1
|
Yokota H, Sato K, Sakamoto S, Okuda Y, Takeda M, Akamine Y, Nakayama K, Miura M. Influence of interleukin-6 on the pharmacokinetics and pharmacodynamics of osimertinib in patients with non-small cell lung cancer. Cancer Chemother Pharmacol 2025; 95:49. [PMID: 40156608 PMCID: PMC11954710 DOI: 10.1007/s00280-025-04772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
PURPOSE The inflammatory cytokine interleukin (IL)-6 reduces the activity of drug metabolic enzymes and promotes tumor progression. We investigated the effect of IL-6 on the pharmacokinetics of osimertinib and the association between an IL-6 polymorphism and clinical outcomes in 30 patients with non-small cell lung cancer (NSCLC). METHODS Osimertinib and IL-6 plasma concentrations were measured on day 15 after therapy initiation. The genotype of IL-6 1800796G > C was identified using polymerase chain reaction-restriction fragment length polymorphism. Risk factors affecting overall survival (OS) were assessed by Cox proportional hazard regression analysis. RESULTS The IL-6 concentration was significantly correlated with the osimertinib trough plasma concentration (r = 0.423, P = 0.020) and area under the plasma concentration-time curve (r = 0.420, P = 0.021). The IL-6 concentration was significantly higher in patients with the IL-6 rs1800796G allele versus C/C genotype (P = 0.024). OS was significantly shorter in patients with the IL-6 rs1800796G allele versus C/C genotype (median: 15.1 vs. 48.9 months, P = 0.005). Univariate and multivariate analyses indicated that the IL-6 rs1800796G allele is an independent risk factor for OS (crude hazard ratio = 7.07; P = 0.014; adjusted hazard ratio = 6.38; P = 0.021). CONCLUSION A higher IL-6 concentration was associated with reduced metabolic activity of osimertinib, leading to increased osimertinib exposure. As the IL-6 concentration was higher in NSCLC patients with the IL-6 rs1800796G allele, it might be an independent prognostic factor for patients treated with osimertinib.
Collapse
Affiliation(s)
- Hayato Yokota
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Kazuhiro Sato
- Department of Internal Medicine Division of Respiratory Medicine, Akita University School of Medicine, Akita, Japan
| | - Sho Sakamoto
- Department of Internal Medicine Division of Respiratory Medicine, Akita University School of Medicine, Akita, Japan
| | - Yuji Okuda
- Department of Internal Medicine Division of Respiratory Medicine, Akita University School of Medicine, Akita, Japan
| | - Masahide Takeda
- Department of Internal Medicine Division of Respiratory Medicine, Akita University School of Medicine, Akita, Japan
| | - Yumiko Akamine
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Katsutoshi Nakayama
- Department of Internal Medicine Division of Respiratory Medicine, Akita University School of Medicine, Akita, Japan
| | - Masatomo Miura
- Department of Pharmacy, Akita University Hospital, Akita, Japan.
- Department of Pharmacokinetics, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| |
Collapse
|
2
|
Reis R, Müller GS, Santos MM, Santos AS, Santos H, Santos LS, Lopes BA, Trindade SC, Meyer RJ, Freire SM. Description of lymphocyte and cytokine profiles in individuals with acute myeloid leukemia associated with FLT3-ITD and NPM1 mutation status. Eur J Cancer Prev 2025; 34:115-123. [PMID: 38904445 DOI: 10.1097/cej.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The pathogenesis of acute myeloid leukemia (AML) involves mutations in genes such as FLT3 and NPM1 , which are also associated with the prognosis of the disease. The immune system influences disease progression, but the mechanisms underlying the interaction between the immune system and AML are not clear. In this study, the profiles of lymphocytes and cytokines were described in individuals with AML stratified by molecular changes associated with prognosis. The participants included in this study were newly diagnosed AML patients ( n = 43) who were about to undergo chemotherapy. Subtypes of lymphocytes in peripheral blood, including B cells, T cells, and natural killer cells, and serum concentrations of cytokines, including Th1, Th2, and Th17, were studied by flow cytometry assays (BD FACSCanto II). The correlations between lymphocyte subsets, cytokines, and genetic/prognostic risk stratification (based on the FLT3 and NPM1 genes) were analyzed. The differences in B lymphocytes (%), T lymphocytes (%), plasmablasts (%), leukocytes (cells/µl), and tumor necrosis factor (pg/ml) were determined between groups with FLT3-ITD+ and FLT3-ITD- mutations. The presence of mutations in NPM1 and FLT3-ITD and age suggested changes in the lymphocyte and cytokine profile in individuals with AML.
Collapse
Affiliation(s)
- Rogério Reis
- Immunology and Molecular Biology Laboratory, Federal University of Bahia
- Postgraduate Program in Immunology, Federal University of Bahia
| | - Gabriel S Müller
- Immunology and Molecular Biology Laboratory, Federal University of Bahia
- Postgraduate Program in Immunology, Federal University of Bahia
| | - Mariane M Santos
- Immunology and Molecular Biology Laboratory, Federal University of Bahia
- Postgraduate Program in Immunology, Federal University of Bahia
| | - Allan S Santos
- Immunology and Molecular Biology Laboratory, Federal University of Bahia
- Postgraduate Program in Immunology, Federal University of Bahia
| | - Herbert Santos
- Immunology and Molecular Biology Laboratory, Federal University of Bahia
- Professor Edgard Santos University Hospital, Salvador, BA
| | - Lorene S Santos
- Immunology and Molecular Biology Laboratory, Federal University of Bahia
| | | | - Soraya C Trindade
- Departament of Health, State University of Feira de Santana, Feira de Santana
| | - Roberto J Meyer
- Immunology and Molecular Biology Laboratory, Federal University of Bahia
- Postgraduate Program in Immunology, Federal University of Bahia
- Departament of Health, State University of Feira de Santana, Feira de Santana
| | - Songelí M Freire
- Immunology and Molecular Biology Laboratory, Federal University of Bahia
- Postgraduate Program in Immunology, Federal University of Bahia
- Department of Biointeraction, Federal University of Bahia, Salvador, BA, Brazil
| |
Collapse
|
3
|
Sardarabadi P, Lee KY, Sun WL, Kojabad AA, Liu CH. Investigating T Cell Immune Dynamics and IL-6's Duality in a Microfluidic Lung Tumor Model. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4354-4367. [PMID: 39471283 PMCID: PMC11758792 DOI: 10.1021/acsami.4c09065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Interleukin 6 (IL-6), produced by immune cells, is crucial in promoting T cell trafficking to infection and inflammation sites, influencing various physiological and pathological processes. Concentrations of IL-6 and other cytokines and chemokines can influence T cell differentiation and activation. Understanding the dual faces of IL-6 within the tumor microenvironment is crucial to understanding its role. A flow-based microsystem was designed to investigate CD4+ T cell activation in response to different IL-6 gradients in an under-control 3D culture. The study found that cancer cells' response to varying IL-6 concentrations was dynamic and dose-sensitive, with immune cell migration rates showing sensitivity to the IL-6 gradient. A549 cell expansion increases gradually and time-dependently with 50 ng of IL-6, while Jurkat cell migration follows a time-dependent pattern. However, when a total of 100 ng IL-6 concentration is applied, A549 cells expand rapidly, potentially influencing Jurkat cell migration. Jurkat cell mobility is lower, possibly due to increased A549 cell presence and heightened cell-cell interactions. Different IL-6 concentration gradients can modulate the expression of some CD markers like CD69 and programed cell death protein 1 in CD4+ T cells, suggesting that IL-6 concentration gradients affect immune cell phenotypes. This suggests that IL-6 plays a crucial role in activating T helper cells and may be involved in the later phases of inflammation. Also, the increased levels of IFN-γ and TNF-α highlight IL-6's impact on T cell inflammatory response. This study emphasizes the intricate effects of IL-6 on T cell activation, phenotype, cytokine production, and phenotypic heterogeneity, providing valuable insights into immune response modulation in an experimental setting.
