1
|
Nodari R, Arghittu M, Bailo P, Cattaneo C, Creti R, D’Aleo F, Saegeman V, Franceschetti L, Novati S, Fernández-Rodríguez A, Verzeletti A, Farina C, Bandi C. Forensic Microbiology: When, Where and How. Microorganisms 2024; 12:988. [PMID: 38792818 PMCID: PMC11123702 DOI: 10.3390/microorganisms12050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Forensic microbiology is a relatively new discipline, born in part thanks to the development of advanced methodologies for the detection, identification and characterization of microorganisms, and also in relation to the growing impact of infectious diseases of iatrogenic origin. Indeed, the increased application of medical practices, such as transplants, which require immunosuppressive treatments, and the growing demand for prosthetic installations, associated with an increasing threat of antimicrobial resistance, have led to a rise in the number of infections of iatrogenic origin, which entails important medico-legal issues. On the other hand, the possibility of detecting minimal amounts of microorganisms, even in the form of residual traces (e.g., their nucleic acids), and of obtaining gene and genomic sequences at contained costs, has made it possible to ask new questions of whether cases of death or illness might have a microbiological origin, with the possibility of also tracing the origin of the microorganisms involved and reconstructing the chain of contagion. In addition to the more obvious applications, such as those mentioned above related to the origin of iatrogenic infections, or to possible cases of infections not properly diagnosed and treated, a less obvious application of forensic microbiology concerns its use in cases of violence or violent death, where the characterization of the microorganisms can contribute to the reconstruction of the case. Finally, paleomicrobiology, e.g., the reconstruction and characterization of microorganisms in historical or even archaeological remnants, can be considered as a sister discipline of forensic microbiology. In this article, we will review these different aspects and applications of forensic microbiology.
Collapse
Affiliation(s)
- Riccardo Nodari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Milena Arghittu
- Analysis Laboratory, ASST Melegnano e Martesana, 20077 Vizzolo Predabissi, Italy
| | - Paolo Bailo
- Section of Legal Medicine, School of Law, University of Camerino, 62032 Camerino, Italy
| | - Cristina Cattaneo
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Roberta Creti
- Antibiotic Resistance and Special Pathogens Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesco D’Aleo
- Microbiology and Virology Laboratory, GOM—Grande Ospedale Metropolitano, 89124 Reggio Calabria, Italy
| | - Veroniek Saegeman
- Microbiology and Infection Control, Vitaz Hospital, 9100 Sint-Niklaas, Belgium
| | - Lorenzo Franceschetti
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Stefano Novati
- Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Amparo Fernández-Rodríguez
- Microbiology Department, Biology Service, Instituto Nacional de Toxicología y Ciencias Forenses, 41009 Madrid, Spain
| | - Andrea Verzeletti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University of Brescia, 25123 Brescia, Italy
| | - Claudio Farina
- Microbiology and Virology Laboratory, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Claudio Bandi
- Romeo ed Enrica Invernizzi Paediatric Research Centre, Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
2
|
Forshaw R. Windows into the past: recent scientific techniques in dental analysis. Br Dent J 2024; 236:205-211. [PMID: 38332093 PMCID: PMC10853062 DOI: 10.1038/s41415-024-7053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 02/10/2024]
Abstract
Teeth are the hardest and most chemically stable tissues in the body, are well-preserved in archaeological remains and, being resistant to decomposition in the soil, survive long after their supporting structures have deteriorated. It has long been recognised that visual and radiographic examination of teeth can provide considerable information relating to the lifestyle of an individual. This paper examines the latest scientific approaches that have become available to investigate recent and ancient teeth. These techniques include DNA analysis, which can be used to determine the sex of an individual, indicate familial relationships, study population movements, provide phylogenetic information and identify the presence of disease pathogens. A stable isotopic approach can shed light on aspects of diet and mobility and even research climate change. Proteomic analysis of ancient dental calculus can reveal specific information about individual diets. Synchrotron microcomputed tomography is a non-invasive technique which can be used to visualise physiological impactful events, such as parturition, menopause and diseases in cementum microstructure - these being displayed as aberrant growth lines.
Collapse
Affiliation(s)
- Roger Forshaw
- KNH Centre for Biomedical Egyptology, Faculty of Biology, Medicine and Health, Stopford Building, Oxford Road, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
3
|
Grasso G, Bianciotto V, Marmeisse R. Paleomicrobiology: Tracking the past microbial life from single species to entire microbial communities. Microb Biotechnol 2024; 17:e14390. [PMID: 38227345 PMCID: PMC10832523 DOI: 10.1111/1751-7915.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/04/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024] Open
Abstract
By deciphering information encoded in degraded ancient DNA extracted from up to million-years-old samples, molecular paleomicrobiology enables to objectively retrace the temporal evolution of microbial species and communities. Assembly of full-length genomes of ancient pathogen lineages allows not only to follow historical epidemics in space and time but also to identify the acquisition of genetic features that represent landmarks in the evolution of the host-microbe interaction. Analysis of microbial community DNA extracted from essentially human paleo-artefacts (paleofeces, dental calculi) evaluates the relative contribution of diet, lifestyle and geography on the taxonomic and functional diversity of these guilds in which have been identified species that may have gone extinct in today's human microbiome. As for non-host-associated environmental samples, such as stratified sediment cores, analysis of their DNA illustrates how and at which pace microbial communities are affected by local or widespread environmental disturbance. Description of pre-disturbance microbial diversity patterns can aid in evaluating the relevance and effectiveness of remediation policies. We finally discuss how recent achievements in paleomicrobiology could contribute to microbial biotechnology in the fields of medical microbiology and food science to trace the domestication of microorganisms used in food processing or to illustrate the historic evolution of food processing microbial consortia.
