1
|
Antunes CA, Goodall ECA, Henderson IR, Wild D, Mehltretter A, Ott P, Hölzl M, Ott L, Seidel G, Burkovski A. Genome-wide high-throughput transposon mutagenesis unveils key factors for acidic pH adaptation of Corynebacterium diphtheriae. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001554. [PMID: 40272866 PMCID: PMC12022263 DOI: 10.1099/mic.0.001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
Corynebacterium diphtheriae, a notable pathogen responsible for the life-threatening disease diphtheria, encounters harsh intracellular environments within the host, particularly within macrophages where acidic conditions prevail. To elucidate the genetic and molecular mechanisms underlying its acid stress response, we employed a Transposon Directed Insertion-site Sequencing approach. This comprehensive study identified crucial genes and pathways facilitating C. diphtheriae's survival at low pH. In subsequent experiments, the Ktr potassium transport system was identified as a putative key factor for maintaining pH homeostasis and growth under acidic stress. A ktrBA deletion strain exhibited significantly reduced growth at pH 5, which could be restored by ktrBA expression in trans. The deletion strain showed unchanged uptake and survival in macrophages compared to the wild-type, indicating that the Ktr system is not crucial for the survival of C. diphtheriae in phagocytes. These findings advance our understanding of C. diphtheriae's pathophysiology, further delineating the intricate survival strategies of C. diphtheriae in hostile environments.
Collapse
Affiliation(s)
- Camila Azevedo Antunes
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Emily C. A. Goodall
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Ian R. Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David Wild
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Alexander Mehltretter
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Philipp Ott
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Markus Hölzl
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Lisa Ott
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Gerald Seidel
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| |
Collapse
|
2
|
Markova J, Langova D, Babak V, Kostovova I. Ovine and Caprine Strains of Corynebacterium pseudotuberculosis on Czech Farms-A Comparative Study. Microorganisms 2024; 12:875. [PMID: 38792705 PMCID: PMC11123211 DOI: 10.3390/microorganisms12050875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Caseous lymphadenitis (CLA) is a worldwide disease of small ruminants caused by Corynebacterium pseudotuberculosis, a facultative intracellular pathogen that is able to survive and multiply in certain white blood cells of the host. In this study, 33 strains of C. pseudotuberculosis were isolated from sheep and goats suffering from CLA on nine farms in the Czech Republic. All these strains were tested for their antibiotic susceptibility, ability to form a biofilm and resistance to the effects of commonly used disinfectant agents. To better understand the virulence of C. pseudotuberculosis, the genomes of strains were sequenced and comparative genomic analysis was performed with another 123 genomes of the same species, including ovis and equi biovars, downloaded from the NCBI. The genetic determinants for the virulence factors responsible for adherence and virulence factors specialized for iron uptake and exotoxin phospholipase D were revealed in every analyzed genome. Carbohydrate-Active Enzymes were compared, revealing the presence of genetic determinants encoding exo-α-sialidase (GH33) and the CP40 protein in most of the analyzed genomes. Thirty-three Czech strains of C. pseudotuberculosis were identified as the biovar ovis on the basis of comparative genome analysis. All the compared genomes of the biovar ovis strains were highly similar regardless of their country of origin or host, reflecting their clonal behavior.
Collapse
Affiliation(s)
- Jirina Markova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 62100 Brno, Czech Republic; (D.L.); (V.B.); (I.K.)