Collapse
Affiliation(s)
- Parvaneh Sardarabadi
- Institute
of Nanoengineering and Microsystems, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
| | - Kang-Yun Lee
- Division
of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho
Hospital, Taipei Medical University, New Taipei City 235, Taiwan, R.O.C
- Division
of Pulmonary Medicine, Department of Internal Medicine, School of
Medicine, College of Medicine, Taipei Medical
University, Taipei 110, Taiwan, R.O.C
- TMU
Research Center for Thoracic Medicine, Taipei
Medical University, Taipei 110, Taiwan, R.O.C
| | - Wei-Lun Sun
- Pythia
Biotech LTD., New Taipei City 23561, Taiwan,
R.O.C
| | - Amir Asri Kojabad
- Department
of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Cheng-Hsien Liu
- Institute
of Nanoengineering and Microsystems, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
- Department
of Power Mechanical Engineering, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 30044, Taiwan, R.O.C
| |
Collapse
|
4
|
Pennel KAF, Kurniawan A, Samir Foad Al-Badran S, Schubert Santana L, Quinn J, Nixon C, Hatthakarnkul P, Maka N, Roxburgh C, McMillan D, Edwards J. IL6 and IL6R as Prognostic Biomarkers in Colorectal Cancer. Biomolecules 2024; 14:1629. [PMID: 39766336 PMCID: PMC11727588 DOI: 10.3390/biom14121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Colorectal cancer is the third most diagnosed malignancy worldwide and survival outcomes remain poor. Research is focused on the identification of novel prognostic and predictive biomarkers to improve clinical practice. There is robust evidence in the literature that inflammatory cytokine interleukin-6 (IL6) is elevated systemically in CRC patients and that this phenomenon is a predictor of poor survival outcome. However, evidence is more limited for the role of IL6 and its cognate receptor, IL6R, within the tumour epithelium and microenvironment. This study aimed to investigate IL6 and IL6R expression in a large cohort of retrospectively collected patient tumour specimens and determine association with clinical outcomes and characteristics. High expression of IL6R in the tumour epithelium was associated with reduced cancer-specific survival in patients with right-sided colon cancer. In these patients, high IL6R expression was also associated with an increased systemic neutrophil-to-lymphocyte ratio. A high number of copies of IL6 mRNA within the tumour-associated stroma, but not epithelium, was associated with reduced cancer-specific survival. The results from this study have validated IL6R as a marker of poor prognosis in a subgroup of CRC patients and identified the spatially resolved prognostic nature of intra-tumoural IL6 expression. This study has also highlighted the need for investigation of IL6/IL6R-targeted therapies as novel treatment strategies for patients with colon cancer.
Collapse
Affiliation(s)
- Kathryn A. F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| | - Ahmad Kurniawan
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| | - Sara Samir Foad Al-Badran
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| | - Leonor Schubert Santana
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| | - Jean Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow G61 1BD, UK;
| | - Phimmada Hatthakarnkul
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| | - Noori Maka
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Campbell Roxburgh
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
- Academic Unit of Surgery, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
| | - Donald McMillan
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
- Academic Unit of Surgery, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK (S.S.F.A.-B.); (L.S.S.)
| |
Collapse
|
5
|
Metwally YF, Elsaid AM, Elsadda RR, Refaat S, Zahran RF. Impact of IL-6 and IL-1β Gene Variants on Non-small-cell Lung Cancer Risk in Egyptian Patients. Biochem Genet 2024; 62:3367-3388. [PMID: 38103126 PMCID: PMC11427554 DOI: 10.1007/s10528-023-10596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Lung cancer is a serious health and life issue, with the fastest-growing incidence and fatality rates worldwide. It is now clear that inflammation is a key factor involved in all aspects of carcinogenesis, notably lung cancer development. Genetic changes, including polymorphisms in inflammatory genes, are supposed to be a significant cause of increased lung cancer risk. The main idea of this research was to disclose the linkage between both IL-6 rs1800795 and IL-1β rs16944 variants and susceptibility to non-small-cell lung cancer (NSCLC) in Egyptians. This case-control design was composed of 127 cases and 138 controls, which were genotyped using the ARMS-PCR technique. To examine the NSCLC susceptibility under various genetic models, the odds ratio (OR) and 95% confidence intervals (CIs) were determined by logistic regression. Rs1800795 of the IL-6 gene was linked to higher odds of NSCLC under the allele model (adjusted, OR 2.28; 95% CI 1.2-4.33; p = 0.011). In the genetic models, IL-6 rs1800795 elevated the odds of NSCLC, while IL-1β rs16944 decreased the odds of NSCLC. Stratification analysis showed that IL-6 rs1800795 greatly increased the NSCLC risk in females and adenocarcinoma subtypes, whereas IL-1β rs16944 largely decreased the NSCLC risk for males, patients aged < 55, and nonsmokers. Regarding clinical data, the IL-6 variant was remarkably correlated with tumor size. This work primarily established that IL-6 and IL-1β variants have a great impact on NSCLC development in the Egyptian population; thus, it may be a supportive guide for earlier NSCLC prevention.
Collapse
Affiliation(s)
- Yomna F Metwally
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt.
| | - Afaf M Elsaid
- Genetics Unit, Children Hospital, Mansoura University, Mansoura, Egypt
| | - Rana R Elsadda
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Sherif Refaat
- Oncology Department, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Rasha F Zahran
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| |
Collapse
|
6
|
Deshmukh V, Chiplunkar S, Sardeshmukh S, Patil T, Shinde J, Gupta V, Gujar S, Sardeshmukh N, Pathak S, Chavan S, Pradhan T, Godbole J. Selective Adjuvant Ayurvedic Treatment Modulates Immune Response and Oxidative Stress in a Patient with Carcinoma of the Pyriform Fossa, Undergoing Radiotherapy: A Case Study. Complement Med Res 2024; 31:577-591. [PMID: 39293422 DOI: 10.1159/000541254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/31/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Hypopharyngeal squamous cell carcinoma, stage III has poor prognosis with only 25% chance of 5 years of relative survival in such patients in spite of conventional treatment including radical surgery, radiotherapy, and concurrent chemotherapy. CASE PRESENTATION A chronic tobacco-betel nut chewer 62-year-old male patient had dysphagia with hoarseness of voice diagnosed with stage III, grade II malignant pyriform fossa. The patient underwent 9 cycles of neoadjuvant chemotherapy with Inj Paclitaxel 100 mg and Inj Cisplatin 40 mg. He was then referred to our institute for Radical Radiotherapy with concurrent chemotherapy with adjunct Ayurvedic treatment. A total dose of 70 Gy of radiation with cobalt 60 source was administered to the bilateral face and neck, in 35 fractions. Patient also received 6 cycles of concurrent weekly chemotherapy with Inj Cisplatin 40 mg. He received well-planned adjunct Ayurvedic treatment in the form of oral Ayurvedic medicines (OAM) and detoxifying treatment, Panchakarma. All the measured adverse effects of radiotherapy such as Stomatitis, Xerostomia, Taste Alteration, Dysphagia, and Nausea were observed to be remarkably low during and post radiotherapy in this patient. Karnofsky and Quality of Life (QoL) scores revealed patient's well-being throughout the treatment course. After 5 years, PET CT scan revealed no FDG avid locoregional recurrence or distant organ involvement implying disease-free survival (DFS). Various chemokines, cytokines, and oxidative stress markers were assessed during the course of treatment to observe tumour microenvironment. CONCLUSION The present case of Head & Neck Cancer (HNC), stage III, and grade II belonged to high-grade, high-risk hypopharyngeal cancer with poor prognosis. The patient opted for Ayurvedic treatment besides radiotherapy, which continued thereafter for 5 years. We therefore emphasize that in this case, minimum side effects of radiotherapy, immunomodulation, and reduction in inflammation and oxidative stress along with good quality of life can be attributed to OAM and repeated detoxifying Panchakarma treatment supported with healthy diet and good lifestyle. The highlight of the study is the marked effect on the patient's immune response and reduction in oxidative stress, leading to 5 years and beyond of DFS.
Collapse
Affiliation(s)
- Vineeta Deshmukh
- BSDT's Integrated Cancer Treatment and Research Centre [ICTRC], Pune, India
| | - Shubhada Chiplunkar
- Advanced Centre for Treatment, Research and Education in Cancer [ACTREC], Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute (HBNI) Anushaktinagar, Mumbai, India
| | | | - Tushar Patil
- BSDT's Integrated Cancer Treatment and Research Centre [ICTRC], Pune, India
| | - Jagdish Shinde
- BSDT's Integrated Cancer Treatment and Research Centre [ICTRC], Pune, India
| | - Vidya Gupta
- BSDT's Integrated Cancer Treatment and Research Centre [ICTRC], Pune, India
| | - Shweta Gujar
- BSDT's Integrated Cancer Treatment and Research Centre [ICTRC], Pune, India
| | | | - Shridevi Pathak
- BSDT's Integrated Cancer Treatment and Research Centre [ICTRC], Pune, India
| | - Sandeep Chavan
- BSDT's Integrated Cancer Treatment and Research Centre [ICTRC], Pune, India
| | - Trupti Pradhan
- Advanced Centre for Treatment, Research and Education in Cancer [ACTREC], Tata Memorial Centre, Navi Mumbai, India
| | - Jueelee Godbole
- Advanced Centre for Treatment, Research and Education in Cancer [ACTREC], Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
7
|
van der Laan P, van der Graaf WTA, van den Broek D, van Boven H, Heeres BC, Schrage Y, Haas RL, Steeghs N, van Houdt WJ. Interleukin-6 in relation to early recurrence in primary, localized soft tissue sarcoma: An addition for existing risk classification systems? EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108530. [PMID: 39083882 DOI: 10.1016/j.ejso.2024.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Several inflammatory markers have gained interest as prognostic factors for cancer. The aim of this study is to evaluate the inflammatory markers interleukin-6 (IL-6), C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as predictive markers for aggressive behavior and early recurrences in primary, localized soft tissue sarcoma (STS). METHODS 115 STS patients were retrospectively reviewed. IL-6 and CRP blood levels, NLR and PLR were obtained prior to treatment. Early recurrence was defined as disease relapse (local or distant) within the first year after surgery. Cox regression analysis was used to identify prognostic factors for early recurrence. RESULTS IL-6 elevation was associated with a higher tumor grade, increased size, tumor necrosis and a higher mitotic count. NLR elevation was associated with a higher tumor grade, PLR elevation with a larger tumor size. Early recurrences were found in 24 patients (21 %). Univariable analysis revealed that tumor grade (p = 0.029), tumor size (p = 0.030, >10 cm vs < 5 cm), tumor depth (p = 0.036), necrosis on imaging (p = 0.008), mitotic count (p = 0.045, ≥20 mitoses vs 0-9 mitoses), and IL-6 level (p = 0.044) were associated with early recurrence. The factors age at diagnosis, tumor location, necrosis at pathology, (neo)adjuvant radio- or chemotherapy, resection margin, CRP level, NLR and PLR were not related to early disease recurrence. CONCLUSIONS Increased inflammatory markers in STS are associated with an aggressive phenotype. STS patients with elevation of IL-6 may be at risk for early disease recurrence.
