1
|
Liu J, Ren Y, Sun Y, Yin Y, Han B, Zhang L, Song Y, Zhang Z, Xu Y, Fan D, Li J, Liu H, Ma C. Identification and Analysis of the MIR399 Gene Family in Grapevine Reveal Their Potential Functions in Abiotic Stress. Int J Mol Sci 2024; 25:2979. [PMID: 38474225 PMCID: PMC10931670 DOI: 10.3390/ijms25052979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
MiR399 plays an important role in plant growth and development. The objective of the present study was to elucidate the evolutionary characteristics of the MIR399 gene family in grapevine and investigate its role in stress response. To comprehensively investigate the functions of miR399 in grapevine, nine members of the Vvi-MIR399 family were identified based on the genome, using a miRBase database search, located on four chromosomes (Chr 2, Chr 10, Chr 15, and Chr 16). The lengths of the Vvi-miR399 precursor sequences ranged from 82 to 122 nt and they formed stable stem-loop structures, indicating that they could produce microRNAs (miRNAs). Furthermore, our results suggested that the 2 to 20 nt region of miR399 mature sequences were relatively conserved among family members. Phylogenetic analysis revealed that the Vvi-MIR399 members of dicots (Arabidopsis, tomato, and sweet orange) and monocots (rice and grapevine) could be divided into three clades, and most of the Vvi-MIR399s were closely related to sweet orange in dicots. Promoter analysis of Vvi-MIR399s showed that the majority of the predicted cis-elements were related to stress response. A total of 66.7% (6/9) of the Vvi-MIR399 promoters harbored drought, GA, and SA response elements, and 44.4% (4/9) of the Vvi-MIRR399 promoters also presented elements involved in ABA and MeJA response. The expression trend of Vvi-MIR399s was consistent in different tissues, with the lowest expression level in mature and young fruits and the highest expression level in stems and young leaves. However, nine Vvi-MIR399s and four target genes showed different expression patterns when exposed to low light, high light, heat, cold, drought, and salt stress. Interestingly, a putative target of Vvi-MIR399 targeted multiple genes; for example, seven Vvi-MIR399s simultaneously targeted VIT_213s0067g03280.1. Furthermore, overexpression of Vvi_MIR399e and Vvi_MIR399f in Arabidopsis enhanced tolerance to drought compared with wild-type (WT). In contrast, the survival rate of Vvi_MIR399d-overexpressed plants were zero after drought stress. In conclusion, Vvi-MIR399e and Vvi-MIR399f, which are related to drought tolerance in grapevine, provide candidate genes for future drought resistance breeding.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China; (J.L.)
| | - Yi Ren
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Sun
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli 066600, China
| | - Yonggang Yin
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli 066600, China
| | - Bin Han
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli 066600, China
| | - Lipeng Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China; (J.L.)
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junpeng Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huaifeng Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China; (J.L.)
| | - Chao Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Wang Y, Guo M, Zhang W, Gao Y, Ma X, Cheng S, Chen G. Exogenous melatonin activates the antioxidant system and maintains postharvest organoleptic quality in Hami melon ( Cucumis. melo var. inodorus Jacq.). FRONTIERS IN PLANT SCIENCE 2023; 14:1274939. [PMID: 37965030 PMCID: PMC10642945 DOI: 10.3389/fpls.2023.1274939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
Hami melon is prone to postharvest perishing. Melatonin is a signaling molecule involved in a variety of physiological processes in fruit, and it improves fruit quality. We hypothesized that melatonin treatment would improve the storage quality of Hami melon by altering its respiration and reactive oxygen species (Graphical abstract). Our results indicated that optimal melatonin treatment (0.5 mmol L-1) effectively slowed the softening, weight loss, and respiratory rate of the Hami melon fruit. Furthermore, melatonin markedly improved the antioxidant capacity of the fruit and protected it from oxidative damage by decreasing its contents of superoxide anions, hydrogen peroxide, and malondialdehyde. Melatonin significantly enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase. The total phenol, total flavonoids, and ascorbic acid contents were maintained by melatonin treatment. This treatment also repressed the activities of lipase, lipoxygenase, and phospholipase D, which are related to lipid metabolism. Thus, exogenous melatonin can maintain postharvest organoleptic quality of Hami melon fruit by increasing its antioxidant activity and inhibiting reactive oxygen species production.
