1
|
Tert-butylhydroquinone protects the retina from oxidative stress in STZ-induced diabetic rats via the PI3K/Akt/eNOS pathway. Eur J Pharmacol 2022; 935:175297. [PMID: 36174669 DOI: 10.1016/j.ejphar.2022.175297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023]
Abstract
This study aims to investigate whether tert-butylhydroquinone protects the retina from oxidative stress in STZ-induced experimental diabetic rats through the activation of phosphinositide 3-kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) pathway.In vitro, NO, reactive oxygen species(ROS), eNOS, p-eNOS Ser1179, Akt, p-Akt Ser473 and L-NAME protein expression was analyzed within rMC-1 cells cultivated within normal control(NC), high glucose (HG) and HG-containing tert-butyl hydroquinone (tBHQ) (5 μM) medium. We confirmed tBHQ's protection through administering inhibitors of PI3K and Akt. In vivo, tBHQ was administered at a ratio of 1% (w/w) to diabetic rats was induced through an STZ injection (65 mg/kg) for a 3-month period, and the retinal expression of eNOS, p-eNOS Ser1179, Akt, and p-Akt Ser473 proteins was measured using Western blotting (WB) assay. We also utilized the TUNEL kit for detecting retinal cell apoptosis. The changes of retinal morphology and visual function were measured by performing hematoxylin-eosin staining (HE staining) and electroretinograms. In vitro, ROS levels were increased in the high glucose group, NO levels were decreased, and the relative expression of Akt/p-Akt Ser473 and eNOs/p-eNOS Ser1179 was reduced. tBHQ abolished these changes, and these effects were suppressed by specific inhibitors. In vivo, tBHQ upregulated retinal protein expression in STZ-induced diabetic rats, reduced retinal apoptotic cell numbers, and partially prevented abnormalities in retinal function and structure caused by diabetes. tBHQ alleviates oxidative stress during diabetic retinopathy by upregulating the PI3K/Akt/eNOS pathway and partially restoring the structure and function of the retina. It may play a role in delaying vision loss caused by diabetic retinopathy.
Collapse
|
2
|
Liu QW, Yang ZH, Jiang J, Jiang R. Icariin modulates eNOS activity via effect on post-translational protein-protein interactions to improve erectile function of spontaneously hypertensive rats. Andrology 2021; 9:342-351. [PMID: 33507631 DOI: 10.1111/andr.12875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Type 5 phosphodiesterase inhibitor (PDE5I) has become the first-line treatment for erectile dysfunction (ED). However, its effective rate for hypertension ED is only 60%-70%. How to improve the efficacy of ED treatment is the focus of current research. OBJECTIVE To explore whether icariin can improve the erectile function of spontaneously hypertensive rats (SHR) by affecting post-translational protein-protein interactions to regulate endothelial nitric oxide synthetase (eNOS) activity. METHOD Twelve-week-old healthy male SHR rats and Wistar-Kyoto rats (WKY) were randomly divided into four groups: SHR control group, SHR + icariin (10 mg/kg·d gavage) treatment group, WKY control group, and WKY + icariin (10 mg/kg·d gavage) treatment group (n = 5). After 4 weeks, the maximum penile intracavernous pressure/mean arterial pressure (ICPmax/MAP), the expression of heat-shock protein 90 (Hsp90), caveolin-1, calmodulin, p-eNOS, and eNOS in penile cavernous tissue and the content of nitric oxide (NO) and cGMP were measured. The interaction between eNOS and Hsp90, caveolin-1, and calmodulin were detected by immunoprecipitation. RESULT The ICPmax/MAP in the SHR + icariin treatment group (0.08 ± 0.01, 0.23 ± 0.07, 0.40 ± 0.05) was significantly higher than the SHR group (0.03 ± 0.01, 0.13 ± 0.03, 0.21 ± 0.02) under 3V and 5V electrical stimulations (P < .05). Compared with the SHR group, the expression of HSP90, calmodulin, P-eNOS, eNOS, and P-eNOS/eNOS in the penile cavernous tissue of rats in the WKY group and the SHR + icariin treatment group were significantly increased (P < .05), and the expression of caveolin-1 was significantly decreased (P < .05). The NO content (2.16 ± 0.22 μmol/g) and cGMP concentration (3.69 ± 0.12 pmol/mg) in the SHR + icariin treatment group were significantly higher than those in the SHR group (1.01 ± 0.14 μmol/g, 2.31 ± 0.22 pmol/mg) (P < .05). Compared with the SHR group, the interaction between eNOS and HSP90 in the cavernosa of the rats in the SHR + icariin treatment group was significantly increased (P < .05), the interaction between eNOS and caveolin-1 was significantly decreased (P < .01), and the interaction between eNOS and calmodulin did not significantly change. DISCUSSION AND CONCLUSION Up-regulating the expression of HSP90 and calmodulin and inhibiting caveolin-1 in SHR corpus cavernosum, promoting the interaction between eNOS and HSP90, inhibiting the interaction between eNOS and caveolin-1, increasing p-eNOS/eNOS, may be the mechanism of icariin that improves SHR erectile function.