Collapse
Affiliation(s)
- Gianluca Grasso
- Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità degli Studi of TurinTurinItaly
- Institut Systématique Evolution, Biodiversité (ISYEB: UMR7205 CNRS‐MNHN‐Sorbonne Université‐EPHE‐UA)¸ Muséum National d'Histoire NaturelleParisFrance
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| | - Valeria Bianciotto
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| | - Roland Marmeisse
- Institut Systématique Evolution, Biodiversité (ISYEB: UMR7205 CNRS‐MNHN‐Sorbonne Université‐EPHE‐UA)¸ Muséum National d'Histoire NaturelleParisFrance
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| |
Collapse
|
4
|
Shaw B, McDonnell T, Radley E, Thomas B, Smith L, Davenport CA, Gonzalez S, Rahman A, Layfield R. Preservation of whole antibodies within ancient teeth. iScience 2023; 26:107575. [PMID: 37622005 PMCID: PMC10445445 DOI: 10.1016/j.isci.2023.107575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/17/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Archaeological remains can preserve some proteins into deep time, offering remarkable opportunities for probing past events in human history. Recovering functional proteins from skeletal tissues could uncover a molecular memory related to the life-history of the associated remains. We demonstrate affinity purification of whole antibody molecules from medieval human teeth, dating to the 13th-15th centuries, from skeletons with different putative pathologies. Purified antibodies are intact retaining disulphide-linkages, are amenable to primary sequences analysis, and demonstrate apparent immunoreactivity against contemporary EBV antigen on western blot. Our observations highlight the potential of ancient antibodies to provide insights into the long-term association between host immune factors and ancient microbes, and more broadly retain a molecular memory related to the natural history of human health and immunity.
Collapse
Affiliation(s)
- Barry Shaw
- School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | - Thomas McDonnell
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Elizabeth Radley
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Brian Thomas
- Mass Spectrometry Research Group, University of Liverpool, Liverpool, UK
| | - Lynn Smith
- Norton Priory Museum and Gardens, Runcorn, UK
| | - Carol A.L. Davenport
- Research Centre for Evolutionary Anthropology and Paleoecology, Liverpool John Moores University, Liverpool, UK
| | - Silvia Gonzalez
- Research Centre for Evolutionary Anthropology and Paleoecology, Liverpool John Moores University, Liverpool, UK
| | - Anisur Rahman
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Rob Layfield
- School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| |
Collapse
|
5
|
Dekker J, Larson T, Tzvetkov J, Harvey VL, Dowle A, Hagan R, Genever P, Schrader S, Soressi M, Hendy J. Spatial analysis of the ancient proteome of archeological teeth using mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9486. [PMID: 36735645 DOI: 10.1002/rcm.9486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
RATIONALE Proteins extracted from archaeological bone and teeth are utilised for investigating the phylogeny of extinct and extant species, the biological sex and age of past individuals, as well as ancient health and physiology. However, variable preservation of proteins in archaeological materials represents a major challenge. METHODS To better understand the spatial distribution of ancient proteins preserved within teeth, we applied matrix assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for the first time to bioarchaeological samples to visualise the intensity of proteins in archaeological teeth thin sections. We specifically explored the spatial distribution of four proteins (collagen type I, of which the chains alpha-1 and alpha-2, alpha-2-HS-glycoprotein, haemoglobin subunit alpha and myosin light polypeptide 6). RESULTS We successfully identified ancient proteins in archaeological teeth thin sections using mass spectrometry imaging. The data are available via ProteomeXchange with identifier PXD038114. However, we observed that peptides did not always follow our hypotheses for their spatial distribution, with distinct differences observed in the spatial distribution of several proteins, and occasionally between peptides of the same protein. CONCLUSIONS While it remains unclear what causes these differences in protein intensity distribution within teeth, as revealed by MALDI-MSI in this study, we have demonstrated that MALDI-MSI can be successfully applied to mineralised bioarchaeological tissues to detect ancient peptides. In future applications, this technique could be particularly fruitful not just for understanding the preservation of proteins in a range of archaeological materials, but making informed decisions on sampling strategies and the targeting of key proteins of archaeological and biological interest.
