regenerative cell therapies and engineered corneal tissue are promising treatments for these diseases [1]. However, these treatments are not yet clinically feasible due to inadequate cell sources. The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka has provided a multitude of opportunities in research because iPSCs can be generated from somatic cells, thus providing an autologous and unlimited source for corneal cells. Compared to other stem cell sources such as mesenchymal and embryonic, iPSCs have advantages in differentiation potential and ethical concerns, respectively. Efforts have been made to use iPSCs to model corneal disorders and diseases, drug testing [2], and regenerative medicine [1]. Autologous treatments based on iPSCs can be exorbitantly expensive and time-consuming, but development of stem cell banks with human leukocyte antigen (HLA)- homozygous cell lines can provide cost- and time-efficient allogeneic alternatives. In this review, we discuss the early development of the cornea because protocols differentiating iPSCs toward corneal lineages rely heavily upon recapitulating this development. Differentiation of iPSCs toward corneal cell phenotypes have been analyzed with an emphasis on feeder-free, xeno-free, and well-defined protocols, which have clinical relevance. The application, challenges, and potential of iPSCs in corneal research are also discussed with a focus on hurdles that prevent clinical translation.
Collapse
|
6
|
Safety Testing of Cosmetic Products: Overview of Established Methods and New Approach Methodologies (NAMs). COSMETICS 2021. [DOI: 10.3390/cosmetics8020050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cosmetic products need to have a proven efficacy combined with a comprehensive toxicological assessment. Before the current Cosmetic regulation N°1223/2009, the 7th Amendment to the European Cosmetics Directive has banned animal testing for cosmetic products and for cosmetic ingredients in 2004 and 2009, respectively. An increasing number of alternatives to animal testing has been developed and validated for safety and efficacy testing of cosmetic products and cosmetic ingredients. For example, 2D cell culture models derived from human skin can be used to evaluate anti-inflammatory properties, or to predict skin sensitization potential; 3D human skin equivalent models are used to evaluate skin irritation potential; and excised human skin is used as the gold standard for the evaluation of dermal absorption. The aim of this manuscript is to give an overview of the main in vitro and ex vivo alternative models used in the safety testing of cosmetic products with a focus on regulatory requirements, genotoxicity potential, skin sensitization potential, skin and eye irritation, endocrine properties, and dermal absorption. Advantages and limitations of each model in safety testing of cosmetic products are discussed and novel technologies capable of addressing these limitations are presented.
Collapse
|
7
|
Oliveira CR, Paiva MRBD, Ribeiro MCS, Andrade GF, Carvalho JL, Gomes DA, Nehemy M, Fialho SL, Silva-Cunha A, Góes AMD. Human Stem Cell-Derived Retinal Pigment Epithelial Cells as a Model for Drug Screening and Pre-Clinical Assays Compared to ARPE-19 Cell Line. Int J Stem Cells 2021; 14:74-84. [PMID: 33377455 PMCID: PMC7904525 DOI: 10.15283/ijsc20094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
Background and Objectives Eye diseases have a high socioeconomic impact on society and may be one of the fields in which most stem cell-related scientific accomplishments have been achieved recently. In this context, human Pluripotent Stem Cell (hPSC) technology arises as an important tool to produce and study human Embryonic Stem cell derived-Retinal Pigmented Epithelial Cells (hES-RPE) for several applications, such as cell therapy, disease modeling, and drug screening. The use of this technology in pre-clinical phases attends to the overall population desire for animal-free product development. Here, we aimed to compare hES-RPE cells with ARPE-19, one of the most commonly used retinal pigmented epithelial immortalized cell lines. Methods and Results Functional, cellular and molecular data obtained suggest that hES-RPE cells more closely resembles native RPEs compared to ARPE-19. Furthermore, hES-RPE revealed an interesting robustness when cultured on human Bruch’s membrane explants and after exposure to Cyclosporine (CSA), Sirolimus (SRL), Tacrolimus (TAC), Leflunomide (LEF) and Teriflunomide (TER). On these conditions, hES-RPE cells were able to survive at higher drug concentrations, while ARPE-19 cell line was more susceptible to cell death. Conclusions Therefore, hES-RPEs seem to have the ability to incur a broader range of RPE functions than ARPE-19 and should be more thoroughly explored for drug screening.