Collapse
Affiliation(s)
- Yue Wang
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| | - Minrui Guo
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| | - Weida Zhang
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| | - Yujie Gao
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| | - Xiaoqin Ma
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| | - Shaobo Cheng
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| | - Guogang Chen
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Lu L, Luo W, Yu W, Zhou J, Wang X, Sun Y. Identification and Characterization of Csa-miR395s Reveal Their Involvements in Fruit Expansion and Abiotic Stresses in Cucumber. FRONTIERS IN PLANT SCIENCE 2022; 13:907364. [PMID: 35783939 PMCID: PMC9240705 DOI: 10.3389/fpls.2022.907364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/13/2022] [Indexed: 05/06/2023]
Abstract
The miR395 plays an indispensable role in biochemical processes by regulating their target genes. However, little is known about the roles of miR395 in cucumber fruit expansion and response to abiotic stresses. Here, 4 Csa-miR395s and 8 corresponding target genes were identified in the cucumber genome. Csa-miR395s were all located on the same chromosome (Chr 5). Csa-miR395a/b/c and Csa-miR395d were distributed in different branches without a closer genetic relationship. Massive cis-acting elements, including light, phytohormone, and stress response elements, were detected in the promoter regions of Csa-MIR395s, indicating that Csa-miR395s might be involved in complex regulatory networks to control cucumber growth and development and stress response. In addition, Csa-miR395a/b/c shared the same target genes, and Csa-miR395d had its specific target genes. Tissue-specific expression analysis showed that Csa-miR395a/b/c were all expressed in the leaf, root, ovary, and expanded fruit of cucumber and highly expressed in the expanded fruits compared to the ovary, while Csa2G215520 and Csa1G502860 (target genes of Csa-miR395a/b/c) presented a downregulated trend in the expanded fruit compared to the ovary. Meanwhile, the protein co-expression network revealed that these target genes had interactions in sulfur metabolism. These results suggested that Csa-miR395a/b/c targeting Csa2G215520 and Csa1G502860 might promote cucumber fruit expansion by affecting sulfur metabolism. Additionally, Quantitative Real-time PCR analysis validated that Csa-miR395s could be regulated by NaCl stress, and Csa-miR395a/b/c could respond to PEG stress, which further confirmed the reliability of cis-acting elements data. Taken together, our results could be helpful for further exploration of the functions of miR395s in cucumber fruit expansion and response to abiotic stresses.
Collapse
Affiliation(s)
- Lin Lu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Weirong Luo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, China
| | - Junguo Zhou
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Xinfa Wang
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Yongdong Sun
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
- *Correspondence: Yongdong Sun
| |
Collapse
|
4
|
Jafari M, Shiran B, Rabiei G, Ravash R, Sayed Tabatabaei BE, Martínez-Gómez P. Identification and verification of seed development related miRNAs in kernel almond by small RNA sequencing and qPCR. PLoS One 2021; 16:e0260492. [PMID: 34851991 PMCID: PMC8635354 DOI: 10.1371/journal.pone.0260492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
Many studies have investigated the role of miRNAs on the yield of various plants, but so far, no report is available on the identification and role of miRNAs in fruit and seed development of almonds. In this study, preliminary analysis by high-throughput sequencing of short RNAs of kernels from the crosses between almond cultivars 'Sefid' × 'Mamaee' (with small and large kernels, respectively) and 'Sefid' × 'P. orientalis' (with small kernels) showed that the expressions of several miRNAs such as Pdu-miR395a-3p, Pdu-miR8123-5p, Pdu-miR482f, Pdu-miR6285, and Pdu-miR396a were significantly different. These miRNAs targeted genes encoding different proteins such as NYFB-3, SPX1, PGSIP3 (GUX2), GH3.9, and BEN1. The result of RT-qPCR revealed that the expression of these genes showed significant differences between the crosses and developmental stages of the seeds, suggesting that these genes might be involved in controlling kernel size because the presence of these miRNAs had a negative effect on their target genes. Pollen source can influence kernel size by affecting hormonal signaling and metabolic pathways through related miRNAs, a phenomenon known as xenia.