Collapse
Affiliation(s)
- Joannes Dekker
- BioArCh, Department of Archaeology, University of York, York, UK
- Section for GeoBiology, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Faculty of Archaeology, Leiden University, Leiden, the Netherlands
| | - Tony Larson
- Metabolomics & Proteomics Laboratory, Bioscience Technology Facility, Department of Biology, University of York, York, UK
| | | | - Virginia L Harvey
- BioArCh, Department of Archaeology, University of York, York, UK
- Department of Biological Sciences, University of Chester, Chester, UK
| | - Adam Dowle
- Metabolomics & Proteomics Laboratory, Bioscience Technology Facility, Department of Biology, University of York, York, UK
| | - Richard Hagan
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Paul Genever
- Department of Biology, University of York, York, UK
| | - Sarah Schrader
- Faculty of Archaeology, Leiden University, Leiden, the Netherlands
| | - Marie Soressi
- Faculty of Archaeology, Leiden University, Leiden, the Netherlands
| | - Jessica Hendy
- BioArCh, Department of Archaeology, University of York, York, UK
| |
Collapse
|
6
|
González-Plaza JJ, Furlan C, Rijavec T, Lapanje A, Barros R, Tamayo-Ramos JA, Suarez-Diez M. Advances in experimental and computational methodologies for the study of microbial-surface interactions at different omics levels. Front Microbiol 2022; 13:1006946. [PMID: 36519168 PMCID: PMC9744117 DOI: 10.3389/fmicb.2022.1006946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 08/31/2023] Open
Abstract
The study of the biological response of microbial cells interacting with natural and synthetic interfaces has acquired a new dimension with the development and constant progress of advanced omics technologies. New methods allow the isolation and analysis of nucleic acids, proteins and metabolites from complex samples, of interest in diverse research areas, such as materials sciences, biomedical sciences, forensic sciences, biotechnology and archeology, among others. The study of the bacterial recognition and response to surface contact or the diagnosis and evolution of ancient pathogens contained in archeological tissues require, in many cases, the availability of specialized methods and tools. The current review describes advances in in vitro and in silico approaches to tackle existing challenges (e.g., low-quality sample, low amount, presence of inhibitors, chelators, etc.) in the isolation of high-quality samples and in the analysis of microbial cells at genomic, transcriptomic, proteomic and metabolomic levels, when present in complex interfaces. From the experimental point of view, tailored manual and automatized methodologies, commercial and in-house developed protocols, are described. The computational level focuses on the discussion of novel tools and approaches designed to solve associated issues, such as sample contamination, low quality reads, low coverage, etc. Finally, approaches to obtain a systems level understanding of these complex interactions by integrating multi omics datasets are presented.
Collapse
Affiliation(s)
- Juan José González-Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
7
|
Dallmeier K. Palaeoserology - teeth put into ancient plagues and pandemics. Microb Biotechnol 2022; 15:1940-1942. [PMID: 35478431 PMCID: PMC9249320 DOI: 10.1111/1751-7915.14065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Based on archived medical records and evolutionary modelling, a Coronavirus has been hypothesized as root and causative agent of the so‐called ‘Russian Flu’ pandemic that surged in 1889–1890. In a Correspondence published in this volume of Microbial Biotechnology, Ramassy and colleagues try to support historical evidence by true experimental data using 'palaeoserology', a novel approach combining archaeology and modern immunological analysis. This Opinion piece tries to weigh arguments how strong such data may be, and where a refinement of methodology might be desirable before textbooks of medical history switch to call the 1890s pandemic ‘Russian Corona’.
Collapse
Affiliation(s)
- Kai Dallmeier
- Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| |
Collapse
|
8
|
Ramassy L, Oumarou Hama H, Costedoat C, Signoli M, Verna E, La Scola B, Aboudharam G, Barbieri R, Drancourt M. Paleoserology points to Coronavirus as possible causative pathogens of the 'Russian flu'. Microb Biotechnol 2022; 15:1943-1945. [PMID: 35384322 PMCID: PMC9111311 DOI: 10.1111/1751-7915.14058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Lindsay Ramassy
- IHU Méditerranée Infection, Marseille, France.,IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, 13005, France
| | - Hamadou Oumarou Hama
- IHU Méditerranée Infection, Marseille, France.,IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, 13005, France
| | | | - Michel Signoli
- CNRS, EFS, ADES, Aix-Marseille University, Marseille, France
| | - Emeline Verna
- CNRS, EFS, ADES, Aix-Marseille University, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France.,IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, 13005, France
| | - Gérard Aboudharam
- IHU Méditerranée Infection, Marseille, France.,IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, 13005, France
| | - Rémi Barbieri
- IHU Méditerranée Infection, Marseille, France.,IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, 13005, France.,CNRS, EFS, ADES, Aix-Marseille University, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France.,IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, 13005, France
| |
Collapse
|
9
|
Oumarou Hama H, Aboudharam G, Barbieri R, Lepidi H, Drancourt M. Immunohistochemical diagnosis of human infectious diseases: a review. Diagn Pathol 2022; 17:17. [PMID: 35094696 PMCID: PMC8801197 DOI: 10.1186/s13000-022-01197-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/18/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Immunohistochemistry (IHC) using monoclonal and polyclonal antibodies is a useful diagnostic method for detecting pathogen antigens in fixed tissues, complementing the direct diagnosis of infectious diseases by PCR and culture on fresh tissues. It was first implemented in a seminal publication by Albert Coons in 1941. MAIN BODY Of 14,198 publications retrieved from the PubMed, Google, Google Scholar and Science Direct databases up to December 2021, 230 were selected for a review of IHC techniques, protocols and results. The methodological evolutions of IHC and its application to the diagnosis of infectious diseases, more specifically lice-borne diseases, sexually transmitted diseases and skin infections, were critically examined. A total of 59 different pathogens have been detected once in 22 different tissues and organs; and yet non-cultured, fastidious and intracellular pathogens accounted for the vast majority of pathogens detected by IHC. Auto-IHC, incorporating patient serum as the primary antibody, applied to diseased heart valves surgically collected from blood culture-negative endocarditis patients, detected unidentified Gram-positive cocci and microorganisms which were subsequently identified as Coxiella burnetii, Bartonella quintana, Bartonella henselae and Tropheryma whipplei. The application of IHC to ancient tissues dated between the ends of the Ptolemaic period to over 70 years ago, have also contributed to paleomicrobiology diagnoses. CONCLUSION IHC plays an important role in diagnostic of infectious diseases in tissue samples. Paleo-auto-IHC derived from auto-IHC, is under development for detecting non-identified pathogens from ancient specimens.