Collapse
Affiliation(s)
- Carolina Reis Oliveira
- 1Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Gracielle Ferreira Andrade
- SENAN, Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Lott Carvalho
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Dawidson Assis Gomes
- 1Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Márcio Nehemy
- Department of Ophthalmology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sílvia Ligório Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | - Armando Silva-Cunha
- Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alfredo Miranda de Góes
- 1Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
In vitro reconstructed 3D corneal tissue models for ocular toxicology and ophthalmic drug development. In Vitro Cell Dev Biol Anim 2021; 57:207-237. [PMID: 33544359 DOI: 10.1007/s11626-020-00533-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Testing of all manufactured products and their ingredients for eye irritation is a regulatory requirement. In the last two decades, the development of alternatives to the in vivo Draize eye irritation test method has substantially advanced due to the improvements in primary cell isolation, cell culture techniques, and media, which have led to improved in vitro corneal tissue models and test methods. Most in vitro models for ocular toxicology attempt to reproduce the corneal epithelial tissue which consists of 4-5 layers of non-keratinized corneal epithelial cells that form tight junctions, thereby limiting the penetration of chemicals, xenobiotics, and pharmaceuticals. Also, significant efforts have been directed toward the development of more complex three-dimensional (3D) equivalents to study wound healing, drug permeation, and bioavailability. This review focuses on in vitro reconstructed 3D corneal tissue models and their utilization in ocular toxicology as well as their application to pharmacology and ophthalmic research. Current human 3D corneal epithelial cell culture models have replaced in vivo animal eye irritation tests for many applications, and substantial validation efforts are in progress to verify and approve alternative eye irritation tests for widespread use. The validation of drug absorption models and further development of models and test methods for many ophthalmic and ocular disease applications is required.
Collapse
|
9
|
Sun C, Wang H, Ma Q, Chen C, Yue J, Li B, Zhang X. Time-course single-cell RNA sequencing reveals transcriptional dynamics and heterogeneity of limbal stem cells derived from human pluripotent stem cells. Cell Biosci 2021; 11:24. [PMID: 33485387 PMCID: PMC7824938 DOI: 10.1186/s13578-021-00541-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human pluripotent stem cell-derived limbal stem cells (hPSC-derived LSCs) provide a promising cell source for corneal transplants and ocular surface reconstruction. Although recent efforts in the identification of LSC markers have increased our understanding of the biology of LSCs, much more remains to be characterized in the developmental origin, cell fate determination, and identity of human LSCs. The lack of knowledge hindered the establishment of efficient differentiation protocols for generating hPSC-derived LSCs and held back their clinical application. RESULTS Here, we performed a time-course single-cell RNA-seq to investigate transcriptional heterogeneity and expression changes of LSCs derived from human embryonic stem cells (hESCs). Based on current protocol, expression heterogeneity of reported LSC markers were identified in subpopulations of differentiated cells. EMT has been shown to occur during differentiation process, which could possibly result in generation of untargeted cells. Pseudotime trajectory analysis revealed transcriptional changes and signatures of commitment of hESCs-derived LSCs and their progeny-the transit amplifying cells. CONCLUSION Single-cell RNA-seq revealed time-course expression changes and significant transcriptional heterogeneity during hESC-derived LSC differentiation in vitro. Our results demonstrated candidate developmental trajectory and several new candidate markers for LSCs, which could facilitate elucidating the identity and developmental origin of human LSCs in vivo.
Collapse
Affiliation(s)
- Changbin Sun
- BGI-Shenzhen, Shenzhen, 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China
| | - Hailun Wang
- Department of Radiation Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China
| | - Jianhui Yue
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China.
| |
Collapse
|
10
|
da Mata Martins TM, da Silva Cunha P, Rodrigues MA, de Carvalho JL, de Souza JE, de Carvalho Oliveira JA, Gomes DA, de Goes AM. Epithelial basement membrane of human decellularized cornea as a suitable substrate for differentiation of embryonic stem cells into corneal epithelial-like cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111215. [PMID: 32806330 DOI: 10.1016/j.msec.2020.111215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
The ability to decellularize and recellularize the corneas deemed unsuitable for transplantation may increase the number of available grafts. Decellularized corneas (DCs) may provide a natural microenvironment for cell adhesion and differentiation. Despite this, no study to date has evaluated their efficacy as a substrate for the induction of stem cell differentiation into corneal cells. The present study aimed to compare the efficiency of NaCl and NaCl plus nucleases methods to decellularize whole human corneas, and to investigate the effect of epithelial basement membrane (EBM) of whole DCs on the ability of human embryonic stem cells (hESCs) to differentiate into corneal epithelial-like cells when cultured in animal serum-free differentiation medium. As laminin is the major component of EBM, we also investigated its effect on hESCs differentiation. The decellularization efficiency and integrity of the extracellular matrix (ECM) obtained were investigated by histology, electron microscopy, DNA quantification, immunofluorescence, and nuclear staining. The ability of hESCs to differentiate into corneal epithelial-like cells when seeded on the EBM of DCs or laminin-coated wells was evaluated by immunofluorescence and RT-qPCR analyses. NaCl treatment alone, without nucleases, was insufficient to remove cellular components, while NaCl plus nucleases treatment resulted in efficient decellularization and preservation of the ECM. Unlike cells induced to differentiate on laminin, hESCs differentiated on DCs expressed high levels of corneal epithelial-specific markers, keratin 3 and keratin 12. It was demonstrated for the first time that the decellularized matrices had a positive effect on the differentiation of hESCs towards corneal epithelial-like cells. Such a strategy supports the potential applications of human DCs and hESCs in corneal epithelium tissue engineering.
