1
|
Yu Q, Li H, Du L, Shen L, Zhang J, Yuan L, Yao H, Xiao H, Bai Q, Jia Y, Qiu J, Li Y. Transcriptional regulation of the yersiniabactin receptor fyuA gene by the ferric uptake regulator in Klebsiella pneumoniae NTUH-K2044. J Basic Microbiol 2024; 64:e2400001. [PMID: 38679904 DOI: 10.1002/jobm.202400001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
The ferric uptake regulator (Fur) is a global regulator that influences the expression of virulence genes in Klebsiella pneumoniae. Bioinformatics analysis suggests Fur may involve in iron acquisition via the identified regulatory box upstream of the yersiniabactin receptor gene fyuA. To observe the impact of the gene fyuA on the virulence of K. pneumoniae, the gene fyuA knockout strain and complementation strain were constructed and then conducted a series of phenotypic experiments including chrome azurol S (CAS) detection, crystal violet staining, and wax moth virulence experiment. To examine the regulatory relationship between Fur and the gene fyuA, green fluorescent protein (GFP) reporter gene fusion assay, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), gel migration assay (EMSA), and DNase I footprinting assay were used to clarify the regulatory mechanism of Fur on fyuA. CAS detection revealed that the gene fyuA could affect the generation of iron carriers in K. pneumoniae. Crystal violet staining experiment showed that fyuA could positively influence biofilm formation. Wax moth virulence experiment indicated that the deletion of the fyuA could weaken bacterial virulence. GFP reporter gene fusion experiment and RT-qPCR analysis revealed that Fur negatively regulated the expression of fyuA in iron-sufficient environment. EMSA experiment demonstrated that Fur could directly bind to the promoter region of fyuA, and DNase I footprinting assay further identified the specific binding site sequences. The study showed that Fur negatively regulated the transcriptional expression of fyuA by binding to upstream of the gene promoter region, and then affected the virulence of K. pneumoniae.
Collapse
Affiliation(s)
- Qian Yu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Hailin Li
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Ling Du
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Lifei Shen
- Jiangbei District Center for Disease Control and Prevention, Jiangbei, Chongqing, China
| | - Jiaxue Zhang
- Jiangbei District Center for Disease Control and Prevention, Jiangbei, Chongqing, China
| | - Lingyue Yuan
- Shanghai Center for Disease Control and Prevention, Shanghai, China
| | - Huang Yao
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Hong Xiao
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Qunhua Bai
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jingfu Qiu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yingli Li
- School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
David C, Czauderna A, Cheng L, Lagune M, Jung HJ, Kim SG, Pamer EG, Prados J, Chen L, Becattini S. Intestinal carbapenem-resistant Klebsiella pneumoniae undergoes complex transcriptional reprogramming following immune activation. Gut Microbes 2024; 16:2340486. [PMID: 38659243 PMCID: PMC11057644 DOI: 10.1080/19490976.2024.2340486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is a significant threat to public health worldwide. The primary reservoir for CR-Kp is the intestinal tract. There, the bacterium is usually present at low density but can bloom following antibiotic treatment, mostly in hospital settings. The impact of disturbances in the intestinal environment on the fitness, survival, expansion, and drug susceptibility of this pathogen is not well-understood, yet it may be relevant to devise strategies to tackle CR-Kp colonization and infection. Here, we adopted an in vivo model to examine the transcriptional adaptation of a CR-Kp clinical isolate to immune activation in the intestine. We report that as early as 6 hours following host treatment with anti-CD3 antibody, CR-Kp underwent rapid transcriptional changes including downregulation of genes involved in sugar utilization and amino acid biosynthesis and upregulation of genes involved in amino acid uptake and catabolism, antibiotic resistance, and stress response. In agreement with these findings, treatment increased the concentration of oxidative species and amino acids in the mouse intestine. Genes encoding for proteins containing the domain of unknown function (DUF) 1471 were strongly upregulated, however their deletion did not impair CR-Kp fitness in vivo upon immune activation. Transcription factor enrichment analysis identified the global regulator cAMP-Receptor Protein, CRP, as a potential orchestrator of the observed transcriptional signature. In keeping with the recognized role of CRP in regulating utilization of alternative carbon sources, crp deletion in CR-Kp resulted in strongly impaired gut colonization, although this effect was not amplified by immune activation. Thus, following intestinal colonization, which occurs in a CRP-dependent manner, CR-Kp can rapidly respond to immune cues by implementing a well-defined and complex transcriptional program whose direct relevance toward bacterial fitness warrants further investigation. Additional analyses utilizing this model may identify key factors to tackle CR-Kp colonization of the intestine.