Collapse
Affiliation(s)
- P van der Laan
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - W T A van der Graaf
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - D van den Broek
- Department of Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - H van Boven
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - B C Heeres
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Y Schrage
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - R L Haas
- Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Radiotherapy, Leiden University Medical Centre, Leiden, the Netherlands
| | - N Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - W J van Houdt
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Dewarajan V, Elsayed N, Foo JB, Tor YS, Low SS, Chai WS. Immunomodulatory gene polymorphisms in non-small cell lung carcinoma susceptibility and survival. Heliyon 2024; 10:e33003. [PMID: 39021960 PMCID: PMC11252712 DOI: 10.1016/j.heliyon.2024.e33003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality and non-small cell lung carcinoma (NSCLC) constitutes 85 % of all lung cancer cases. This malignancy is characterized by multifactorial risk factors, poor prognosis, and deplorable clinical outcome. Considerable evidence indicates that there is inter-individual variability in the lung cancer predisposition and survival due to genetic variations introduced by genetic polymorphisms between individuals, indirectly affecting the lung cancer susceptibility and the patient survival. In the past decades, immune landscape in the tumour environment and host immune response are constantly implicated as determining factor in NSCLC development and patients' survival. With the change of paradigm in NSCLC treatment to immunotherapy and increasing recognition of the role of the immune system in cancer development and survival, the inspection of single nucleotide polymorphisms (SNPs) in immunomodulated markers associated with the risk and prognosis for NSCLC is crucial. Despite extensive studies reported the implication of SNPs in predicting the risk and survival of NSCLC. SNPs in the genes that modulate immune response in NSCLC have not been reviewed before. Hence, this review uncovers the evidence on the genetic polymorphisms of immunomodulatory markers which include immune checkpoints, immune checkpoint inhibitors, chemokines, interleukins, human leukocyte antigen and its receptors, and antigen presenting machinery genes, and their significance in the susceptibility, prognosis and survival in NSCLC. The identification of genetic factors associated with NSCLC risk and survival provides invaluable information for a greater comprehension of the pathogenesis and progression of the disease, also to refine prognosis and personalize clinical care in early and advanced-stages disease.
Collapse
Affiliation(s)
- Vithiya Dewarajan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Nourhan Elsayed
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Yin Sim Tor
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Sze Shin Low
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, PR China
| | - Wai Siong Chai
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, PR China
| |
Collapse
|
9
|
Mohanty D, Padhee S, Priyadarshini A, Champati BB, Das PK, Jena S, Sahoo A, Chandra Panda P, Nayak S, Ray A. Elucidating the anti-cancer potential of Cinnamomum tamala essential oil against non-small cell lung cancer: A multifaceted approach involving GC-MS profiling, network pharmacology, and molecular dynamics simulations. Heliyon 2024; 10:e28026. [PMID: 38533033 PMCID: PMC10963383 DOI: 10.1016/j.heliyon.2024.e28026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm., or Indian Bay Leaf, is a well-known traditional ayurvedic medicine used to treat various ailments. However, the molecular mechanism of action of Cinnamomum tamala essential oil (CTEO) against non-small cell lung cancer (NSCLC) remains elusive. The present study aims to decipher the molecular targets and mechanism of CTEO in treating NSCLC. GC-MS analysis detected 49 constituents; 44 successfully passed the drug-likeness screening and were identified as active compounds. A total of 3961 CTEO targets and 4588 anti-NSCLC-related targets were acquired. JUN, P53, IL6, MAPK3, HIF1A, and CASP3 were determined as hub genes, while cinnamaldehyde, ethyl cinnamate and acetophenone were identified as core compounds. Enrichment analysis revealed that targets were mainly involved in apoptosis, TNF, IL17, pathways in cancer and MAPK signalling pathways. mRNA expression, pathological stage, survival analysis, immune infiltrate correlation and genetic alteration analysis of the core hub genes were carried out. Kaplan-Meier overall survival (OS) curve revealed that HIF1A and CASP3 are linked to worse overall survival in Lung Adenocarcinoma (LUAD) cancer patients compared to normal patients. Ethyl cinnamate and cinnamaldehyde showed high binding energy with the MAPK3 and formed stable interactions with MAPK3 during the molecular dynamic simulations for 100 ns. The MM/PBSA analysis revealed that van der Waals (VdW) contributions predominantly account for a significant portion of the compound interactions within the binding pocket of MAPK3. Density functional theory analysis showed cinnamaldehyde as the most reactive and least stable compound. CTEO exhibited selective cytotoxicity by inhibiting the proliferation of A549 cells while sparing normal HEK293 cells. CTEO triggered apoptosis by arresting the cell cycle, increasing ROS accumulation, causing mitochondrial depolarisation, and elevating caspase-3, caspase-8 and caspase-9 levels in A549 cells. The above study provides insights into the pharmacological mechanisms of action of Cinnamomum tamala essential oil against non-small cell lung cancer treatment, suggesting its potential as an adjuvant therapy.
Collapse
Affiliation(s)
- Debajani Mohanty
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Sucheesmita Padhee
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Arpita Priyadarshini
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Bibhuti Bhusan Champati
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Prabhat Kumar Das
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Asit Ray
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| |
Collapse
|
10
|
Jin X, Shang B, Wang J, Sun J, Li J, Liang B, Wang X, Su L, You W, Jiang S. Farnesoid X receptor promotes non-small cell lung cancer metastasis by activating Jak2/STAT3 signaling via transactivation of IL-6ST and IL-6 genes. Cell Death Dis 2024; 15:148. [PMID: 38360812 PMCID: PMC10869786 DOI: 10.1038/s41419-024-06495-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Metastasis accounts for the majority of cases of cancer recurrence and death in patients with advanced non-small cell lung cancer (NSCLC). Farnesoid X Receptor (FXR) is a bile acid nuclear receptor that was recently found to be upregulated in NSCLC tissues. However, whether and how FXR regulates NSCLC metastasis remains unclear. In the present study, it was found that FXR promoted the migration, invasion, and angiogenic ability of NSCLC cells in vitro, and increased NSCLC metastasis in a mouse model in vivo. Mechanistic investigation demonstrated that FXR specifically bound to the promoters of IL-6ST and IL-6 genes to upregulate their transcription, thereby leading to activation of the Jak2/STAT3 signaling pathway, which facilitated tumor migration, invasion, and angiogenesis in NSCLC. Notably, Z-guggulsterone, a natural FXR inhibitor, significantly reduced FXRhigh NSCLC metastasis, and decreased the expression of FXR, IL-6, IL-6ST, and p-STAT3 in the mouse model. Clinical analysis verified that FXR was positively correlated with IL-6, IL-6ST and p-STAT3 expression in NSCLC patients, and was indicative of a poor prognosis. Collectively, these results highlight a novel FXR-induced IL-6/IL-6ST/Jak2/STAT3 axis in NSCLC metastasis, and a promising therapeutic means for treating FXRhigh metastatic NSCLC.
Collapse
Affiliation(s)
- Xiuye Jin
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, Shanxi, 710100, China
| | - Bin Shang
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Junren Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Jian Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Public Health Clinical Center, Jinan, Shandong, 250013, China
| | - Bin Liang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Xingguang Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Lili Su
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Wenjie You
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China.
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Shujuan Jiang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China.
| |
Collapse
|
11
|
Brock BA, Mir H, Flenaugh EL, Oprea-Ilies G, Singh R, Singh S. Social and Biological Determinants in Lung Cancer Disparity. Cancers (Basel) 2024; 16:612. [PMID: 38339362 PMCID: PMC10854636 DOI: 10.3390/cancers16030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Lung cancer remains a leading cause of death in the United States and globally, despite progress in treatment and screening efforts. While mortality rates have decreased in recent years, long-term survival of patients with lung cancer continues to be a challenge. Notably, African American (AA) men experience significant disparities in lung cancer compared to European Americans (EA) in terms of incidence, treatment, and survival. Previous studies have explored factors such as smoking patterns and complex social determinants, including socioeconomic status, personal beliefs, and systemic racism, indicating their role in these disparities. In addition to social factors, emerging evidence points to variations in tumor biology, immunity, and comorbid conditions contributing to racial disparities in this disease. This review emphasizes differences in smoking patterns, screening, and early detection and the intricate interplay of social, biological, and environmental conditions that make African Americans more susceptible to developing lung cancer and experiencing poorer outcomes.