| | | | | | | |
Collapse
|
3
|
Möller J, Bodenschatz M, Sangal V, Hofmann J, Burkovski A. Multi-Omics of Corynebacterium Pseudotuberculosis 12CS0282 and an In Silico Reverse Vaccinology Approach Reveal Novel Vaccine and Drug Targets. Proteomes 2022; 10:proteomes10040039. [PMID: 36548458 PMCID: PMC9784263 DOI: 10.3390/proteomes10040039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Corynebacterium pseudotuberculosis is an important animal pathogen, which is also able to infect humans. An optimal treatment of infections with this pathogen is not available today and consequently, more research is necessary to understand the infection process. Here, we present a combined -omics and bioinformatics approach to characterize C. pseudotuberculosis 12CS0282. The genome sequence of strain 12CS0282 was determined, analyzed in comparison with the available 130 C. pseudotuberculosis sequences and used as a basis for proteome analyses. In a reverse vaccinology approach, putative vaccine and drug targets for 12CS0208 were identified. Mass spectrometry analyses revealed the presence of multiple virulence factors even without host contact. In macrophage interaction studies, C. pseudotuberculosis 12CS0282 was highly resistant against human phagocytes and even multiplied within human THP-1 cells. Taken together, the data indicate a high pathogenic potential of the strain.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Mona Bodenschatz
- Microbiology Division, Department of Biology, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jörg Hofmann
- Biochemistry Division, Department of Biology, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-28086
| |
Collapse
|
4
|
Dover LG, Thompson AR, Sutcliffe IC, Sangal V. Phylogenomic Reappraisal of Fatty Acid Biosynthesis, Mycolic Acid Biosynthesis and Clinical Relevance Among Members of the Genus Corynebacterium. Front Microbiol 2021; 12:802532. [PMID: 35003033 PMCID: PMC8733736 DOI: 10.3389/fmicb.2021.802532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
The genus Corynebacterium encompasses many species of biotechnological, medical or veterinary significance. An important characteristic of this genus is the presence of mycolic acids in their cell envelopes, which form the basis of a protective outer membrane (mycomembrane). Mycolic acids in the cell envelope of Mycobacterium tuberculosis have been associated with virulence. In this study, we have analysed the genomes of 140 corynebacterial strains, including representatives of 126 different species. More than 50% of these strains were isolated from clinical material from humans or animals, highlighting the true scale of pathogenic potential within the genus. Phylogenomically, these species are very diverse and have been organised into 19 groups and 30 singleton strains. We find that a substantial number of corynebacteria lack FAS-I, i.e., have no capability for de novo fatty acid biosynthesis and must obtain fatty acids from their habitat; this appears to explain the well-known lipophilic phenotype of some species. In most species, key genes associated with the condensation and maturation of mycolic acids are present, consistent with the reports of mycolic acids in their species descriptions. Conversely, species reported to lack mycolic acids lacked these key genes. Interestingly, Corynebacterium ciconiae, which is reported to lack mycolic acids, appears to possess all genes required for mycolic acid biosynthesis. We suggest that although a mycolic acid-based mycomembrane is widely considered to be the target for interventions by the immune system and chemotherapeutics, the structure is not essential in corynebacteria and is not a prerequisite for pathogenicity or colonisation of animal hosts.
Collapse
|
5
|
Characterization of the Uncommon Lipid Families in Corynebacterium glutamicum by Mass Spectrometry. Methods Mol Biol 2021. [PMID: 33954950 DOI: 10.1007/978-1-0716-1410-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
This book chapter provides readers the step-by-step instruction for cell growth, lipid isolation, and lipid analysis to obtain the lipidome of Corynebacterium glutamicum (C. glutamicum) in the genus Corynebacterium, a biotechnologically important bacterium. We separate the lipid families by preparative HPLC with an analytical C-8 column, followed by linear ion-trap multiple stage mass spectrometry (LIT MSn) with high-resolution mass measurement to define the structures of cytidine diphosphate diacylglycerol (CDP-DAG), glucuronosyl diacylglycerol (GlcA-DAG), α-D-mannopyranosyl-(1 → 4)-α-D-glucuronyl diacylglycerol (Man-GlcA-DAG), 1-mycolyl-2-acyl-phosphatidylglycerol (MA-PG), and acyl trehalose monomycolate (acyl-TMM) whose structures have been previously mis-assigned or not defined by mass spectrometric means. We also define the structures of mycolic acid, phosphatidylglycerol, phosphatidylinositol, cardiolipin, trehalose dimycolate lipids in the cell wall. The similarity of the lipidome to that in the Mycobacterium genera is consistent with the notion that Corynebacterium and Mycobacterium are gram-positive bacteria belonging to the suborder Corynebacterineae.