Collapse
Affiliation(s)
- Qin-Wen Liu
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhi-Hui Yang
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Jiang
- Department of Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Jiang
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nephropathy Clinical Medical Research Center of Sichuan Province, Luzhou, China
| |
Collapse
|
3
|
Uda M, Yoshihara T, Ichinoseki-Sekine N, Baba T, Yoshioka T. Potential roles of neuronal nitric oxide synthase and the PTEN-induced kinase 1 (PINK1)/Parkin pathway for mitochondrial protein degradation in disuse-induced soleus muscle atrophy in adult rats. PLoS One 2020; 15:e0243660. [PMID: 33296434 PMCID: PMC7725317 DOI: 10.1371/journal.pone.0243660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Excessive nitric oxide (NO) production and mitochondrial dysfunction can activate protein degradation in disuse-induced skeletal muscle atrophy. However, the increase in NO production in atrophied muscles remains controversial. In addition, although several studies have investigated the PTEN-induced kinase 1 (PINK1)/Parkin pathway, a mitophagy pathway, in atrophied muscle, the involvement of this pathway in soleus muscle atrophy is unclear. In this study, we investigated the involvement of neuronal nitric oxide synthase (nNOS) and the PINK1/Parkin pathway in soleus muscle atrophy induced by 14 days of hindlimb unloading (HU) in adult rats. HU lowered the weight of the soleus muscles. nNOS expression showed an increase in atrophied soleus muscles. Although HU increased malondialdehyde as oxidative modification of the protein, it decreased 6-nitrotryptophan, a marker of protein nitration. Additionally, the nitrosocysteine content and S-nitrosylated Parkin were not altered, suggesting the absence of excessive nitrosative stress after HU. The expression of PINK1 and Parkin was also unchanged, whereas the expression of heat shock protein 70 (HSP70), which is required for Parkin activity, was reduced in atrophied soleus muscles. Moreover, we observed accumulation and reduced ubiquitination of high molecular weight mitofusin 2, which is a target of Parkin, in atrophied soleus muscles. These results indicate that excessive NO is not produced in atrophied soleus muscles despite nNOS accumulation, suggesting that excessive NO dose not mediate in soleus muscle atrophy at least after 14 days of HU. Furthermore, the PINK1/Parkin pathway may not play a role in mitophagy at this time point. In contrast, the activity of Parkin may be downregulated because of reduced HSP70 expression, which may contribute to attenuated degradation of target proteins in the atrophied soleus muscles after 14 days of HU. The present study provides new insights into the roles of nNOS and a protein degradation pathway in soleus muscle atrophy.