Collapse
Affiliation(s)
- Briana A. Brock
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Hina Mir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Eric L. Flenaugh
- Division of Pulmonary Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
- Cell and Molecular Biology Program, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Luo B, Sun Y, Zhan Q, Luo Y, Chen Y, Fu T, Yang T, Ren L, Xie Z, Situ X, Liu B, Tang K, Ke Z. Combining TIGIT blockade with IL-15 stimulation is a promising immunotherapy strategy for lung adenocarcinoma. Clin Transl Med 2024; 14:e1553. [PMID: 38279870 PMCID: PMC10819095 DOI: 10.1002/ctm2.1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is an immune checkpoint molecule that suppresses CD8+ T-cell function in cancer. However, the expression profile and functional significance of TIGIT in the immune microenvironment of lung adenocarcinoma (LUAD) remain elusive. Interleukin (IL)-15 has emerged as a promising candidate for enhancing CD8+ T-cell mediated tumour eradication. Exploring therapeutic strategies that combine IL-15 with TIGIT blockade in LUAD is warranted. METHODS We investigated the regulatory network involving coinhibitory TIGIT and CD96, as well as costimulatory CD226 in LUAD using clinical samples. The potential role of TIGIT in regulating the pathogenesis of LUAD was addressed through a murine model with transplanted tumours constructed in Tigit-/- mice. The therapeutic strategy that combines TIGIT blockade with IL-15 stimulation was verified using a transplanted tumour murine model and a patient-derived organoid (PDO) model. RESULTS The frequency of TIGIT+ CD8+ T cells was significantly increased in LUAD. Increased TIGIT expression indicated poorer prognosis in LUAD patients. Furthermore, the effector function of TIGIT+ CD8+ tumour-infiltrating lymphocytes (TILs) was impaired in LUAD patients and TIGIT inhibited antitumour immune response of CD8+ TILs in tumour-bearing mice. Mechanistically, IL-15 enhanced the effector function of CD8+ TILs but stimulated the expression of TIGIT on CD8+ TILs concomitantly. The application of IL-15 combined with TIGIT blockade showed additive effects in enhancing the cytotoxicity of CD8+ TILs and thus further increased the antitumour immune response in LUAD. CONCLUSIONS Our findings identified TIGIT as a promising therapeutic target for LUAD. LUAD could benefit more from the combined therapy of IL-15 stimulation and TIGIT blockade.
Collapse
Affiliation(s)
- Baohong Luo
- Molecular Diagnosis and Gene Test CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yu Sun
- Molecular Diagnosis and Gene Test CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of PathologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Qinru Zhan
- Molecular Diagnosis and Gene Test CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of PathologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yuting Luo
- Molecular Diagnosis and Gene Test CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of PathologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yu Chen
- Department of PathologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of PathologyGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Tongze Fu
- Molecular Diagnosis and Gene Test CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of PathologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tiantian Yang
- Molecular Diagnosis and Gene Test CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of PathologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Lijuan Ren
- Molecular Diagnosis and Gene Test CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of PathologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhongpeng Xie
- Molecular Diagnosis and Gene Test CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of PathologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaohua Situ
- Molecular Diagnosis and Gene Test CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of PathologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Bixia Liu
- Molecular Diagnosis and Gene Test CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Kejing Tang
- Division of Pulmonary and Critical Care MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zunfu Ke
- Molecular Diagnosis and Gene Test CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of PathologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
13
|
Jasemi SV, Zia S, Mirbahari SG, Sadeghi M. A systematic review and meta-analysis to evaluate blood levels of interleukin-6 in lung cancer patients. KARDIOCHIRURGIA I TORAKOCHIRURGIA POLSKA = POLISH JOURNAL OF CARDIO-THORACIC SURGERY 2023; 20:240-250. [PMID: 38283553 PMCID: PMC10809806 DOI: 10.5114/kitp.2023.134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024]
Abstract
Introduction The exact mechanism responsible for inflammation in malignancy is not completely understood, but it is possible that interleukin-6 (IL-6) plays a major role in triggering and maintaining an inflammatory response. Aim To conduct a systematic review and meta-analysis of the levels of IL-6 in the serum/plasma of lung cancer (LC) patients. Material and methods The researchers searched four databases up to September 11, 2022, to find studies that reported on IL-6 levels in LC patients compared to healthy controls (HCs). They calculated effect sizes using standardized mean difference (SMD) with a 95% confidence interval (CI). To evaluate the quality of each study, they used the Newcastle-Ottawa Scale (NOS). They performed subgroup analysis, sensitivity analysis, meta-regression analysis, heterogeneity analyses, trial sequential analysis, and publication bias with the trim-and-fill method. Results The meta-analysis included 28 studies, and the results showed that the pooled SMD was 1.71 (95% CI: 1.22, 2.19; p < 0.00001; I2 = 98%), indicating that LC patients had significantly higher levels of IL-6 in their serum/plasma than HCs. Conclusions The study found that the publication year and quality score of the studies were positively associated with the level of IL-6, while the sample size was inversely related. The research suggests that measuring IL-6 levels in the blood could be useful for detecting and monitoring LC as it appears to be a reliable biomarker.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soha Zia
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Sadeghi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Samart P, Heenatigala Palliyage G, Issaragrisil S, Luanpitpong S, Rojanasakul Y. Musashi-2 in cancer-associated fibroblasts promotes non-small cell lung cancer metastasis through paracrine IL-6-driven epithelial-mesenchymal transition. Cell Biosci 2023; 13:205. [PMID: 37941042 PMCID: PMC10631049 DOI: 10.1186/s13578-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Lung cancer, the most common cause of cancer-related mortality worldwide, is predominantly associated with advanced/metastatic disease. The interaction between tumor cells and cancer-associated fibroblasts (CAFs) in tumor microenvironment is known to be essential for regulating tumor progression and metastasis, but the underlying mechanisms, particularly the role of RNA-binding protein Musashi-2 (MSI2) in CAFs in promoting non-small cell lung cancer (NSCLC) invasiveness and metastatic spread, remain obscure. METHODS Genomic and proteomic database analyses were performed to evaluate the potential clinical significance of MSI2 in NSCLC tumor and stromal clinical specimens. Molecular approaches were used to modify MSI2 in CAFs and determine its functional role in NSCLC cell motility in vitro using 2D and 3D models, and in metastasis in a xenograft mouse model using live-cell imaging. RESULTS MSI2, both gene and protein, is upregulated in NSCLC tissues and is associated with poor prognosis and high metastatic risk in patients. Interestingly, MSI2 is also upregulated in NSCLC stroma and activated fibroblasts, including CAFs. Depletion of MSI2 in CAFs by CRISPR-Cas9 strongly inhibits NSCLC cell migration and invasion in vitro, and attenuates local and distant metastatic spread of NSCLC cells in vivo. The crosstalk between CAFs and NSCLC cells occurs via paracrine signaling, which is regulated by MSI2 in CAFs via IL-6. The secreted IL-6 promotes epithelial-mesenchymal transition in NSCLC cells, which drives metastasis. CONCLUSION Our findings reveal for the first time that MSI2 in CAFs is important in CAF-mediated NSCLC cell invasiveness and metastasis via IL-6 paracrine signaling. Therefore, targeting the MSI2/IL-6 axis in CAFs could be effective in combating NSCLC metastasis.
Collapse
Affiliation(s)
- Parinya Samart
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
| | | | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA.
- WVU Cancer Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
15
|
Ojara FW, Henrich A, Frances N, Nassar YM, Huisinga W, Hartung N, Geiger K, Holdenrieder S, Joerger M, Kloft C. A prognostic baseline blood biomarker and tumor growth kinetics integrated model in paclitaxel/platinum treated advanced non-small cell lung cancer patients. CPT Pharmacometrics Syst Pharmacol 2023; 12:1714-1725. [PMID: 36782356 PMCID: PMC10681433 DOI: 10.1002/psp4.12937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Paclitaxel/platinum chemotherapy, the backbone of standard first-line treatment of advanced non-small cell lung cancer (NSCLC), exhibits high interpatient variability in treatment response and high toxicity burden. Baseline blood biomarker concentrations and tumor size (sum of diameters) at week 8 relative to baseline (RS8) are widely investigated prognostic factors. However, joint analysis of data on demographic/clinical characteristics, blood biomarker levels, and chemotherapy exposure-driven early tumor response for improved prediction of overall survival (OS) is clinically not established. We developed a Weibull time-to-event model to predict OS, leveraging data from 365 patients receiving paclitaxel/platinum combination chemotherapy once every three weeks for ≤six cycles. A developed tumor growth inhibition model, combining linear tumor growth and first-order paclitaxel area under the concentration-time curve-induced tumor decay, was used to derive individual RS8. The median model-derived RS8 in all patients was a 20.0% tumor size reduction (range from -78% to +15%). Whereas baseline carcinoembryonic antigen, cytokeratin fragments, and thyroid stimulating hormone levels were not significantly associated with OS in a subset of 221 patients, and lactate dehydrogenase, interleukin-6 and neutrophil-to-lymphocyte ratio levels were significant only in univariate analyses (p value < 0.05); C-reactive protein (CRP) in combination with RS8 most significantly affected OS (p value < 0.01). Compared to the median population OS of 11.3 months, OS was 128% longer at the 5th percentile levels of both covariates and 60% shorter at their 95th percentiles levels. The combined paclitaxel exposure-driven RS8 and baseline blood CRP concentrations enables early individual prognostic predictions for different paclitaxel dosing regimens, forming the basis for treatment decision and optimizing paclitaxel/platinum-based advanced NSCLC chemotherapy.