Collapse
Affiliation(s)
- Marjan Jafari
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
- Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Gholamreza Rabiei
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Roudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | | | | |
Collapse
|
5
|
Li Y, Luo W, Sun Y, Chang H, Ma K, Zhao Z, Lu L. Identification and Expression Analysis of miR160 and Their Target Genes in Cucumber. Biochem Genet 2021; 60:127-152. [PMID: 34117971 DOI: 10.1007/s10528-021-10093-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
miR160 plays a crucial role in various biological processes by regulating their target gene auxin response factor (ARF) in plants. However, little is known about miR160 and ARF in cucumber fruit expansion. Here, 4 Csa-MIR160 family members and 17 CsARFs were identified through a genome-wide search. Csa-miR160 showed a closer relationship with those in melon. Phylogenetic analysis revealed that CsARFs were divided into four classes and most of CsARFs presented a closer evolutionary relationship with those from tomato. Putative cis-elements analysis predicted that Csa-MIR160 and CsARFs were involved in light, phytohormone and stress response, which proved that they might take part in light, phytohormone and stress signaling pathway by the miR160-ARF module. In addition, CsARF5, CsARF11, CsARF13 and CsARF14 were predicted as the target genes of Csa-miR160. qRT-PCR revealed that Csa-miR160 and their target gene CsARFs were differentially expressed in differential cucumber tissues and developmental stages. Csa-miR160d was only expressed in the expanded cucumber fruit. CsARF5, CsARF11 and CsARF13 exhibited the lower expression in the expanded fruit than those in the ovary, while, CsARF14 showed the reverse trend. Our results suggested that Csa-miR160d might play a crucial role in cucumber fruit expansion by negatively targeting CsARF5, CsARF11 and CsARF13. This is the first genome-wide analysis of miR160 in cucumber. These findings provide useful information and resources for further studying the role of miR160 and ARF in cucumber fruit expansion.
Collapse
Affiliation(s)
- Yaoyao Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Weirong Luo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Yongdong Sun
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China. .,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China.
| | - Huaicheng Chang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Kai Ma
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhenxiang Zhao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Lin Lu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| |
Collapse
|
6
|
Bai S, Tian Y, Tan C, Bai S, Hao J, Hasi A. Genome-wide identification of microRNAs involved in the regulation of fruit ripening and climacteric stages in melon ( Cucumis melo). HORTICULTURE RESEARCH 2020; 7:106. [PMID: 32637134 PMCID: PMC7327070 DOI: 10.1038/s41438-020-0331-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 05/31/2023]
Abstract
Fruit ripening is influenced by multiple plant hormones and the regulation of genes. However, studies on posttranscriptional regulators (e.g., miRNAs) of fruit growth and ripening are limited. We used miRNA sequencing and degradome methods to identify miRNAs and their target genes in melon (Cucumis melo cv. Hetao melon). A total of 61 conserved miRNAs and 36 novel miRNAs were identified from fruit growth, ripening, climacteric, and postclimacteric developmental stage samples, of which 32 conserved miRNAs were differentially expressed between developmental stage samples. Sixty-two target genes of 43 conserved miRNAs and 1 novel miRNA were identified from degradome sequencing. To further investigate miRNA influencing fruit ripening, transgenic melon plants overexpressing pre-cme-miR393 (cme-miR393-OE) were generated and characterized. The results showed that fruit ripening was delayed in cme-miR393-OE transgenic lines compared to nontransgenic fruits. The target of cme-miR393 was also identified, and the expression of CmAFB2 was repressed in transgenic plants. These results provide evidence that miRNA regulates melon fruit ripening and provide potential targets to improve the horticultural traits of melon fruit.