Collapse
|
6
|
Möller J, Nosratabadi F, Musella L, Hofmann J, Burkovski A. Corynebacterium diphtheriae Proteome Adaptation to Cell Culture Medium and Serum. Proteomes 2021; 9:proteomes9010014. [PMID: 33805816 PMCID: PMC8005964 DOI: 10.3390/proteomes9010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/03/2022] Open
Abstract
Host-pathogen interactions are often studied in vitro using primary or immortal cell lines. This set-up avoids ethical problems of animal testing and has the additional advantage of lower costs. However, the influence of cell culture media on bacterial growth and metabolism is not considered or investigated in most cases. To address this question growth and proteome adaptation of Corynebacterium diphtheriae strain ISS3319 were investigated in this study. Bacteria were cultured in standard growth medium, cell culture medium, and fetal calf serum. Mass spectrometric analyses and label-free protein quantification hint at an increased bacterial pathogenicity when grown in cell culture medium as well as an influence of the growth medium on the cell envelope.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (F.N.); (L.M.); (A.B.)
- Correspondence: ; Tel.: +49-9131-85-28802
| | - Fatemeh Nosratabadi
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (F.N.); (L.M.); (A.B.)
| | - Luca Musella
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (F.N.); (L.M.); (A.B.)
| | - Jörg Hofmann
- Biochemistry Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (F.N.); (L.M.); (A.B.)
| |
Collapse
|
7
|
Rebouças MF, Loureiro D, Barral TD, Seyffert N, Raynal JT, Sousa TJ, Figueiredo HCP, Azevedo V, Meyer R, Portela RW. Cell wall glycolipids from Corynebacterium pseudotuberculosis strains with different virulences differ in terms of composition and immune recognition. Braz J Microbiol 2020; 51:2101-2110. [PMID: 32712830 PMCID: PMC7688822 DOI: 10.1007/s42770-020-00343-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/20/2020] [Indexed: 11/26/2022] Open
Abstract
Caseous lymphadenitis (CLA) is an infectious disease caused by Corynebacterium pseudotuberculosis in small ruminants and is characterized by the development of granulomas in the lymph nodes, spleen, liver, and lungs. Although little is known about the host-pathogen relationship of this bacterium, it was previously reported that the pathogen's lipids are important for its taxonomic classification and survival inside macrophages. However, there are no studies regarding the composition of these molecules. In this study, cell wall glycolipids from two C. pseudotuberculosis strains presenting different virulence profiles were purified and its composition was characterized. A difference was observed between the electrophoretic and chromatogram profiles for cell wall components from the two strains, mainly among molecules with low molecular weights. IgM from sheep with acute CLA recognized antigens with an estimated molecular weight of 11 kDa of the low-pathogenicity strain, while low-molecular weight antigens from the high-pathogenicity strain presented a lower recognition by these antibodies. Mass spectrometry analysis showed that the cell wall of the high-pathogenicity strain contained glycolipids with high amounts of unsaturated fatty acids and glycerophosphoinositols, which may contribute to the capacity of this strain to cause severe disease. In conclusion, it is indicated that cell wall non-protein antigens can play a key role in C. pseudotuberculosis virulence.