Collapse
Affiliation(s)
- Francis Williams Ojara
- Department of Clinical Pharmacy and Biochemistry, Institute of PharmacyFreie Universitaet BerlinBerlinGermany
- Graduate Research Training Program PharMetrXBerlin/PotsdamGermany
| | - Andrea Henrich
- Department of Clinical Pharmacy and Biochemistry, Institute of PharmacyFreie Universitaet BerlinBerlinGermany
- Graduate Research Training Program PharMetrXBerlin/PotsdamGermany
| | - Nicolas Frances
- Department of Translational Modeling and Simulation, Roche Pharma Research and Early Development, Roche Innovation Center BaselF. Hoffmann‐La Roche LtdBaselSwitzerland
| | - Yomna M. Nassar
- Department of Clinical Pharmacy and Biochemistry, Institute of PharmacyFreie Universitaet BerlinBerlinGermany
- Graduate Research Training Program PharMetrXBerlin/PotsdamGermany
| | | | - Niklas Hartung
- Institute of MathematicsUniversity of PotsdamPotsdamGermany
| | - Kimberly Geiger
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart CenterTechnical University of MunichMunichGermany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart CenterTechnical University of MunichMunichGermany
| | - Markus Joerger
- Department of Oncology and HematologyCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of PharmacyFreie Universitaet BerlinBerlinGermany
| |
Collapse
|
16
|
Moreo E, Jarit-Cabanillas A, Robles-Vera I, Uranga S, Guerrero C, Gómez AB, Mata-Martínez P, Minute L, Araujo-Voces M, Felgueres MJ, Esteso G, Uranga-Murillo I, Arias M, Pardo J, Martín C, Valés-Gómez M, Del Fresno C, Sancho D, Aguiló N. Intravenous administration of BCG in mice promotes natural killer and T cell-mediated antitumor immunity in the lung. Nat Commun 2023; 14:6090. [PMID: 37794033 PMCID: PMC10551006 DOI: 10.1038/s41467-023-41768-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/12/2023] [Indexed: 10/06/2023] Open
Abstract
Intravesical administration of Bacillus Calmette-Guérin (BCG) was one of the first FDA-approved immunotherapies and remains a standard treatment for bladder cancer. Previous studies have demonstrated that intravenous (IV) administration of BCG is well-tolerated and effective in preventing tuberculosis infection in animals. Here, we examine IV BCG in several preclinical lung tumor models. Our findings demonstrate that BCG inoculation reduced tumor growth and prolonged mouse survival in models of lung melanoma metastasis and orthotopic lung adenocarcinoma. Moreover, IV BCG treatment was well-tolerated with no apparent signs of acute toxicity. Mechanistically, IV BCG induced tumor-specific CD8+ T cell responses, which were dependent on type 1 conventional dendritic cells, as well as NK cell-mediated immunity. Lastly, we also show that IV BCG has an additive effect on anti-PD-L1 checkpoint inhibitor treatment in mouse lung tumors that are otherwise resistant to anti-PD-L1 as monotherapy. Overall, our study demonstrates the potential of systemic IV BCG administration in the treatment of lung tumors, highlighting its ability to enhance immune responses and augment immune checkpoint blockade efficacy.
Collapse
Affiliation(s)
- Eduardo Moreo
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Santiago Uranga
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Claudia Guerrero
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Gómez
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Luna Minute
- Hospital la Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Miguel Araujo-Voces
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad deOviedo, Oviedo, Spain
| | - María José Felgueres
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gloria Esteso
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Iratxe Uranga-Murillo
- Grupo de Inmunoterapia, Inmunidad y Cáncer, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Maykel Arias
- Grupo de Inmunoterapia, Inmunidad y Cáncer, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Julián Pardo
- Grupo de Inmunoterapia, Inmunidad y Cáncer, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Valés-Gómez
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carlos Del Fresno
- Hospital la Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Nacho Aguiló
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain.
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Shill MC, Biswas B, Kamal S, Islam M, Rima SS, Ferdausi FA, Chowdhury Q, Reza HM, Bepari AK. Screening of plasma IL-6 and IL-17 in Bangladeshi lung cancer patients. Heliyon 2023; 9:e20471. [PMID: 37810816 PMCID: PMC10556768 DOI: 10.1016/j.heliyon.2023.e20471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Lung cancer is responsible for causing one of the highest numbers of cancer deaths. In Bangladesh, both men and women are affected by lung cancer, and environmental contaminants are believed to be one of the main risk factors apart from smoking. The diagnosis of lung cancer is difficult due to the delicate structure and complexity of the lungs. Diagnosis in later stages results in a poor prognosis of the disease. Tissue biopsy is the most reliable way of identifying lung cancer, but it is invasive and requires identification of the primary neoplasm within the lungs. As inflammation is involved in carcinogenesis, circulating levels of cytokines might be elevated in patients during the early stages of cancer. Increased IL-6 levels have been associated with the promotion of tumor growth, and IL-17 is believed to aid metastasis of lung cancer. In this study, the use of IL-6 and IL-17 was investigated as diagnostic markers for lung cancer. IL-6 and IL-17 levels were compared between 35 lung cancer patients and 19 healthy individuals. IL-6 levels were markedly elevated (7.417 pg/mL) in lung cancer cases compared to the controls (0.970 pg/mL), indicating a positive correlation (p < 0.05). IL-17 levels were only slightly higher in lung cancer patients (9.400 pg/mL) compared to healthy individuals (8.922 pg/mL). Both IL-6 and IL-17 levels were higher in patients with adenocarcinoma compared with other subtypes of lung cancer. Treatment with chemotherapy and radiotherapy did not significantly affect IL-6 levels. However, IL-17 levels were reduced due to cancer treatment. Further studies with larger sample sizes assessing the IL-6 and IL-17 in lung cancer patients are needed to establish the diagnostic role of the two cytokines.
Collapse
Affiliation(s)
- Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Bisshojit Biswas
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Sadia Kamal
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Moriam Islam
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Sharmin Sultana Rima
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | | | | | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
18
|
Adamo A, Frusteri C, Pilotto S, Caligola S, Belluomini L, Poffe O, Giacobazzi L, Dusi S, Musiu C, Hu Y, Wang T, Rizzini D, Vella A, Canè S, Sartori G, Insolda J, Sposito M, Incani UC, Carbone C, Piro G, Pettinella F, Qi F, Wang D, Sartoris S, De Sanctis F, Scapini P, Dusi S, Cassatella MA, Bria E, Milella M, Bronte V, Ugel S. Immune checkpoint blockade therapy mitigates systemic inflammation and affects cellular FLIP-expressing monocytic myeloid-derived suppressor cells in non-progressor non-small cell lung cancer patients. Oncoimmunology 2023; 12:2253644. [PMID: 37720688 PMCID: PMC10503454 DOI: 10.1080/2162402x.2023.2253644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023] Open
Abstract
Cancer cells favor the generation of myeloid cells with immunosuppressive and inflammatory features, including myeloid-derived suppressor cells (MDSCs), which support tumor progression. The anti-apoptotic molecule, cellular FLICE (FADD-like interleukin-1β-converting enzyme)-inhibitory protein (c-FLIP), which acts as an important modulator of caspase-8, is required for the development and function of monocytic (M)-MDSCs. Here, we assessed the effect of immune checkpoint inhibitor (ICI) therapy on systemic immunological landscape, including FLIP-expressing MDSCs, in non-small cell lung cancer (NSCLC) patients. Longitudinal changes in peripheral immunological parameters were correlated with patients' outcome. In detail, 34 NSCLC patients were enrolled and classified as progressors (P) or non-progressors (NP), according to the RECIST evaluation. We demonstrated a reduction in pro-inflammatory cytokines such as IL-8, IL-6, and IL-1β in only NP patients after ICI treatment. Moreover, using t-distributed stochastic neighbor embedding (t-SNE) and cluster analysis, we characterized in NP patients a significant increase in the amount of lymphocytes and a slight contraction of myeloid cells such as neutrophils and monocytes. Despite this moderate ICI-associated alteration in myeloid cells, we identified a distinctive reduction of c-FLIP expression in M-MDSCs from NP patients concurrently with the first clinical evaluation (T1), even though NP and P patients showed the same level of expression at baseline (T0). In agreement with the c-FLIP expression, monocytes isolated from both P and NP patients displayed similar immunosuppressive functions at T0; however, this pro-tumor activity was negatively influenced at T1 in the NP patient cohort exclusively. Hence, ICI therapy can mitigate systemic inflammation and impair MDSC-dependent immunosuppression.