Collapse
Affiliation(s)
- Clement David
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aleksander Czauderna
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Liqing Cheng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marion Lagune
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hea-Jin Jung
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sohn G. Kim
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Eric G. Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Julien Prados
- Bioinformatics Support Platform for data analysis, Faculty of medicine, University of Geneva, Geneva, Switzerland
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Simone Becattini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Horng YT, Dewi Panjaitan NS, Chang HJ, Wei YH, Chien CC, Yang HC, Chang HY, Soo PC. A protein containing the DUF1471 domain regulates biofilm formation and capsule production in Klebsiella pneumoniae. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:1246-1254. [PMID: 34924339 DOI: 10.1016/j.jmii.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND/PURPOSE Biofilms formed by Klebsiella pneumoniae on medical devices increase infection risk. Fimbriae and capsule polysaccharides (CPSs) are important factors involved in biofilm formation. KP1_4563 in K. pneumoniae NTUH-K2044, a small protein containing the DUF1471 domain, was reported to inhibit type 3 fimbriae function. In this study, we aimed to determine whether the KP1_4563 homolog is conserved in each K. pneumoniae isolate and what role it has in Klebsiella biofilms. METHODS The genomes of K. pneumoniae NTUH-K2044, CG43, MGH78578, KPPR1 and STU1 were compared. The KP1_4563 homolog in K. pneumoniae STU1 was named orfX. Biofilms of wild-type and orfX mutant strains from K. pneumoniae STU1 and one clinical isolate, 83535, were quantified. Transcription levels of the type 3 fimbrial genes, mrkA and mrkH, were investigated by RT-qPCR. MrkA of the wild-type and orfX mutant were observed by Western blotting. The morphology of bacterial cells was observed by transmission electron microscopy (TEM). Bacterial CPSs were quantified. RESULTS The gene and upstream region of orfX were conserved among the five K. pneumoniae isolates. Deletion of orfX enhanced Klebsiella biofilm formation. However, the amount of mRNA from mrkA and mrkH and the level of MrkA protein were not different between the wild type and orfX mutant. In contrast, the amount of CPS in orfX mutants was increased, compared to their parental strains, STU1 and 83535. CONCLUSION The role of orfX is speculated to be conserved in most K. pneumoniae isolates. OrfX negatively controlled biofilm formation by reducing CPS, not type 3 fimbriae, production.
Collapse
Affiliation(s)
- Yu-Tze Horng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Novaria Sari Dewi Panjaitan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Hui-Ju Chang
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Yu-Hong Wei
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan, R.O.C
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan, R.O.C
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, R.O.C
| | - Heng-Yuan Chang
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Po-Chi Soo
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C.
| |
Collapse
|
4
|
Bruneaux M, Ashrafi R, Kronholm I, Laanto E, Örmälä‐Tiznado A, Galarza JA, Zihan C, Kubendran Sumathi M, Ketola T. The effect of a temperature-sensitive prophage on the evolution of virulence in an opportunistic bacterial pathogen. Mol Ecol 2022; 31:5402-5418. [PMID: 35917247 PMCID: PMC9826266 DOI: 10.1111/mec.16638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Viruses are key actors of ecosystems and have major impacts on global biogeochemical cycles. Prophages deserve particular attention as they are ubiquitous in bacterial genomes and can enter a lytic cycle when triggered by environmental conditions. We explored how temperature affects the interactions between prophages and other biological levels using an opportunistic pathogen, the bacterium Serratia marcescens, which harbours several prophages and that had undergone an evolution experiment under several temperature regimes. We found that the release of one of the prophages was temperature-sensitive and malleable to evolutionary changes. We further discovered that the virulence of the bacterium in an insect model also evolved and was positively correlated with phage release rates. We determined through analysis of genetic and epigenetic data that changes in the bacterial outer cell wall structure possibly explain this phenomenon. We hypothezise that the temperature-dependent phage release rate acted as a selection pressure on S. marcescens and that it resulted in modified bacterial virulence in the insect host. Our study system illustrates how viruses can mediate the influence of abiotic environmental changes to other biological levels and thus be involved in ecosystem feedback loops.