Collapse
Affiliation(s)
- Munehiro Uda
- School of Nursing, Hirosaki Gakuin University, Hirosaki, Aomori, Japan
- * E-mail: ,
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Noriko Ichinoseki-Sekine
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
- Faculty of Liberal Arts, The Open University of Japan, Chiba, Japan
| | - Takeshi Baba
- School of Medicine, Juntendo University, Inzai, Chiba, Japan
| | | |
Collapse
|
4
|
Zheng H, Weaver JM, Feng C. Heat shock protein 90α increases superoxide generation from neuronal nitric oxide synthases. J Inorg Biochem 2020; 214:111298. [PMID: 33181440 DOI: 10.1016/j.jinorgbio.2020.111298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/18/2020] [Accepted: 10/24/2020] [Indexed: 11/15/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) generates superoxide, particularly at sub-optimal l-arginine (l-Arg) substrate concentrations. Heat shock protein 90 (Hsp90) was reported to inhibit superoxide generation from nNOS protein. However, commercially available Hsp90 product from bovine brain tissues with unspecified Hsp90α and Hsp90β contents and an undefined Hsp90 protein oligomeric state was utilized. These two Hsp90s can have opposite effect on superoxide production by NOS. Importantly, emerging evidence indicates that nNOS splice variants are involved in different biological functions by functioning distinctly in redox signaling. In the present work, purified recombinant human Hsp90α, in its native dimeric state, was used in electron paramagnetic resonance (EPR) spin trapping experiments to study the effects of Hsp90α on superoxide generation from nNOS splice variants nNOSμ and nNOSα. Human Hsp90α was found to significantly increase superoxide generation from nNOSμ and nNOSα proteins under l-Arg-depleted conditions and Hsp90α influenced superoxide production by nNOSμ and nNOSα at varying degrees. Imidazole suppressed the spin adduct signal, indicating that superoxide was produced at the heme site of nNOS in the presence of Hsp90α, whereas l-Arg repletion diminished superoxide production by the nNOS-Hsp90α. Moreover, NADPH consumption rate values exhibited a similar trend/difference as a function of Hsp90α and l-Arg. Together, these EPR spin trapping and NADPH oxidation kinetics results demonstrated noticeable Hsp90α-induced increases in superoxide production by nNOS and a distinguishable effect of Hsp90α on nNOSμ and nNOSα proteins.
Collapse
Affiliation(s)
- Huayu Zheng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - John M Weaver
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
5
|
Hu L, Zhao R, Liu Q, Li Q. New Insights Into Heat Shock Protein 90 in the Pathogenesis of Pulmonary Arterial Hypertension. Front Physiol 2020; 11:1081. [PMID: 33041844 PMCID: PMC7522509 DOI: 10.3389/fphys.2020.01081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Liqing Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Rui Zhao
- The First Clinical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- *Correspondence: Qianbin Li,
| |
Collapse
|
6
|
Zheng H, Li J, Feng C. Heat shock protein 90 enhances the electron transfer between the FMN and heme cofactors in neuronal nitric oxide synthase. FEBS Lett 2020; 594:2904-2913. [PMID: 32573772 DOI: 10.1002/1873-3468.13870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 11/05/2022]
Abstract
Heat shock protein 90 (Hsp90) is a key regulator of nitric oxide synthase (NOS) in vivo. Despite its functional importance, little is known about the underlying molecular mechanism. Here, purified dimeric human Hsp90α was used to investigate whether (and if so, how) Hsp90 affects the FMN-heme interdomain electron transfer (IET) step in NOS. Hsp90α increases the IET rate for rat neuronal NOS (nNOS) in a dose-saturable manner, and a single charge-neutralization mutation at conserved Hsp90 K585 abolishes the effect. The kinetic results with added Ficoll 70, a crowder, further indicate that Hsp90 enhances the FMN-heme IET through specific association with nNOS. The Hsp90-nNOS docking models provide hints on the putative role of Hsp90 in constraining the available conformational space for the FMN domain motions.
Collapse
Affiliation(s)
- Huayu Zheng
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - Jinghui Li
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
7
|
Wu Q, Finley SD. Mathematical Model Predicts Effective Strategies to Inhibit VEGF-eNOS Signaling. J Clin Med 2020; 9:jcm9051255. [PMID: 32357492 PMCID: PMC7287924 DOI: 10.3390/jcm9051255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
The endothelial nitric oxide synthase (eNOS) signaling pathway in endothelial cells has multiple physiological significances. It produces nitric oxide (NO), an important vasodilator, and enables a long-term proliferative response, contributing to angiogenesis. This signaling pathway is mediated by vascular endothelial growth factor (VEGF), a pro-angiogenic species that is often targeted to inhibit tumor angiogenesis. However, inhibiting VEGF-mediated eNOS signaling can lead to complications such as hypertension. Therefore, it is important to understand the dynamics of eNOS signaling in the context of angiogenesis inhibitors. Thrombospondin-1 (TSP1) is an important angiogenic inhibitor that, through interaction with its receptor CD47, has been shown to redundantly inhibit eNOS signaling. However, the exact mechanisms of TSP1's inhibitory effects on this pathway remain unclear. To address this knowledge gap, we established a molecular-detailed mechanistic model to describe VEGF-mediated eNOS signaling, and we used the model to identify the potential intracellular targets of TSP1. In addition, we applied the predictive model to investigate the effects of several approaches to selectively target eNOS signaling in cells experiencing high VEGF levels present in the tumor microenvironment. This work generates insights for pharmacologic targets and therapeutic strategies to inhibit tumor angiogenesis signaling while avoiding potential side effects in normal vasoregulation.