Collapse
Affiliation(s)
- Annalisa Adamo
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Cristina Frusteri
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Sara Pilotto
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Simone Caligola
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Lorenzo Belluomini
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Ornella Poffe
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Luca Giacobazzi
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Silvia Dusi
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Chiara Musiu
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Yushu Hu
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Tian Wang
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Davide Rizzini
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Antonio Vella
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Stefania Canè
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Giulia Sartori
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Jessica Insolda
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Marco Sposito
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Ursula Cesta Incani
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Francesca Pettinella
- General Pathology section, Department of Medicine University of Verona, Verona, Italy
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Dali Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Silvia Sartoris
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Francesco De Sanctis
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Patrizia Scapini
- General Pathology section, Department of Medicine University of Verona, Verona, Italy
| | - Stefano Dusi
- General Pathology section, Department of Medicine University of Verona, Verona, Italy
| | | | - Emilio Bria
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Michele Milella
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Bronte
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Stefano Ugel
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
19
|
van der Laan P, van der Graaf WTA, Reijers SJM, Schrage YM, Hendriks JJH, Haas RL, van den Broek D, Steeghs N, van Houdt WJ. Elevated preoperative serum interleukin-6 level is predictive for worse postoperative outcome after soft tissue sarcoma surgery. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:106926. [PMID: 37173151 DOI: 10.1016/j.ejso.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND The pro-inflammatory cytokine interleukin-6 (IL-6) plays a role in cancer development and progression, but research into the predictive value of IL-6 on postoperative outcome in soft tissue sarcoma (STS) is scarce. The purpose of this study is to investigate the predictive value of serum IL-6 level for the achievement of assumed (post)operative outcome after STS surgery, the so-called textbook outcome. METHODS Preoperative IL-6 serum levels were collected in all patients with a STS at first presentation between February 2020 and November 2021. Textbook outcome was defined as a R0 resection, no complications, no blood transfusions, no reoperation within the postoperative period, no prolonged hospital stay, no hospital readmission within 90-days, and no mortality within 90-days. Factors associated with textbook outcome were determined by multivariable analysis. RESULTS Among 118 patients with primary, non-metastatic STS, 35.6% achieved a textbook outcome. Univariate analysis showed that smaller tumor size (p = 0.026), lower tumor grade (p = 0.006), normal hemoglobin (Hb, p = 0.044), normal white blood cell (WBC) count (p = 0.018), normal C-reactive protein (CRP) serum level (p = 0.002) and normal IL-6 serum level (p = 1.5 × 10-5) were associated with achieving textbook outcome after surgery. Multivariable analysis showed that elevated IL-6 serum level (p = 0.012) was significantly associated with not achieving a textbook outcome. CONCLUSIONS Increased IL-6 serum level is predictive for not achieving a textbook outcome after surgery for primary, non-metastatic STS.
Collapse
Affiliation(s)
- P van der Laan
- Department of Surgical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| | - W T A van der Graaf
- Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | - S J M Reijers
- Department of Surgical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| | - Y M Schrage
- Department of Surgical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| | - J J H Hendriks
- Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| | - R L Haas
- Department of Radiotherapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands; Department of Radiotherapy, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| | - D van den Broek
- Department of Laboratory Medicine, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| | - N Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| | - W J van Houdt
- Department of Surgical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Bailey R, Sarkar A, Singh A, Dobra A, Kahveci T. Optimal Supervised Reduction of High Dimensional Transcription Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3093-3105. [PMID: 37276117 DOI: 10.1109/tcbb.2023.3280557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The plight of navigating high-dimensional transcription datasets remains a persistent problem. This problem is further amplified for complex disorders, such as cancer as these disorders are often multigenic traits with multiple subsets of genes collectively affecting the type, stage, and severity of the trait. We are often faced with a trade off between reducing the dimensionality of our datasets and maintaining the integrity of our data. To accomplish both tasks simultaneously for very high dimensional transcriptome for complex multigenic traits, we propose a new supervised technique, Class Separation Transformation (CST). CST accomplishes both tasks simultaneously by significantly reducing the dimensionality of the input space into a one-dimensional transformed space that provides optimal separation between the differing classes. Furthermore, CST offers an means of explainable ML, as it computes the relative importance of each feature for its contribution to class distinction, which can thus lead to deeper insights and discovery. We compare our method with existing state-of-the-art methods using both real and synthetic datasets, demonstrating that CST is the more accurate, robust, scalable, and computationally advantageous technique relative to existing methods. Code used in this paper is available on https://github.com/richiebailey74/CST.
Collapse
|
21
|
Nishiwaki N, Noma K, Ohara T, Kunitomo T, Kawasaki K, Akai M, Kobayashi T, Narusaka T, Kashima H, Sato H, Komoto S, Kato T, Maeda N, Kikuchi S, Tanabe S, Tazawa H, Shirakawa Y, Fujiwara T. Overcoming cancer-associated fibroblast-induced immunosuppression by anti-interleukin-6 receptor antibody. Cancer Immunol Immunother 2023; 72:2029-2044. [PMID: 36764954 PMCID: PMC9916502 DOI: 10.1007/s00262-023-03378-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/15/2023] [Indexed: 02/12/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are a critical component of the tumor microenvironment and play a central role in tumor progression. Previously, we reported that CAFs might induce tumor immunosuppression via interleukin-6 (IL-6) and promote tumor progression by blocking local IL-6 in the tumor microenvironment with neutralizing antibody. Here, we explore whether an anti-IL-6 receptor antibody could be used as systemic therapy to treat cancer, and further investigate the mechanisms by which IL-6 induces tumor immunosuppression. In clinical samples, IL-6 expression was significantly correlated with α-smooth muscle actin expression, and high IL-6 cases showed tumor immunosuppression. Multivariate analysis showed that IL-6 expression was an independent prognostic factor. In vitro, IL-6 contributed to cell proliferation and differentiation into CAFs. Moreover, IL-6 increased hypoxia-inducible factor 1α (HIF1α) expression and induced tumor immunosuppression by enhancing glucose uptake by cancer cells and competing for glucose with immune cells. MR16-1, a rodent analog of anti-IL-6 receptor antibody, overcame CAF-induced immunosuppression and suppressed tumor progression in immunocompetent murine cancer models by regulating HIF1α activation in vivo. The anti-IL-6 receptor antibody could be systemically employed to overcome tumor immunosuppression and improve patient survival with various cancers. Furthermore, the tumor immunosuppression was suggested to be induced by IL-6 via HIF1α activation.
Collapse
Affiliation(s)
- Noriyuki Nishiwaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Pathology & Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoyoshi Kunitomo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kento Kawasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masaaki Akai
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Teruki Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toru Narusaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroaki Sato
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoshi Komoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takuya Kato
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Naoaki Maeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shunsuke Tanabe
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
22
|
Pastrez PRA, Barbosa AM, Mariano VS, Causin RL, Castro AG, Torrado E, Longatto-Filho A. Interleukin-8 and Interleukin-6 Are Biomarkers of Poor Prognosis in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15071997. [PMID: 37046658 PMCID: PMC10093339 DOI: 10.3390/cancers15071997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/30/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common type of cancer characterized by fast progression and high mortality rates, which generally implies a poor prognosis at time of diagnosis. Intricate interaction networks of cytokines produced by resident and inflammatory cells in the tumor microenvironment play crucial roles in ESCC development and metastasis, thus influencing therapy efficiency. As such, cytokines are the most prominent targets for specific therapies and prognostic parameters to predict tumor progression and aggressiveness. In this work, we examined the association between ESCC progression and the systemic levels of inflammatory cytokines to determine their usefulness as diagnostic biomarkers. We analyzed the levels of IL-1β, IL-6, IL-8, IL-10, TNF-α e IL-12p70 in a group of 70 ESCC patients and 70 healthy individuals using Cytometric Bead Array (CBA) technology. We detected increased levels of IL-1β, IL-6, IL-8, and IL-10 in ESCC patients compared to controls. However, multivariate analysis revealed that only IL8 was an independent prognostic factor for ESCC, as were the well-known risk factors: alcohol consumption, tobacco usage, and exposure to pesticides/insecticides. Importantly, patients with low IL-6, IL-8, TNM I/II, or those who underwent surgery had a significantly higher overall survival rate. We also studied cultured Kyse-30 and Kyse-410 cells in mice. We determined that the ESCC cell line Kyse-30 grew more aggressively than the Kyse-410 cell line. This enhanced growth was associated with the recruitment/accumulation of intratumoral polymorphonuclear leukocytes. In conclusion, our data suggest IL-8 as a valuable prognostic factor with potential as a biomarker for ESCC.