Collapse
Affiliation(s)
- Hamadou Oumarou Hama
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Gérard Aboudharam
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Univ., Ecole de Médecine Dentaire, Marseille, France
| | - Rémi Barbieri
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Hubert Lepidi
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Laboratoire d'Histologie, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France.
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
10
|
Gagne RB, Kraberger S, McMinn R, Trumbo DR, Anderson CR, Logan KA, Alldredge MW, Griffin K, Vandewoude S. Viral Sequences Recovered From Puma Tooth DNA Reconstruct Statewide Viral Phylogenies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.734462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monitoring pathogens in wildlife populations is imperative for effective management, and for identifying locations for pathogen spillover among wildlife, domestic species and humans. Wildlife pathogen surveillance is challenging, however, as sampling often requires the capture of a significant proportion of the population to understand host pathogen dynamics. To address this challenge, we assessed the ability to use hunter-collected teeth from puma across Colorado to recover genetic data of two feline retroviruses, feline foamy virus (FFV) and feline immunodeficiency virus (FIVpco) and show they can be utilized for this purpose. Comparative phylogenetic analyses of FIVpco and FFV from tooth and blood samples to previous analyses conducted with blood samples collected over a nine-year period from two distinct areas was undertaken highlighting the value of tooth derived samples. We found less FIVpco phylogeographic structuring than observed from sampling only two regions and that FFV data confirmed previous findings of endemic infection, minimal geographic structuring, and supported frequent cross-species transmission from domestic cats to pumas. Viral analysis conducted using intentionally collected blood samples required extensive financial, capture and sampling efforts. This analysis illustrates that viral genomic data can be cost effectively obtained using tooth samples incidentally-collected from hunter harvested pumas, taking advantage of samples collected for morphological age identification. This technique should be considered as an opportunistic method to provide broad geographic sampling to define viral dynamics more accurately in wildlife.
Collapse
|
11
|
Gresky J, Dorn J, Teßmann B, Petiti E. How rare is rare? A literature survey of the last 45 years of paleopathological research on ancient rare diseases. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 33:94-102. [PMID: 33813348 DOI: 10.1016/j.ijpp.2021.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This paper aims to provide a quantitative estimation of the representation of diseases defined as rare today in the bioarchaeological literature and to outline the reasons for this. MATERIALS A 45-year bibliometric study of publications in seven bioarchaeological journals, along with two journals and editorial groups of broader scientific focus. METHODS Analyses of distribution patterns of the search hits and diachronic trends for achondroplasia, autosomal-dominant osteopetrosis, osteogenesis imperfecta, and osteopoikilosis, compared to those for tuberculosis as control measure of coverage. RESULTS Studies of ancient rare diseases (ARD) are mostly published as case reports in specialized journals and their number did not benefit from the introduction of biomolecular studies. The higher frequency of cases of achondroplasia suggests that not all rare diseases are equally under-represented. CONCLUSIONS Rare diseases are still largely under-represented in bioarchaeological literature. Their marginality likely results from a combination of taphonomic, methodological and public visibility factors. SIGNIFICANCE This article is the first attempt to provide a quantitative assessment of the under-representation of ARD and to outline the factors behind it. LIMITATIONS Rare diseases are an etiologically heterogeneous group. The number of surveyed journals and articles, as well as targeted diseases might be limiting factors. SUGGESTIONS FOR FURTHER RESEARCH Increasing collection and dissemination of data on ARD; opening a wide-ranging debate on their definition; implementation of biomolecular studies.
Collapse
Affiliation(s)
- Julia Gresky
- German Archaeological Institute, Department of Natural Sciences, Berlin, Germany.
| | - Juliane Dorn
- German Archaeological Institute, Department of Natural Sciences, Berlin, Germany
| | - Barbara Teßmann
- Berlin Society of Anthropology, Ethnology and Prehistory, Berlin, Germany
| | - Emmanuele Petiti
- German Archaeological Institute, Department of Natural Sciences, Berlin, Germany
| |
Collapse
|
12
|
Nodari R, Drancourt M, Barbieri R. Paleomicrobiology of the human digestive tract: A review. Microb Pathog 2021; 157:104972. [PMID: 34029658 DOI: 10.1016/j.micpath.2021.104972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/23/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
The microbiota is a hot topic of research in medical microbiology, boosted by culturomics and metagenomics, with unanticipated knowledge outputs in physiology and pathology. Knowledge of the microbiota in ancient populations may therefore be of prime interest in understanding factors shaping the coevolution of the microbiota and populations. Studies on ancient human microbiomes can help us understand how the community of microorganisms presents in the oral cavity and the gut was shaped during the evolution of our species and what environmental, social or cultural changes may have changed it. This review cumulates and summarizes the discoveries in the field of the ancient human microbiota, focusing on the remains used as samples and techniques used to handle and analyze them.