Collapse
Affiliation(s)
- Miriam Flores Rebouças
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Dan Loureiro
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Thiago Doria Barral
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Nubia Seyffert
- Post-graduation Program in Microbiology, Institute of Biology, Federal University of Bahia, Salvador, Bahia, 40170-115, Brazil
| | - José Tadeu Raynal
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Thiago Jesus Sousa
- Laboratory of Cellular and Molecular Genetics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Henrique Cesar Pereira Figueiredo
- National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Roberto Meyer
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Ricardo Wagner Portela
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| |
Collapse
|
8
|
Wang HYJ, Tatituri RVV, Goldner NK, Dantas G, Hsu FF. Unveiling the biodiversity of lipid species in Corynebacteria- characterization of the uncommon lipid families in C. glutamicum and pathogen C. striatum by mass spectrometry. Biochimie 2020; 178:158-169. [PMID: 32659445 DOI: 10.1016/j.biochi.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Uncommon lipids in biotechnologically important Corynebacterium glutamicum and pathogen Corynebacterium striatum in genus Corynebacterium are isolated and identified by linear ion-trap multiple stage mass spectrometry (LIT MSn) with high resolution mass measurement. We redefined several lipid structures that were previously mis-assigned or not defined, including cytidine diphosphate diacylglycerol (CDP-DAG), glucuronosyl diacylglycerol (GlcA-DAG), (α-d-mannopyranosyl)-(1 → 4)-(α-D-glucuronyl diacyglycerol (Man-GlcA-DAG), 1-mycolyl-2-acyl-phosphatidylglycerol (MA-PG), acyl trehalose monomycolate (acyl-TMM). We also report the structures of mycolic acid, phosphatidylglycerol, phosphatidylinositol, cardiolipin, trehalose dimycolate lipids in which many isomeric structures are present. The LIT MSn approaches afford identification of the functional group, the fatty acid substituents and their regiospecificity in the molecules, revealing the biodiversities of the lipid species in two Corynebacterium strains that have played very different and important roles in human nutrition and health.
Collapse
Affiliation(s)
- Hay-Yan J Wang
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Raju V V Tatituri
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Nicholas K Goldner
- The Edison Family Center for Genome Sciences, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Weerasekera D, Fastner T, Lang R, Burkovski A, Ott L. Of mice and men: Interaction of Corynebacterium diphtheriae strains with murine and human phagocytes. Virulence 2020; 10:414-428. [PMID: 31057086 PMCID: PMC6527023 DOI: 10.1080/21505594.2019.1614384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Seven non-toxigenic C. diphtheriae strains and one toxigenic strain were analyzed with regard to their interaction with murine macrophages (BMM) and human THP-1 macrophage-like cells. Proliferation assays with BMM and THP-1 revealed similar intracellular CFUs for C. diphtheriae strains independent of the host cell. Strain ISS4060 showed highest intracellular CFUs, while the toxigenic DSM43989 was almost not detectable. This result was confirmed by TLR 9 reporter assays, showing a low signal for DSM43989, indicating that the bacteria are not endocytosed. In contrast, the non-pathogenic C. glutamicum showed almost no intracellular CFUs independent of the host cell, but was recognized by TLR9, indicating that the bacteria were degraded immediately after endocytosis. In terms of G-CSF and IL-6 production, no significant differences between BMM and THP-1 were observed. G-CSF production was considerably higher than IL-6 for all C. diphtheriae strains and the C. glutamicum did not induce high cytokine secretion in general. Furthermore, all corynebacteria investigated in this study were able to induce NFκB signaling but only viable C. diphtheriae strains were able to cause host cell damage, whereas C. glutamicum did not. The absence of Mincle resulted in reduced G-CSF production, while no influence on the uptake of the bacteria was observed. In contrast, when MyD88 was absent, both the uptake of the bacteria and cytokine production were blocked. Consequently, phagocytosis only occurs when the TLR/MyD88 pathway is functional, which was also supported by showing that all corynebacteria used in this study interact with human TLR2.
Collapse
Affiliation(s)
- Dulanthi Weerasekera
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Tamara Fastner
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Roland Lang
- b Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universtitätsklinikum Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Andreas Burkovski
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Lisa Ott
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
10
|
Weerasekera D, Hahn J, Herrmann M, Burkovski A. Live cell imaging of macrophage/bacterium interaction demonstrates cell lysis induced by Corynebacterium diphtheriae and Corynebacterium ulcerans. BMC Res Notes 2019; 12:695. [PMID: 31653227 PMCID: PMC6815039 DOI: 10.1186/s13104-019-4733-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022] Open
Abstract
Objectives In frame of a study to characterize the interaction of human macrophage-like cells with pathogenic corynebacteria, Corynebacterium diphtheriae and Corynebacterium ulcerans, live cell imaging experiments were carried out and time lapse fluorescence microscopy videos were generated, which are presented here. Data description The time lapse fluorescence microscopy data revealed new insights in the interaction of corynebacteria with human macrophage-like THP-1 cells. In contrast to uninfected cells and infections with non-pathogenic C. glutamicum used as a control, pathogenic C. diphtheriae and C. ulcerans showed highly detrimental effects towards human cells and induction of cell death of macrophages.