Collapse
Affiliation(s)
- Thaís Maria da Mata Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Pricila da Silva Cunha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Michele Angela Rodrigues
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Juliana Lott de Carvalho
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasilia, QS 07 - Lote 01, EPCT - Taguatinga, Brasília, Distrito Federal 71966-700, Brazil; Faculty of Medicine, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| | - Joyce Esposito de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Junnia Alvarenga de Carvalho Oliveira
- Department of Microbiology, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Alfredo Miranda de Goes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| |
Collapse
|
11
|
Lima Cunha D, Arno G, Corton M, Moosajee M. The Spectrum of PAX6 Mutations and Genotype-Phenotype Correlations in the Eye. Genes (Basel) 2019; 10:genes10121050. [PMID: 31861090 PMCID: PMC6947179 DOI: 10.3390/genes10121050] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor PAX6 is essential in ocular development in vertebrates, being considered the master regulator of the eye. During eye development, it is essential for the correct patterning and formation of the multi-layered optic cup and it is involved in the developing lens and corneal epithelium. In adulthood, it is mostly expressed in cornea, iris, and lens. PAX6 is a dosage-sensitive gene and it is highly regulated by several elements located upstream, downstream, and within the gene. There are more than 500 different mutations described to affect PAX6 and its regulatory regions, the majority of which lead to PAX6 haploinsufficiency, causing several ocular and systemic abnormalities. Aniridia is an autosomal dominant disorder that is marked by the complete or partial absence of the iris, foveal hypoplasia, and nystagmus, and is caused by heterozygous PAX6 mutations. Other ocular abnormalities have also been associated with PAX6 changes, and genotype-phenotype correlations are emerging. This review will cover recent advancements in PAX6 regulation, particularly the role of several enhancers that are known to regulate PAX6 during eye development and disease. We will also present an updated overview of the mutation spectrum, where an increasing number of mutations in the non-coding regions have been reported. Novel genotype-phenotype correlations will also be discussed.
Collapse
Affiliation(s)
| | - Gavin Arno
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital—Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mariya Moosajee
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Correspondence:
| |
Collapse
|
12
|
Toxicity of therapeutic contact lenses based on bacterial cellulose with coatings to provide transparency. Cont Lens Anterior Eye 2019; 42:512-519. [DOI: 10.1016/j.clae.2019.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 12/30/2022]
|
13
|
Abstract
Human-induced pluripotent stem cells (hiPSCs) provide a personalized approach to study conditions and diseases including those of the eye that lack appropriate animal models to facilitate the development of novel therapeutics. Corneal disease is one of the most common causes of blindness. Hence, significant efforts are made to develop novel therapeutic approaches including stem cell-derived strategies to replace the diseased or damaged corneal tissues, thus restoring the vision. The use of adult limbal stem cells in the management of corneal conditions has been clinically successful. However, its limited availability and phenotypic plasticity necessitate the need for alternative stem cell sources to manage corneal conditions. Mesenchymal and embryonic stem cell-based approaches are being explored; nevertheless, their limited differentiation potential and ethical concerns have posed a significant hurdle in its clinical use. hiPSCs have emerged to fill these technical and ethical gaps to render clinical utility. In this review, we discuss and summarize protocols that have been devised so far to direct differentiation of human pluripotent stem cells (hPSCs) to different corneal cell phenotypes. With the summarization, our review intends to facilitate an understanding which would allow developing efficient and robust protocols to obtain specific corneal cell phenotype from hPSCs for corneal disease modeling and for the clinics to treat corneal diseases and injury.