Collapse
Affiliation(s)
- Riccardo Nodari
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy
| | - Michel Drancourt
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Rémi Barbieri
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France; UMR 7268, Anthropologie Bioculturelle, Droit, Ethique et Santé, Aix Marseille Univ., 11 CNRS, EFS, ADES, Marseille, France.
| |
Collapse
|
13
|
Hendy J. Ancient protein analysis in archaeology. SCIENCE ADVANCES 2021; 7:7/3/eabb9314. [PMID: 33523896 PMCID: PMC7810370 DOI: 10.1126/sciadv.abb9314] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/20/2020] [Indexed: 05/10/2023]
Abstract
The analysis of ancient proteins from paleontological, archeological, and historic materials is revealing insights into past subsistence practices, patterns of health and disease, evolution and phylogeny, and past environments. This review tracks the development of this field, discusses some of the major methodological strategies used, and synthesizes recent developments in archeological applications of ancient protein analysis. Moreover, this review highlights some of the challenges faced by the field and potential future directions, arguing that the development of minimally invasive or nondestructive techniques, strategies for protein authentication, and the integration of ancient protein analysis with other biomolecular techniques are important research strategies as this field grows.
Collapse
Affiliation(s)
- Jessica Hendy
- BioArCh, Department of Archaeology, University of York, York, UK
- Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
14
|
Barbieri R, Signoli M, Chevé D, Costedoat C, Tzortzis S, Aboudharam G, Raoult D, Drancourt M. Yersinia pestis: the Natural History of Plague. Clin Microbiol Rev 2020; 34:e00044-19. [PMID: 33298527 PMCID: PMC7920731 DOI: 10.1128/cmr.00044-19] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Gram-negative bacterium Yersinia pestis is responsible for deadly plague, a zoonotic disease established in stable foci in the Americas, Africa, and Eurasia. Its persistence in the environment relies on the subtle balance between Y. pestis-contaminated soils, burrowing and nonburrowing mammals exhibiting variable degrees of plague susceptibility, and their associated fleas. Transmission from one host to another relies mainly on infected flea bites, inducing typical painful, enlarged lymph nodes referred to as buboes, followed by septicemic dissemination of the pathogen. In contrast, droplet inhalation after close contact with infected mammals induces primary pneumonic plague. Finally, the rarely reported consumption of contaminated raw meat causes pharyngeal and gastrointestinal plague. Point-of-care diagnosis, early antibiotic treatment, and confinement measures contribute to outbreak control despite residual mortality. Mandatory primary prevention relies on the active surveillance of established plague foci and ectoparasite control. Plague is acknowledged to have infected human populations for at least 5,000 years in Eurasia. Y. pestis genomes recovered from affected archaeological sites have suggested clonal evolution from a common ancestor shared with the closely related enteric pathogen Yersinia pseudotuberculosis and have indicated that ymt gene acquisition during the Bronze Age conferred Y. pestis with ectoparasite transmissibility while maintaining its enteric transmissibility. Three historic pandemics, starting in 541 AD and continuing until today, have been described. At present, the third pandemic has become largely quiescent, with hundreds of human cases being reported mainly in a few impoverished African countries, where zoonotic plague is mostly transmitted to people by rodent-associated flea bites.
Collapse
Affiliation(s)
- R Barbieri
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| | - M Signoli
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - D Chevé
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - C Costedoat
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - S Tzortzis
- Ministère de la Culture, Direction Régionale des Affaires Culturelles de Provence-Alpes-Côte d'Azur, Service Régional de l'Archéologie, Aix-en-Provence, France
| | - G Aboudharam
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, Faculty of Odontology, Marseille, France
| | - D Raoult
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| | - M Drancourt
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| |
Collapse
|
15
|
Oumarou Hama H, Barbieri R, Guirou J, Chenal T, Mayer A, Ardagna Y, Signoli M, Aboudharam G, Raoult D, Drancourt M. An outbreak of relapsing fever unmasked by microbial paleoserology, 16th century, France. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:784-789. [PMID: 32959380 DOI: 10.1002/ajpa.24138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Depicting past epidemics currently relies on DNA-based detection of pathogens, an approach limited to pathogens with well-preserved DNA sequences. We used paleoserology as a complementary approach detecting specific antibodies under a mini line-blot format including positive and negative control antigens. METHODS Mini line blot assay incorporated skim milk as negative control, Staphylococcus aureus as positive control, and antigens prepared from lice-borne pathogens Rickettsia prowazekii, Borrelia recurrentis, Bartonella quintana, and Yersinia pestis. Paleoserums were extracted from rehydrated dental pulp recovered from buried individuals. Mini line blots observed with the naked eye, were quantified using a scanner and appropriate software. Paleoserology was applied to the indirect detection of lice-borne pathogens in seven skeletons exhumed from a 16th-17th century suspected military burial site (Auxi-le-Château); and 14 civils exhumed from a 5th-13th century burial site (Saint-Mont). Direct detection of pathogens was performed using quantitative real-time PCR. RESULTS In Auxi-le-Château, paleoserology yielded 7/7 interpretable paleoserums including 7/7 positives for B. recurrentis including one also positive for B. quintana. In Saint-Mont, paleoserology yielded 8/14 interpretable paleoserums and none reacted against any of the four pathogens. Antibodies against R. prowazekii and Y. pestis were not detected. The seroprevalence was significantly higher in the military burial site of Auxi-le-Château than in the civil burial site of Saint-Mont. Real-time PCR detection of B. quintana yielded 5/21 positive (3 at Saint-Mont and 2 at Auxi-le-Château) whereas B. recurrentis was not detected. CONCLUSIONS Paleoserology unmasked an outbreak of relapsing B. recurrentis fever in one 16th - 17th century military garrison, missed by real-time PCR. Paleoserology offers a new tool for investigating past epidemics, in complement to DNA sequence-based approaches.