Collapse
Affiliation(s)
- Dulanthi Weerasekera
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Jonas Hahn
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Burkovski
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
11
|
Peng ED, Schmitt MP. Identification of zinc and Zur-regulated genes in Corynebacterium diphtheriae. PLoS One 2019; 14:e0221711. [PMID: 31454392 PMCID: PMC6711530 DOI: 10.1371/journal.pone.0221711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/13/2019] [Indexed: 11/18/2022] Open
Abstract
Corynebacterium diphtheriae is a Gram-positive bacterial pathogen and the causative agent of diphtheria, a severe disease of the upper respiratory tract of humans. Factors required for C. diphtheriae to survive in the human host are not well defined, but likely include the acquisition of essential metals such as zinc. In C. diphtheriae, zinc-responsive global gene regulation is controlled by the Zinc Uptake Regulator (Zur), a member of the Fur-family of transcriptional regulators. In this study, we use transcriptomics to identify zinc-regulated genes in C. diphtheriae by comparing gene expression of a wild-type strain grown without and with zinc supplementation. Zur-regulated genes were identified by comparing wild-type gene expression with that of an isogenic zur mutant. We observed zinc repression of several putative surface proteins, the heme efflux system hrtBA, various ABC transporters, and the non-ribosomal peptide synthetase/polyketide synthase cluster sidAB. Furthermore, increased gene expression in response to zinc was observed for the alcohol dehydrogenase, adhA. Zinc and Zur regulation were confirmed for several genes by complementing the zur deletion and subsequent RT-qPCR analysis. We used MEME to predict Zur binding sites within the promoter regions of zinc- and Zur-regulated genes, and verified Zur binding by electrophoretic mobility shift assays. Additionally, we characterized cztA (dip1101), which encodes a putative cobalt/zinc/cadmium efflux family protein. Deletion of cztA results in increased sensitivity to zinc, but not to cobalt or cadmium. This study advances our knowledge of changes to Zur-dependent global gene expression in response to zinc in C. diphtheriae. The identification of zinc-regulated ABC transporters herein will facilitate future studies to characterize zinc transport in C. diphtheriae.
Collapse
Affiliation(s)
- Eric D. Peng
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration,Silver Spring, MD, United States of America
- * E-mail: (MS); (EP)
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration,Silver Spring, MD, United States of America
- * E-mail: (MS); (EP)
| |
Collapse
|
12
|
Cao L, Shcherbin E, Mohimani H. A Metabolome- and Metagenome-Wide Association Network Reveals Microbial Natural Products and Microbial Biotransformation Products from the Human Microbiota. mSystems 2019; 4:e00387-19. [PMID: 31455639 PMCID: PMC6712304 DOI: 10.1128/msystems.00387-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/05/2019] [Indexed: 01/21/2023] Open
Abstract
The human microbiome consists of thousands of different microbial species, and tens of thousands of bioactive small molecules are associated with them. These associated molecules include the biosynthetic products of microbiota and the products of microbial transformation of host molecules, dietary components, and pharmaceuticals. The existing methods for characterization of these small molecules are currently time consuming and expensive, and they are limited to the cultivable bacteria. Here, we propose a method for detecting microbiota-associated small molecules based on the patterns of cooccurrence of molecular and microbial features across multiple microbiomes. We further map each molecule to the clade in a phylogenetic tree that is responsible for its production/transformation. We applied our proposed method to the tandem mass spectrometry and metagenomics data sets collected by the American Gut Project and to microbiome isolates from cystic fibrosis patients and discovered the genes in the human microbiome responsible for the production of corynomycolenic acid, which serves as a ligand for human T cells and induces a specific immune response against infection. Moreover, our method correctly associated pseudomonas quinolone signals, tyrvalin, and phevalin with their known biosynthetic gene clusters.IMPORTANCE Experimental advances have enabled the acquisition of tandem mass spectrometry and metagenomics sequencing data from tens of thousands of environmental/host-oriented microbial communities. Each of these communities contains hundreds of microbial features (corresponding to microbial species) and thousands of molecular features (corresponding to microbial natural products). However, with the current technology, it is very difficult to identify the microbial species responsible for the production/biotransformation of each molecular feature. Here, we develop association networks, a new approach for identifying the microbial producer/biotransformer of natural products through cooccurrence analysis of metagenomics and mass spectrometry data collected on multiple microbiomes.