Collapse
|
23
|
Karimi N, Moghaddam SJ. KRAS-Mutant Lung Cancer: Targeting Molecular and Immunologic Pathways, Therapeutic Advantages and Restrictions. Cells 2023; 12:749. [PMID: 36899885 PMCID: PMC10001046 DOI: 10.3390/cells12050749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
RAS mutations are among the most common oncogenic mutations in human cancers. Among RAS mutations, KRAS has the highest frequency and is present in almost 30% of non-small-cell lung cancer (NSCLC) patients. Lung cancer is the number one cause of mortality among cancers as a consequence of outrageous aggressiveness and late diagnosis. High mortality rates have been the reason behind numerous investigations and clinical trials to discover proper therapeutic agents targeting KRAS. These approaches include the following: direct KRAS targeting; synthetic lethality partner inhibitors; targeting of KRAS membrane association and associated metabolic rewiring; autophagy inhibitors; downstream inhibitors; and immunotherapies and other immune-modalities such as modulating inflammatory signaling transcription factors (e.g., STAT3). The majority of these have unfortunately encountered limited therapeutic outcomes due to multiple restrictive mechanisms including the presence of co-mutations. In this review we plan to summarize the past and most recent therapies under investigation, along with their therapeutic success rate and potential restrictions. This will provide useful information to improve the design of novel agents for treatment of this deadly disease.
Collapse
Affiliation(s)
- Nastaran Karimi
- Faculty of Medicine, Marmara University, Istanbul 34899, Turkey
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
24
|
Xu H, Zhao G, Lin J, Ye Q, Xiang J, Yan B. A combined preoperative red cell distribution width and carcinoembryonic antigen score contribute to prognosis prediction in stage I lung adenocarcinoma. World J Surg Oncol 2023; 21:56. [PMID: 36814297 PMCID: PMC9945661 DOI: 10.1186/s12957-023-02945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
AIMS Hematological markers that can be used for prognosis prediction for stage I lung adenocarcinoma (LUAD) are still lacking. Here, we examined the prognostic value of a combination of the red cell distribution width (RDW) and carcinoembryonic antigen (CEA), namely, the RDW-CEA score (RCS), in stage I LUAD. MATERIALS AND METHODS A retrospective study with 154 patients with stage I LUAD was conducted. Patients were divided into RCS 1 (decreased RDW and CEA), RCS 2 (decreased RDW and increased CEA, increased RDW and decreased CEA), and RCS 3 (increased RDW and CEA) subgroups based on the best optimal cutoff points of RDW and CEA for overall survival (OS). The differences in other clinicopathological parameters among RCS subgroups were calculated. Disease-free survival (DFS) and OS among these groups were determined by Kaplan-Meier analysis, and risk factors for outcome were calculated by a Cox proportional hazards model. RESULTS Seventy, 65, and 19 patients were assigned to the RCS 1, 2, and 3 subgroups, respectively. Patients ≥ 60 years (P < 0.001), male sex (P = 0.004), T2 stage (P = 0.004), and IB stage (P = 0.006) were more significant in the RCS 2 or 3 subgroups. The RCS had a good area under the curve (AUC) for predicting DFS (AUC = 0.81, P < 0.001) and OS (AUC = 0.93, P < 0.001). The DFS (log-rank = 33.26, P < 0.001) and OS (log-rank = 42.05, P < 0.001) were significantly different among RCS subgroups, with RCS 3 patients displaying the worst survival compared to RCS 1 or 2 patients. RCS 3 was also an independent risk factor for both DFS and OS. CONCLUSIONS RCS is a useful prognostic indicator in stage I LUAD patients, and RCS 3 patients have poorer survival. However, randomized controlled trials are needed to validate our findings in the future.
Collapse
Affiliation(s)
- Hengliang Xu
- Department of Thoracic Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, 572000, People's Republic of China
| | - Guangqiang Zhao
- Department of Respiratory Medicine, Sanya Peoples' Hospital, Sanya, Hainan, 572000, People's Republic of China
| | - Jixing Lin
- Department of Thoracic Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, 572000, People's Republic of China
| | - Qianwen Ye
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya, Hainan, 572000, People's Republic of China
| | - Jia Xiang
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya, Hainan, 572000, People's Republic of China
| | - Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya, Hainan, 572000, People's Republic of China.
| |
Collapse
|
25
|
Emerging Biomarkers in Immune Oncology to Guide Lung Cancer Management. Target Oncol 2023; 18:25-49. [PMID: 36577876 DOI: 10.1007/s11523-022-00937-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/29/2022]
Abstract
Over the last decade, the use of targeted therapies and immune therapies led to drastic changes in the management lung cancer and translated to improved survival outcomes. This growing arsenal of therapies available for the management of non-small cell lung cancer added more complexity to treatment decisions. The genomic profiling of tumors and the molecular characterization of the tumor microenvironment gradually became essential steps in exploring and identifying markers that can enhance patient selection to facilitate treatment personalization and narrow down therapy options. The advent of innovative diagnostic platforms, such as next-generation sequencing and plasma genotyping (also known as liquid biopsies), has aided in this quest. Currently, programmed cell death ligand 1 expression remains the most recognized and fully validated predictive biomarker of response to immune checkpoint inhibitors. Other markers such as tumor mutational burden, tumor infiltrating lymphocytes, driver mutations, and other molecular elements of the tumor microenvironment bear the potential to be predictive tools; however, the majority are still investigational. In this review, we describe the advances noted thus far on currently validated as well as novel emerging biomarkers that have the potential to guide the use of immunotherapy agents in the management of non-small cell lung cancer.
Collapse
|
26
|
Wang L, Zhao X, Zheng H, Zhu C, Liu Y. AIF-1, a potential biomarker of aggressive tumor behavior in patients with non-small cell lung cancer. PLoS One 2022; 17:e0279211. [PMID: 36520870 PMCID: PMC9754194 DOI: 10.1371/journal.pone.0279211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Allogeneic inflammatory factor-1 (AIF-1) overexpression has been reported to be associated with tumorigenesis and tumor metastasis. This study aimed to investigate the role of AIF-1 in the development and progression of non-small cell lung cancer (NSCLC). AIF-1, IL-6, and VEGF expressions in human NSCLC tissue were examined by immunofluorescence staining. Bioinformatics analyses were performed to identify AIF-1-related molecules and pathways in NSCLC. Human lung cancer A549 cell proliferation was assessed by CCK-8 assay, and cell migration was evaluated with wound-healing assay. IL-6 and VEGF secretions in A549 cell culture supernatants were quantified using the Elecsys IL-6 immunoassay kit and Vascular Endothelial Growth Factor Assay Kit. RT-PCR and western blot were performed to quantify the expressions of AIF-1, IL-6, and VEGF mRNAs and proteins involved in p38-MAPK and JAK/STAT3 signaling such as p-p38 and p-STAT3. The effects of AIF-1 on A549 cell proliferation and the expressions of IL-6 and VEGF were assessed using SB203580 and ruxolitinib. The results showed that AIF-1 expression was higher in human NSCLC tissue than that in paracancer tissue. High AIF-1 expression was associated with metastasis, higher TNM stage, and poorer survival. Bioinformatics connected AIF-1 to JAK/STAT signaling in NSCLC. AIF-1 increased A549 cell proliferation, migration, IL-6 secretion and, VEGF secretion, and these effects were attenuated by inhibition of p38-MAPK or JAK/STAT3 signaling. In conclusion, AIF-1 may promote aggressive NSCLC behavior via activation of p38-MAPK and JAK/STAT signaling.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Laboratory Diagnosis, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xing Zhao
- Department of Pathology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Huachuan Zheng
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cuimin Zhu
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yanhong Liu
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
27
|
Indino S, Borzi C, Moscheni C, Sartori P, De Cecco L, Bernardo G, Le Noci V, Arnaboldi F, Triulzi T, Sozzi G, Tagliabue E, Sfondrini L, Gagliano N, Moro M, Sommariva M. The Educational Program of Macrophages toward a Hyperprogressive Disease-Related Phenotype Is Orchestrated by Tumor-Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms232415802. [PMID: 36555441 PMCID: PMC9779478 DOI: 10.3390/ijms232415802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Hyperprogressive disease (HPD), an aggressive acceleration of tumor growth, was observed in a group of cancer patients treated with anti-PD1/PDL1 antibodies. The presence of a peculiar macrophage subset in the tumor microenvironment is reported to be a sort of "immunological prerequisite" for HPD development. These macrophages possess a unique phenotype that it is not clear how they acquire. We hypothesized that certain malignant cells may promote the induction of an "HPD-related" phenotype in macrophages. Bone-marrow-derived macrophages were exposed to the conditioned medium of five non-small cell lung cancer cell lines. Macrophage phenotype was analyzed by microarray gene expression profile and real-time PCR. We found that human NSCLC cell lines, reported as undergoing HPD-like tumor growth in immunodeficient mice, polarized macrophages towards a peculiar pro-inflammatory phenotype sharing both M1 and M2 features. Lipid-based factors contained in cancer cell-conditioned medium induced the over-expression of several pro-inflammatory cytokines and the activation of innate immune receptor signaling pathways. We also determined that tumor-derived Extracellular Vesicles represent the main components involved in the observed macrophage re-education program. The present study might represent the starting point for the future development of diagnostic tools to identify potential hyperprogressors.