Collapse
Affiliation(s)
| | - Rohit Shetty
- Cornea and Refractive Surgery, Narayana Nethralaya, Bengaluru, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
14
|
Hongisto H, Vattulainen M, Ilmarinen T, Mikhailova A, Skottman H. Efficient and Scalable Directed Differentiation of Clinically Compatible Corneal Limbal Epithelial Stem Cells from Human Pluripotent Stem Cells. J Vis Exp 2018. [PMID: 30417867 DOI: 10.3791/58279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corneal limbal epithelial stem cells (LESCs) are responsible for continuously renewing the corneal epithelium, and thus maintaining corneal homeostasis and visual clarity. Human pluripotent stem cell (hPSC)-derived LESCs provide a promising cell source for corneal cell replacement therapy. Undefined, xenogeneic culture and differentiation conditions cause variation in research results and impede the clinical translation of hPSC-derived therapeutics. This protocol provides a reproducible and efficient method for hPSC-LESC differentiation under xeno- and feeder cell-free conditions. Firstly, monolayer culture of undifferentiated hPSC on recombinant laminin-521 (LN-521) and defined hPSC medium serves as a foundation for robust production of high-quality starting material for differentiations. Secondly, a rapid and simple hPSC-LESC differentiation method yields LESC populations in only 24 days. This method includes a four-day surface ectodermal induction in suspension with small molecules, followed by adherent culture phase on LN-521/collagen IV combination matrix in defined corneal epithelial differentiation medium. Cryostoring and extended differentiation further purifies the cell population and enables banking of the cells in large quantities for cell therapy products. The resulting high-quality hPSC-LESCs provide a potential novel treatment strategy for corneal surface reconstruction to treat limbal stem cell deficiency (LSCD).
Collapse
Affiliation(s)
- Heidi Hongisto
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere;
| | - Meri Vattulainen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere
| | - Tanja Ilmarinen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere
| | - Alexandra Mikhailova
- Department of Ophthalmology, SILK, Faculty of Medicine and Life Sciences, University of Tampere
| | - Heli Skottman
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere
| |
Collapse
|
15
|
Roux LN, Petit I, Domart R, Concordet JP, Qu J, Zhou H, Joliot A, Ferrigno O, Aberdam D. Modeling of Aniridia-Related Keratopathy by CRISPR/Cas9 Genome Editing of Human Limbal Epithelial Cells and Rescue by Recombinant PAX6 Protein. Stem Cells 2018; 36:1421-1429. [PMID: 29808941 DOI: 10.1002/stem.2858] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022]
Abstract
Heterozygous PAX6 gene mutations leading to haploinsufficiency are the main cause of congenital aniridia, a rare and progressive panocular disease characterized by reduced visual acuity. Up to 90% of patients suffer from aniridia-related keratopathy (ARK), caused by a combination of factors including limbal epithelial stem cell (LSC) deficiency, impaired healing response and abnormal differentiation of the corneal epithelium. It usually begins in the first decade of life, resulting in recurrent corneal erosions, sub-epithelial fibrosis, and corneal opacification. Unfortunately, there are currently no efficient treatments available for these patients and no in vitro model for this pathology. We used CRISPR/Cas9 technology to introduce into the PAX6 gene of LSCs a heterozygous nonsense mutation found in ARK patients. Nine clones carrying a p.E109X mutation on one allele were obtained with no off-target mutations. Compared with the parental LSCs, heterozygous mutant LSCs displayed reduced expression of PAX6 and marked slow-down of cell proliferation, migration and detachment. Moreover, addition to the culture medium of recombinant PAX6 protein fused to a cell penetrating peptide was able to activate the endogenous PAX6 gene and to rescue phenotypic defects of mutant LSCs, suggesting that administration of such recombinant PAX6 protein could be a promising therapeutic approach for aniridia-related keratopathy. More generally, our results demonstrate that introduction of disease mutations into LSCs by CRISPR/Cas9 genome editing allows the creation of relevant cellular models of ocular disease that should greatly facilitate screening of novel therapeutic approaches. Stem Cells 2018;36:1421-1429.
Collapse
Affiliation(s)
- Lauriane N Roux
- INSERM U976, Hôpital Saint-Louis, Paris, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Isabelle Petit
- INSERM U976, Hôpital Saint-Louis, Paris, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Romain Domart
- INSERM U1154, CNRS UMR 7196, Museum National d'Histoire Naturelle, Paris, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR 7196, Museum National d'Histoire Naturelle, Paris, France
| | - Jieqiong Qu
- Department of Human Developmental biology, Radboud University, Nijmegen, The Netherlands.,Faculty of Sciences, Department of Human Genetics, Radboud University Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Developmental biology, Radboud University, Nijmegen, The Netherlands.,Faculty of Sciences, Department of Human Genetics, Radboud University Nijmegen, The Netherlands
| | - Alain Joliot
- Collège de France CNRS/UMR 7241 - INSERM U1050, Paris, France
| | | | - Daniel Aberdam
- INSERM U976, Hôpital Saint-Louis, Paris, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|