Collapse
Affiliation(s)
- Hamadou Oumarou Hama
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Rémi Barbieri
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.,Aix-Marseille-Univ., CNRS, EFS, ADES, Marseille, France
| | - Jacqueline Guirou
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | | | - Aurélie Mayer
- Bureau d'études Éveha, Limoges/Ivry-sur-Seine, France
| | - Yann Ardagna
- Aix-Marseille-Univ., CNRS, EFS, ADES, Marseille, France
| | | | - Gérard Aboudharam
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.,UFR Odontologie, Aix-Marseille-Univ., Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
16
|
Walker GK, Suyemoto MM, Gall S, Chen L, Thakur S, Borst LB. The role of Enterococcus faecalis during co-infection with avian pathogenic Escherichia coli in avian colibacillosis. Avian Pathol 2020; 49:589-599. [PMID: 32674609 DOI: 10.1080/03079457.2020.1796926] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Enterococcus spp. (ENT) are frequently co-isolated with avian pathogenic E. coli (APEC) from poultry with colibacillosis, a leading cause of flock mortality. Although largely overlooked, ENT may play an active role in these infections. To assess the frequency of ENT co-isolation in colibacillosis, cultures were collected from birds with gross lesions of omphalitis, polyserositis, and septicaemia over a 3-year period from three turkey flocks and three broiler flocks. In birds diagnosed with colibacillosis based on gross findings and isolation of E. coli, ENT were co-isolated with APEC in 35.7% (n = 41/115) of colibacillosis mortality and 3.7% of total mortality (n = 41/1122). Co-isolated APEC and ENT pairs (n = 41) were further characterized using antimicrobial resistance phenotyping and in vitro co-culture assays. E. faecalis (EF) was the most commonly co-isolated species (68% n = 28/41) and tetracycline resistance was the resistance phenotype most commonly found among APEC (51% n = 21/41) and ENT (93% n = 38/41). Under iron-restricted conditions, EF enhanced APEC growth in a proximity-dependent manner and APEC grown in mixed culture with EF exhibited a significant growth and survival advantage (P ≤ 0.01). In an embryo lethality assay, APEC co-infection with EF resulted in decreased survival of broiler embryos compared to mono-infections (P ≤ 0.05). These data demonstrate that EF augmented APEC survival and growth under iron limiting conditions, possibly translating to the increased virulence of APEC in broiler embryos. Thus, ENT co-infections may be a previously unrecognized contributor to colibacillosis-related mortality. Further investigations into the mechanism of this interaction are warranted. RESEARCH HIGHLIGHTS Enterococcus is frequently co-isolated with avian pathogenic E. coli (APEC). Enterococcus faecalis (EF) enhances survival of APEC in iron restricted conditions. EF co-infection increases APEC virulence in broiler embryos.
Collapse
Affiliation(s)
- Grayson K Walker
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - M Mitsu Suyemoto
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Sesny Gall
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Laura Chen
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Luke B Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
17
|
A 2,000-year-old specimen with intraerythrocytic Bartonella quintana. Sci Rep 2020; 10:10069. [PMID: 32572066 PMCID: PMC7308320 DOI: 10.1038/s41598-020-66917-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/20/2020] [Indexed: 11/08/2022] Open
Abstract
Photogrammetry and cascading microscopy investigations of dental pulp specimens collected from 2,000-year-old individuals buried in a Roman necropolis in Besançon, France, revealed unprecedented preserved tissular and cellular morphology. Photogrammetry yielded 3-D images of the smallest archaeological human remains ever recovered. Optical microscopy examinations after standard haematoxylin-phloxine-saffron staining and anti-glycophorin A immunohistochemistry exposed dental pulp cells, in addition erythrocytes were visualised by electron microscopy, which indicated the ancient dental pulp trapped a blood drop. Fluorescence in situ hybridisation applied on red blood cells revealed the louse-borne pathogen Bartonella quintana, a finding confirmed by polymerase chain reaction assays. Through paleohistology and paleocytology, we demonstrate that the ancient dental pulp preserved intact blood cells at the time of the individual's death, offering an unprecedented opportunity to engage in direct and indirect tests to diagnose pathogens in ancient buried individuals.