Collapse
Affiliation(s)
- Liu Cao
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Egor Shcherbin
- National Research University Higher School of Economics, St. Petersburg, Russia
| | - Hosein Mohimani
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Induction of Necrosis in Human Macrophage Cell Lines by Corynebacterium diphtheriae and Corynebacterium ulcerans Strains Isolated from Fatal Cases of Systemic Infections. Int J Mol Sci 2019; 20:ijms20174109. [PMID: 31443569 PMCID: PMC6747468 DOI: 10.3390/ijms20174109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 01/10/2023] Open
Abstract
When infecting a human host, Corynebacterium diphtheriae and Corynebacterium ulcerans are able to impair macrophage maturation and induce cell death. However, the underlying molecular mechanisms are not well understood. As a framework for this project, a combination of fluorescence microscopy, cytotoxicity assays, live cell imaging, and fluorescence-activated cell sorting was applied to understand the pathogenicity of two Corynebacterium strains isolated from fatal cases of systemic infections. The results showed a clear cytotoxic effect of the bacteria. The observed survival of the pathogens in macrophages and, subsequent, necrotic lysis of cells may be mechanisms explaining dissemination of C. diphtheriae and C. ulcerans to distant organs in the body.
Collapse
|
14
|
The role of corynomycolic acids in Corynebacterium-host interaction. Antonie Van Leeuwenhoek 2018; 111:717-725. [PMID: 29435693 DOI: 10.1007/s10482-018-1036-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Within the Actinobacteria, the genera Corynebacterium, Mycobacterium, Nocardia and Rhodococcus form the so-called CMNR group, also designated as mycolic acid-containing actinomycetes. Almost all members of this group are characterized by a mycolic acid layer, the mycomembrane, which covers the cell wall and is responsible for a high resistance of these bacteria against chemical and antibiotic stress. Furthermore, components of the mycomembrane are crucial for the interaction of bacteria with host cells. This review summarizes the current knowledge of mycolic acid synthesis and interaction with components of the immune system for the genus Corynebacterium with an emphasis on the pathogenic species Corynebacterium diphtheriae, Corynebacterium pseudotuberculosis and Corynebacterium ulcerans as well as the biotechnology workhorse Corynebacterium glutamicum.
Collapse
|
15
|
Abstract
Corynebacterium diphtheriae, Corynebacterium pseudotuberculosis and Corynebacterium ulcerans share one distinctive feature: they are all putative carriers of the diphtheria toxin (DT), encoded by a β-corynephage integrated into the genome. Due to its medical relevance, C. diphtheriae may be the most highly investigated species of the genus Corynebacterium. Nevertheless, systemic infections caused by C. ulcerans are increasingly being reported indicating that this species is an emerging pathogen today. C. diphtheriae, C. pseudotuberculosis and C. ulcerans are able to colonize different types of epithelial cells in a strain-specific manner, independent of the presence of the tox gene. However, the molecular mechanisms contributing to host colonization are barely understood. This review gives a comprehensive update of recent data concerning the adhesion properties of toxigenic corynebacteria, demonstrating that adhesion is a multi-factorial process.
Collapse
Affiliation(s)
- Lisa Ott
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Professur für Mikrobiologie, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|