Collapse
Affiliation(s)
- Selinge Bai
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010070 Hohhot, China
| | - Yunyun Tian
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010070 Hohhot, China
| | - Chao Tan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010070 Hohhot, China
| | - Shunbuer Bai
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010070 Hohhot, China
| | - Jinfeng Hao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010070 Hohhot, China
| | - Agula Hasi
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010070 Hohhot, China
| |
Collapse
|
7
|
Identification of miRNAs and Their Target Genes Involved in Cucumber Fruit Expansion Using Small RNA and Degradome Sequencing. Biomolecules 2019; 9:biom9090483. [PMID: 31547414 PMCID: PMC6769560 DOI: 10.3390/biom9090483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Fruit expansion is an essential and very complex biological process. Regulatory roles of microRNAs (miRNAs) and miRNA-mRNA modules in the cucumber fruit expansion are not yet to be investigated. In this work, 1253 known and 1269 novel miRNAs were identified from nine cucumber fruit small RNA (sRNA) libraries through high-throughput sequencing. A total of 105 highly differentially expressed miRNAs were recognized in the fruit on five days post anthesis with pollination (EXP_5d) sRNA library. Further, expression patterns of 11 differentially expressed miRNAs were validated by quantitative real-time PCR (qRT-PCR). The expression patterns were similar to sRNAs sequencing data. Transcripts of 1155 sequences were predicted as target genes of differentially expressed miRNAs by degradome sequencing. Gene Ontology (GO) enrichment showed that these target genes were involved in 24 biological processes, 15 cell components and nine molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that these target genes were significantly enriched in 19 pathways and the enriched KEGG pathways were associated with environmental adaptation, signal transduction and translation. Based on the functional prediction of miRNAs and target genes, our findings suggest that miRNAs have a potential regulatory role in cucumber fruit expansion by targeting their target genes, which provide important data for understanding the miRNA-mediated regulatory networks controlling fruit expansion in cucumber. Specific miRNAs could be selected for further functional research and molecular breeding in cucumber.
Collapse
|
8
|
Guo DL, Li Q, Lv WQ, Zhang GH, Yu YH. MicroRNA profiling analysis of developing berries for 'Kyoho' and its early-ripening mutant during berry ripening. BMC PLANT BIOLOGY 2018; 18:285. [PMID: 30445920 PMCID: PMC6240241 DOI: 10.1186/s12870-018-1516-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/31/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND 'Fengzao' is an early-ripening bud mutant of 'Kyoho', which matures nearly 30 days earlier than 'Kyoho'. To gain a better understanding of the regulatory role of miRNAs in early-ripening of grape berry, high-throughput sequencing approach and quantitative RT-PCR validation were employed to identify miRNAs at the genome-wide level and profile the expression patterns of the miRNAs during berry development in 'Kyho' and 'Fengzao', respectively. RESULTS Nine independent small RNA libraries were constructed and sequenced in two varieties from key berry development stages. A total of 108 known miRNAs and 61 novel miRNAs were identified. Among that, 159 miRNAs identified in 'Fengzao' all completely expressed in 'Kyoho' and there were 10 miRNAs specifically expressed in 'Kyoho'. The expression profiles of known and novel miRNAs were quite similar between two varieties. As the major differentially expressed miRNAs, novel_144, vvi-miR3626-3p and vvi-miR3626-5p only expressed in 'Kyoho', vvi-miR399b and vvi-miR399e were down-regulated in 'Fengzao', while vvi-miR477b-3p up-regulated in 'Fengzao'. According to the expression analysis and previous reports, miR169-NF-Y subunit, miR398-CSD, miR3626-RNA helicase, miR399- phosphate transporter and miR477-GRAS transcription factor were selected as the candidates for further investigations of miRNA regulation role in the early-ripening of grape. The qRT-PCR analyses validated the contrasting expression patterns for these miRNAs and their target genes. CONCLUSIONS The miRNAome of the grape berry development of 'Kyoho', and its early-ripening bud mutant, 'Fengzao' were compared by high-throughput sequencing. The expression pattern of several key miRNAs and their target genes during grape berry development and ripening stages was examined. Our results provide valuable basis towards understanding the regulatory mechanisms of early-ripening of grape berry.
Collapse
Affiliation(s)
- Da-Long Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Qiong Li
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Wen-Qing Lv
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Guo-Hai Zhang
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Yi-He Yu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| |
Collapse
|