Collapse
|
18
|
Mai BHA, Drancourt M, Aboudharam G. Ancient dental pulp: Masterpiece tissue for paleomicrobiology. Mol Genet Genomic Med 2020; 8:e1202. [PMID: 32233019 PMCID: PMC7284042 DOI: 10.1002/mgg3.1202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Dental pulp with special structure has become a good reference sample in paleomicrobiology‐related blood‐borne diseases, many pathogens were detected by different methods based on the diagnosis of nucleic acids and proteins. Objectives This review aims to propose the preparation process from ancient teeth collection to organic molecule extraction of dental pulp and summary, analyze the methods that have been applied to detect septicemic pathogens through ancient dental pulps during the past 20 years following the first detection of an ancient microbe. Methods The papers used in this review with two main objectives were obtained from PubMed and Google scholar with combining keywords: “ancient,” “dental pulp,” “teeth,” “anatomy,” “structure,” “collection,” “preservation,” “selection,” “photography,” “radiography,” “contamination,” “decontamination,” “DNA,” “protein,” “extraction,” “bone,” “paleomicrobiology,” “bacteria,” “virus,” “pathogen,” “molecular biology,” “proteomics,” “PCR,” “MALDI‐TOF,” “LC/MS,” “ELISA,” “immunology,” “immunochromatography,” “genome,” “microbiome,” “metagenomics.” Results The analysis of ancient dental pulp should have a careful preparation process with many different steps to give highly accurate results, each step complies with the rules in archaeology and paleomicrobiology. After the collection of organic molecules from dental pulp, they were investigated for pathogen identification based on the analysis of DNA and protein. Actually, DNA approach takes a principal role in diagnosis while the protein approach is more and more used. A total of seven techniques was used and ten bacteria (Yersinia pestis, Bartonella quintana, Salmonella enterica serovar Typhi, Salmonella enterica serovar Paratyphi C, Mycobacterium leprae, Mycobacterium tuberculosis, Rickettsia prowazeki, Staphylococcus aureus, Borrelia recurrentis, Bartonella henselae) and one virus (Anelloviridae) were identified. Y. pestis had the most published in quantity and all methods were investigated for this pathogen, S. aureus and B. recurrentis were identified by three different methods and others only by one. The combining methods interestingly increase the positive rate with ELISA, PCR and iPCR in Yersinia pestis diagnosis. Twenty‐seven ancient genomes of Y. pestis and one ancient genome of B. recurrentis were reconstructed. Comparing to the ancient bone, ancient teeth showed more advantage in septicemic diagnosis. Beside pathogen identification, ancient pulp help to distinguish species. Conclusions Dental pulp with specific tissue is a suitable sample for detection of the blood infection in the past through DNA and protein identification with the correct preparation process, furthermore, it helps to more understand the pathogens of historic diseases and epidemics.
Collapse
Affiliation(s)
- Ba Hoang Anh Mai
- Aix-Marseille Université, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Hue University of Medicine and Pharmacy, Thua Thien Hue, Vietnam
| | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Gérard Aboudharam
- Aix-Marseille Université, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France.,UFR Odontologie, Aix-Marseille Université, Marseille, France
| |
Collapse
|
19
|
Barbieri R, Aboudharam G, Raoult D, Drancourt M. Vibrio vulnificus casualties during the American Civil War. THE LANCET. INFECTIOUS DISEASES 2020; 20:170-171. [PMID: 32006506 DOI: 10.1016/s1473-3099(19)30676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Rémi Barbieri
- Aix-Marseille Université, Institut de Recherche pour le Développement, Microbes, Evolution, Phylogénie et Infection, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Aix-Marseille Université, Centre National de la Recherche Scientifique, Établissement Français du Sang, Anthropologie Bio-culturelle, Droit, Éthique et Santé, Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13005, France
| | - Gérard Aboudharam
- Aix-Marseille Université, Institut de Recherche pour le Développement, Microbes, Evolution, Phylogénie et Infection, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13005, France
| | - Didier Raoult
- Aix-Marseille Université, Institut de Recherche pour le Développement, Microbes, Evolution, Phylogénie et Infection, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13005, France
| | - Michel Drancourt
- Aix-Marseille Université, Institut de Recherche pour le Développement, Microbes, Evolution, Phylogénie et Infection, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13005, France.
| |
Collapse
|
20
|
Kostyukevich Y, Kitova A, Zherebker A, Rukh S, Nikolaev E. Investigation of the archeological remains using ultrahigh resolution mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:391-396. [PMID: 30939934 DOI: 10.1177/1469066719840287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Investigation of the archeological material at the molecular level can reveal the composition of ancient paint, balsamic material, reveal cooking recipes, etc. High-resolution mass spectrometry is a powerful technique with underestimated potential for archeology. Here, we present the investigation of the 3000-year-old archeological remains, identified as parts of internal organs of an Egyptian mummy, using high-resolution Orbitrap mass spectrometry. We observed a diverse number of oxidized classes of compounds: O, O2, O3, O4, O5, N, NO, NO2, NO3, NO4, NO5, N2O, N2O2. Such chemical composition is unusual and we never observed it in our previous studies of petroleum, humic substances, products of wood pyrolysis or other natural complex mixtures. It is possible that such compounds are formed via biodegradation of lipids and other organic material used for funeral rites. We did not observe evidence of the presence of mineral bitumen, although there are many historical records of the use of mineral bitumen for mummification.
Collapse
Affiliation(s)
- Yury Kostyukevich
- 1 Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation
- 2 Moscow Institute of Physics and Technology, Moscow Region, Russia
| | - Alexandra Kitova
- 3 Center for Egyptological Studies of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander Zherebker
- 1 Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation
| | - Shah Rukh
- 1 Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation
| | - Eugene Nikolaev
- 1 Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation
- 2 Moscow Institute of Physics and Technology, Moscow Region, Russia
| |
Collapse
|
21
|
Abstract
We identify an ancient and atypical form of Paget’s disease of bone (PDB) in a collection of medieval skeletons exhibiting unusually extensive pathological changes, high disease prevalence, and low age-at-death estimations. Proteomic analysis of ancient bone-preserved proteins combined with analysis of small RNAs supports a retrospective diagnosis of PDB. Remains affected by other skeletal disorders may therefore hold a chemical memory amenable to similar molecular interrogation. Abnormalities in a contemporary PDB-linked protein detected in ancient tooth samples indicate that dentition may represent an unexplored storehouse for the study of skeletal disorders. Our work provides insights into the natural history of PDB and prompts a similar revaluation of other archaeological collections. Paget’s disease of bone (PDB) is a chronic skeletal disorder that can affect one or several bones in individuals older than 55 y of age. PDB-like changes have been reported in archaeological remains as old as Roman, although accurate diagnosis and natural history of the disease is lacking. Six skeletons from a collection of 130 excavated at Norton Priory in the North West of England, which dates to medieval times, show atypical and extensive pathological changes resembling contemporary PDB affecting as many as 75% of individual skeletons. Disease prevalence in the remaining collection is high, at least 16% of adults, with age at death estimations as low as 35 y. Despite these atypical features, paleoproteomic analysis identified sequestosome 1 (SQSTM1) or p62, a protein central to the pathological milieu of PDB, as one of the few noncollagenous human sequences preserved in skeletal samples. Targeted proteomic analysis detected >60% of the ancient p62 primary sequence, with Western blotting indicating p62 abnormalities, including in dentition. Direct sequencing of ancient DNA excluded contemporary PDB-associated SQSTM1 mutations. Our observations indicate that the ancient p62 protein is likely modified within its C-terminal ubiquitin-associated domain. Ancient miRNAs were remarkably preserved in an osteosarcoma from a skeleton with extensive disease, with miR-16 expression consistent with that reported in contemporary PDB-associated bone tumors. Our work displays the use of proteomics to inform diagnosis of ancient diseases such as atypical PDB, which has unusual features presumably potentiated by yet-unidentified environmental or genetic factors.