Collapse
Affiliation(s)
- Matthieu Bruneaux
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Roghaieh Ashrafi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Ilkka Kronholm
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Elina Laanto
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | | | - Juan A. Galarza
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Chen Zihan
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Shenzhen Research InstituteThe Chinese University of Hong KongShenzhenChina
| | - Mruthyunjay Kubendran Sumathi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Tarmo Ketola
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
5
|
Shen L, Zhang J, Xue J, Du L, Yuan L, Nie H, Dai S, Yu Q, Li Y. Regulation of ECP fimbriae-related genes by the transcriptional regulator RcsAB in Klebsiella pneumoniae NTUH-K2044. J Basic Microbiol 2022; 62:593-603. [PMID: 35132658 DOI: 10.1002/jobm.202100595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 11/11/2022]
Abstract
Klebsiella pneumoniae is one of the major pathogens causing nosocomial infections. The regulator of capsule synthesis (Rcs) system is a complex signal transduction pathway that is involved in the regulation of virulence factors of K. pneumoniae as an important transcriptional regulator. The RcsAB box-like sequence was found to be present in the promoter-proximal regions of ykgK, one of the ECP fimbriae-related genes, which suggested the expression of ECP fimbriae may be regulated by RcsAB. The ykgK gene in K. pneumoniae has 86% similarity to the ecpR gene in Escherichia coli. Nucleotide sequence alignment revealed a similar ECP fimbriae gene cluster including six genes in K. pneumoniae, which was proved to be on the same operon in this study. The electrophoretic mobility shift assay and DNase I assay, relative fluorescence expression, β-galactosidase activity, and relative gene expression of ykgK in the wild-type and mutant strains were performed to determine the transcriptional regulation mechanism of RcsAB on ECP fimbriae. The mutant ΔykgK and complementary strain ΔykgK/cΔykgK were constructed to complete the Galleria mellonella larvae infection experiment and biofilm formation assay. This study showed that RcsAB binds directly to the promoter region of the ykgK gene to positively regulate ECP fimbriae-related gene clusters, and then positively affect the biofilm formation.
Collapse
Affiliation(s)
- Lifei Shen
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jiaxue Zhang
- Chongqing Jiangbei District Center for Disease Control and Prevention, Chongqing, China
| | - Jian Xue
- Zunyi Medical and Pharmaceutical College, Zunyi, China
| | - Ling Du
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Lingyue Yuan
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hao Nie
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Sue Dai
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Qian Yu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Genome sequencing and comparative genome analysis of 6 hypervirulent Klebsiella pneumoniae strains isolated in China. Arch Microbiol 2021; 203:3125-3133. [PMID: 33811489 PMCID: PMC8019302 DOI: 10.1007/s00203-021-02263-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 11/23/2022]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) has been increasingly reported over the past three decades and causes severe infections. To increase our understanding of hvKP at the genome level, genome sequencing and comparative genome analysis were performed on 6 hvKPs. The whole genome DNA from 6 hvKPs with different capsular serotypes isolated in China was extracted. The genome sequencing and assembly results showed the genome size of the six hvKPs and GC content. Comparative analyses of the genomes revealed the gene homology and genome rearrangement in the 6 hvKPs compared with Klebsiella pneumonia NTUH-K2044. The phylogenetic tree based on full-genome SNPs of the 7 hvKPs showed that NTUH-K2044 formed a single clade, showing distant evolutionary distances with the other six strains, and the non-K1 hvKP strains had a relatively closer phylogenetic relationship. BLAST comparison analysis found that some selected virulence genes had different degrees of deletion in the non-K1 hvKPs. SNP-based virulence gene mutation analysis showed that some virulence genes had different degrees of SNP mutations. The whole-genome sequencing and comparative genome analysis of six hvKP strains with NTUH-K2044 provide us with a basic understanding of the genome composition, genetic polymorphism, evolution and virulence genes of hvKP and a basis for further research on these genes and the pathogenesis of hvKP.