Collapse
Affiliation(s)
- Qianhui Wu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA;
| | - Stacey D. Finley
- Department of Biomedical Engineering, Mork Family Department of Chemical Engineering and Materials Science, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: ; Tel.: +1-213-740-8788
| |
Collapse
|
8
|
Thuringer D, Garrido C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection? FASEB J 2019; 33:11629-11639. [PMID: 31348679 DOI: 10.1096/fj.201900895r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain microvascular endothelial cells (BMECs) interact with astrocytes and pericytes to form the blood-brain barrier (BBB). Their compromised function alters the BBB integrity, which is associated with early events in the pathogenesis of cancer, neurodegenerative diseases, and epilepsy. Interestingly, these conditions also induce the expression of heat shock proteins (HSPs). Here we review the contribution of major HSP families to BMEC and BBB function. Although investigators mainly report protective effects of HSPs in brain, contrasted results were obtained in BMEC, which depend both on the HSP and on its location, intra- or extracellular. The therapeutic potential of HSPs must be scrupulously analyzed before targeting them in patients to reduce the progression of brain lesions and improve neurologic outcomes in the long term.-Thuringer, D., Garrido, C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection?
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Carmen Garrido
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
9
|
Costa D, Benincasa G, Lucchese R, Infante T, Nicoletti GF, Napoli C. Effect of nitric oxide reduction on arterial thrombosis. SCAND CARDIOVASC J 2019; 53:1-8. [DOI: 10.1080/14017431.2019.1581943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dario Costa
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuditta Benincasa
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberta Lucchese
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Claudio Napoli
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- IRCCS SDN, Naples, Italy
| |
Collapse
|
10
|
The Roles of Primary Cilia in Cardiovascular Diseases. Cells 2018; 7:cells7120233. [PMID: 30486394 PMCID: PMC6315816 DOI: 10.3390/cells7120233] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Primary cilia are microtubule-based organelles found in most mammalian cell types. Cilia act as sensory organelles that transmit extracellular clues into intracellular signals for molecular and cellular responses. Biochemical and molecular defects in primary cilia are associated with a wide range of diseases, termed ciliopathies, with phenotypes ranging from polycystic kidney disease, liver disorders, mental retardation, and obesity to cardiovascular diseases. Primary cilia in vascular endothelia protrude into the lumen of blood vessels and function as molecular switches for calcium (Ca2+) and nitric oxide (NO) signaling. As mechanosensory organelles, endothelial cilia are involved in blood flow sensing. Dysfunction in endothelial cilia contributes to aberrant fluid-sensing and thus results in vascular disorders, including hypertension, aneurysm, and atherosclerosis. This review focuses on the most recent findings on the roles of endothelial primary cilia within vascular biology and alludes to the possibility of primary cilium as a therapeutic target for cardiovascular disorders.
Collapse
|
11
|
Saternos HC, AbouAlaiwi WA. Signaling interplay between primary cilia and nitric oxide: A mini review. Nitric Oxide 2018; 80:108-112. [PMID: 30099097 DOI: 10.1016/j.niox.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/12/2023]
Abstract
New discoveries into the functional role of primary cilia are on the rise. In little more than 20 years, research has shown the once vestigial organelle is a signaling powerhouse involved in a vast number of essential cellular processes. In the same decade that interest in primary cilia was burgeoning, nitric oxide won molecule of the year and a Nobel prize for its role as a near ubiquitous signaling molecule. Although primary cilia and nitric oxide are both involved in signaling, a direct relationship has not been investigated; however, after a quick review of the literature, parallels between their functions can be drawn. This review aims to suggest a possible interplay between primary cilia and nitric oxide signaling especially in the areas of vascular tissue homeostasis and cellular proliferation.
Collapse
Affiliation(s)
- Hannah C Saternos
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, USA
| | - Wissam A AbouAlaiwi
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, USA.
| |
Collapse
|