Collapse
|
22
|
Wasinger VC, Curnoe D, Bustamante S, Mendoza R, Shoocongdej R, Adler L, Baker A, Chintakanon K, Boel C, Tacon PS. Analysis of the Preserved Amino Acid Bias in Peptide Profiles of Iron Age Teeth from a Tropical Environment Enable Sexing of Individuals Using Amelogenin MRM. Proteomics 2019; 19:e1800341. [DOI: 10.1002/pmic.201800341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/18/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Valerie C. Wasinger
- Bioanalytical Mass Spectrometry Facility Mark Wainwright Analytical Centre University of New South Wales Sydney NSW 2052 Australia
- Palaeontology, Geobiology and Earth Archives Research Centre University of New South Wales Sydney NSW 2052 Australia
| | - Darren Curnoe
- Palaeontology, Geobiology and Earth Archives Research Centre University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage University of New South Wales Sydney NSW 2052 Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility Mark Wainwright Analytical Centre University of New South Wales Sydney NSW 2052 Australia
| | - Raynold Mendoza
- Palaeontology, Geobiology and Earth Archives Research Centre University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage University of New South Wales Sydney NSW 2052 Australia
| | - Rasmi Shoocongdej
- Department of Archaeology Silpakorn University Bangkok 10200 Thailand
- Interaction between Prehistoric Population and Environments in Highland Pang Mapha Project Bangkok 10170 Thailand
| | - Lewis Adler
- Bioanalytical Mass Spectrometry Facility Mark Wainwright Analytical Centre University of New South Wales Sydney NSW 2052 Australia
| | - Andy Baker
- Palaeontology, Geobiology and Earth Archives Research Centre University of New South Wales Sydney NSW 2052 Australia
| | - Kanoknart Chintakanon
- Interaction between Prehistoric Population and Environments in Highland Pang Mapha Project Bangkok 10170 Thailand
- Advanced Dental Technology Center Thailand Science Park Amphoe Khlong Luang, Chang Wat Pathum Thani 12120 Thailand
| | - Ceridwen Boel
- Palaeontology, Geobiology and Earth Archives Research Centre University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage University of New South Wales Sydney NSW 2052 Australia
| | - Paul S.C. Tacon
- PERAHU Griffith Centre for Social and Cultural Research & School of Humanities Languages and Social Science Griffith University Gold Coast campus QLD 4222 Australia
| |
Collapse
|
23
|
Drancourt M, Barbieri R, Cilli E, Gruppioni G, Bazaj A, Cornaglia G, Raoult D. Did Caravaggio die of Staphylococcus aureus sepsis? THE LANCET. INFECTIOUS DISEASES 2018; 18:1178. [PMID: 30236439 DOI: 10.1016/s1473-3099(18)30571-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Michel Drancourt
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections, Institut Hospitalier Universitaire-Méditerranée Infection, 13005 Marseille, France
| | - Rémi Barbieri
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections, Institut Hospitalier Universitaire-Méditerranée Infection, 13005 Marseille, France
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Giorgio Gruppioni
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Alda Bazaj
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Giuseppe Cornaglia
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Didier Raoult
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections, Institut Hospitalier Universitaire-Méditerranée Infection, 13005 Marseille, France.
| |
Collapse
|
24
|
Barbieri R, Drancourt M. Two thousand years of epidemics in Marseille and the Mediterranean Basin. New Microbes New Infect 2018; 26:S4-S9. [PMID: 30402237 PMCID: PMC6205573 DOI: 10.1016/j.nmni.2018.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/12/2018] [Accepted: 08/01/2018] [Indexed: 11/24/2022] Open
Abstract
Marseille has been exposed to epidemics for two millennia, including plague, cholera and yellow fever. This long-standing exposure to epidemics has given the people of Marseilles a particular expertise in fighting epidemics. Lazarets and other quarantine measures were implemented as a response to preventing the further spread of the disease in the community. The Institut Hospitalier Universitaire Méditerranée Infection is paving the way today, with its responses built on the region's long history and knowledge of epidemics, infectious diseases and medical microbiology.
Collapse
Affiliation(s)
| | - M. Drancourt
- Corresponding author: M. Drancourt, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|