Collapse
|
7
|
Yuan L, Li X, Du L, Su K, Zhang J, Liu P, He Q, Zhang Z, Peng D, Shen L, Qiu J, Li Y. RcsAB and Fur Coregulate the Iron-Acquisition System via entC in Klebsiella pneumoniae NTUH-K2044 in Response to Iron Availability. Front Cell Infect Microbiol 2020; 10:282. [PMID: 32587833 PMCID: PMC7298118 DOI: 10.3389/fcimb.2020.00282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/12/2020] [Indexed: 01/21/2023] Open
Abstract
The iron acquisition system is an essential virulence factor for human infection and is under tight regulatory control in a variety of pathogens. Ferric-uptake regulator (Fur) is one of Fe2+-responsive transcription factor that maintains iron homeostasis, and the regulator of capsule synthesis (Rcs) is known to regulate exopolysaccharide biosynthesis. We speculate the Rcs may involve in iron-acquisition given the identified regulator box in the upstream of entC that participated in the biosynthesis of enterobactin. To study the coregulation by RcsAB and Fur of entC, we measured the β-galactosidase activity and relative mRNA expression of entC in WT and mutant strains. The RcsAB- and Fur-protected regions were identified by an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay. A regulatory cascade was identified with which Fur repressed rcsA expression and reduced RcsAB and entC expression. Our study demonstrated that entC was coregulated by two different transcriptional regulators, namely, RcsAB and Fur, in response to iron availability in Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Lingyue Yuan
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xuan Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ling Du
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Kewen Su
- Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, China
| | - Jiaxue Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Pin Liu
- Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Qiang He
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Zhongshuang Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Dan Peng
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Lifei Shen
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Panjaitan NSD, Horng YT, Cheng SW, Chung WT, Soo PC. EtcABC, a Putative EII Complex, Regulates Type 3 Fimbriae via CRP-cAMP Signaling in Klebsiella pneumoniae. Front Microbiol 2019; 10:1558. [PMID: 31354661 PMCID: PMC6629953 DOI: 10.3389/fmicb.2019.01558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023] Open
Abstract
Biofilm formation by Klebsiella pneumoniae on indwelling medical devices increases the risk of infection. Both type 1 and type 3 fimbriae are important factors in biofilm formation by K. pneumoniae. We found that a putative enzyme II (EII) complex of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), etcA (EIIA)-etcB (EIIB)-etcC (EIIC), regulated biofilm and type 3 fimbriae formation by K. pneumoniae STU1. In this study, the regulatory mechanism of etcABC in K. pneumoniae type 3 fimbriae formation was investigated. We found via quantitative RT-PCR that overexpression of etcABC enhanced the transcription level of the mrk operon, which is involved in type 3 fimbriae synthesis, and reduced the transcription level of the fim operon, which is involved in type 1 fimbriae synthesis. To gain further insight into the role of etcABC in type 3 fimbriae synthesis, we analyzed the region upstream of the mrk operon and found the potential cyclic 3′5′-adenosine monophosphate (cAMP) receptor protein (CRP) binding site. After crp was deleted in K. pneumoniae STU1 and two clinical isolates, these three crp mutant strains could not express MrkA, the major subunit of the fimbrial shaft, indicating that CRP positively regulated type 3 fimbriae synthesis. Moreover, a crp mutant overexpressing etcABC could not express MrkA, indicating that the regulation of type 3 fimbriae by etcABC was dependent on CRP. In addition, deletion of cyaA, which encodes the adenylyl cyclase that synthesizes cAMP, and deletion of crr, which encodes the glucose-specific EIIA, led to a reduction in lac operon regulation and therefore bacterial lactose uptake in K. pneumoniae. Exogenous cAMP but not etcABC overexpression compensated for the role of cyaA in bacterial lactose uptake. However, either etcABC overexpression or exogenous cAMP compensated for the role of crr in bacterial lac operon regulation that would eventually restore lactose uptake. We also found via ELISA and the luxCDABE reporter system that overexpression of etcABC increased intracellular cAMP levels and the transcription level of crp, respectively, in K. pneumoniae. In conclusion, overexpression of etcABC positively regulated cAMP production and cAMP-CRP activity to activate the mrk operon, resulting in increased type 3 fimbriae synthesis in K. pneumoniae.
Collapse
Affiliation(s)
| | - Yu-Tze Horng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Shih-Wen Cheng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Wen-Ting Chung
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Po-Chi Soo
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien City, Taiwan.,Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| |
Collapse
|