Collapse
Affiliation(s)
- Serena Indino
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Cristina Borzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Claudia Moscheni
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Via G. B. Grassi, 74, L.I.T.A. Vialba, 20157 Milan, Italy
| | - Patrizia Sartori
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Francesca Arnaboldi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Nicoletta Gagliano
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Massimo Moro
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-0250315401
| |
Collapse
|
28
|
Ahlawat P, Phutela K, Bal A, Singh N, Sharma S. Therapeutic potential of human serum albumin nanoparticles encapsulated actinonin in murine model of lung adenocarcinoma. Drug Deliv 2022; 29:2403-2413. [PMID: 35892161 PMCID: PMC9336490 DOI: 10.1080/10717544.2022.2067600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/05/2022] Open
Abstract
Non-small cell lung cancer comprises 85% of the global lung cancer cases. Conventional chemotherapeutics possess certain limitations like systemic toxicity and drug resistance that requires the development of new therapeutic agents for successful treatment of lung cancer. Actinonin, a human peptide deformylase inhibitor, has demonstrated anti-cancerous properties in various leukemias and solid cancer types. However, it has limited therapeutic application because of its low bioavailability and systemic toxicity if administered in free form. This limitation can be overcome by using nano-delivery systems that will increase the therapeutic efficacy of actinonin. In the present study, human serum albumin actinonin nanoparticles were prepared using a desolvation technique and folic acid was conjugated to lysine residues of albumin for effective delivery to the lung. The lung adenocarcinoma model was established 24 weeks after intraperitoneal administration of urethane and chemotherapeutic efficacy of free as well as nanoencapsulated actinonin was evaluated. This study demonstrated anti-proliferative potential of folic acid conjugated human serum albumin nanoparticles encapsulating actinonin. The intraperitoneally administered nanoformulation exhibited sustain release profile of actinonin with longer half-life and mean retention time. The reduced dose frequency resulted in therapeutic efficacy comparable to free drug in vivo in terms of 100% survival and reduced tumor burden along with downregulation of epidermal growth factor receptor, folate receptor α and peptide deformylase expression in lung adenocarcinoma mice model. Therefore, actinonin encapsulated albumin nanoparticles-based therapy holds great potential as an alternative strategy to improve its anti-cancerous activity against lung adenocarcinoma.
Collapse
Affiliation(s)
- Priyanca Ahlawat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanika Phutela
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sadhna Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
29
|
Wang Y, An Z, Lin D, Jin W. Targeting cancer cachexia: Molecular mechanisms and clinical study. MedComm (Beijing) 2022; 3:e164. [PMID: 36105371 PMCID: PMC9464063 DOI: 10.1002/mco2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Cancer cachexia is a complex systemic catabolism syndrome characterized by muscle wasting. It affects multiple distant organs and their crosstalk with cancer constitute cancer cachexia environment. During the occurrence and progression of cancer cachexia, interactions of aberrant organs with cancer cells or other organs in a cancer cachexia environment initiate a cascade of stress reactions and destroy multiple organs including the liver, heart, pancreas, intestine, brain, bone, and spleen in metabolism, neural, and immune homeostasis. The role of involved organs turned from inhibiting tumor growth into promoting cancer cachexia in cancer progression. In this review, we depicted the complicated relationship of cancer cachexia with the metabolism, neural, and immune homeostasis imbalance in multiple organs in a cancer cachexia environment and summarized the treatment progress in recent years. And we discussed the molecular mechanism and clinical study of cancer cachexia from the perspective of multiple organs metabolic, neurological, and immunological abnormalities. Updated understanding of cancer cachexia might facilitate the exploration of biomarkers and novel therapeutic targets of cancer cachexia.
Collapse
Affiliation(s)
- Yong‐Fei Wang
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Zi‐Yi An
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Dong‐Hai Lin
- Key Laboratory for Chemical Biology of Fujian ProvinceMOE Key Laboratory of Spectrochemical Analysis and InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
| | - Wei‐Lin Jin
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
30
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
31
|
Shou J, Mo F, Zhang S, Lu L, Han N, Liu L, Qiu M, Li H, Han W, Ma D, Guo X, Guo Q, Huang Q, Zhang X, Ye S, Pan H, Chen S, Fang Y. Combination treatment of radiofrequency ablation and peptide neoantigen vaccination: Promising modality for future cancer immunotherapy. Front Immunol 2022; 13:1000681. [PMID: 36248865 PMCID: PMC9559398 DOI: 10.3389/fimmu.2022.1000681] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background The safety and immunogenicity of a personalized neoantigen-based peptide vaccine, iNeo-Vac-P01, was reported previously in patients with a variety of cancer types. The current study investigated the synergistic effects of radiofrequency ablation (RFA) and neoantigen vaccination in cancer patients and tumor-bearing mice. Methods Twenty-eight cancer patients were enrolled in this study, including 10 patients who had received RFA treatment within 6 months before vaccination (Cohort 1), and 18 patients who had not (Cohort 2). Individualized neoantigen peptide vaccines were designed, manufactured, and subcutaneously administrated with GM-CSF as an adjuvant for all patients. Mouse models were employed to validate the synergistic efficacy of combination treatment of RFA and neoantigen vaccination. Results Longer median progression free survival (mPFS) and median overall survival (mOS) were observed in patients in Cohort 1 compared to patients in Cohort 2 (4.42 and 20.18 months vs. 2.82 and 10.94 months). The results of ex vivo IFN-γ ELISpot assay showed that patients in Cohort 1 had stronger neoantigen-specific immune responses at baseline and post vaccination. Mice receiving combination treatment of RFA and neoantigen vaccines displayed higher antitumor immune responses than mice receiving single modality. The combination of PD-1 blockage with RFA and neoantigen vaccines further enhanced the antitumor response in mice. Conclusion Neoantigen vaccination after local RFA treatment could improve the clinical and immune response among patients of different cancer types. The synergistic antitumor potentials of these two modalities were also validated in mice, and might be further enhanced by immune checkpoint inhibition. The mechanisms of their synergies require further investigation. Clinical trial registration https://clinicaltrials.gov/, identifier NCT03662815.
Collapse
Affiliation(s)
- Jiawei Shou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Mo
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Hangzhou AI-Force Therapeutics Co., Ltd., Hangzhou, China
| | - Shanshan Zhang
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- Zhejiang California International Nanosystems Institute, Zhejiang University, Hangzhou, China
| | - Lantian Lu
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ning Han
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- Hangzhou AI-Nano Therapeutics Co., Ltd., Hangzhou, China
| | - Liang Liu
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Min Qiu
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Hongseng Li
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weidong Han
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongying Ma
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Xiaojie Guo
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Qianpeng Guo
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Qinxue Huang
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Xiaomeng Zhang
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Shengli Ye
- Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Hongming Pan
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hongming Pan, ; Shuqing Chen, ; Yong Fang,
| | - Shuqing Chen
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Zhejiang California International Nanosystems Institute, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
- *Correspondence: Hongming Pan, ; Shuqing Chen, ; Yong Fang,
| | - Yong Fang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hongming Pan, ; Shuqing Chen, ; Yong Fang,
| |
Collapse
|
32
|
Hashimoto S, Hashimoto A, Muromoto R, Kitai Y, Oritani K, Matsuda T. Central Roles of STAT3-Mediated Signals in Onset and Development of Cancers: Tumorigenesis and Immunosurveillance. Cells 2022; 11:cells11162618. [PMID: 36010693 PMCID: PMC9406645 DOI: 10.3390/cells11162618] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023] Open
Abstract
Since the time of Rudolf Virchow in the 19th century, it has been well-known that cancer-associated inflammation contributes to tumor initiation and progression. However, it remains unclear whether a collapse of the balance between the antitumor immune response via the immunological surveillance system and protumor immunity due to cancer-related inflammation is responsible for cancer malignancy. The majority of inflammatory signals affect tumorigenesis by activating signal transducer and activation of transcription 3 (STAT3) and nuclear factor-κB. Persistent STAT3 activation in malignant cancer cells mediates extremely widespread functions, including cell growth, survival, angiogenesis, and invasion and contributes to an increase in inflammation-associated tumorigenesis. In addition, intracellular STAT3 activation in immune cells causes suppressive effects on antitumor immunity and leads to the differentiation and mobilization of immature myeloid-derived cells and tumor-associated macrophages. In many cancer types, STAT3 does not directly rely on its activation by oncogenic mutations but has important oncogenic and malignant transformation-associated functions in both cancer and stromal cells in the tumor microenvironment (TME). We have reported a series of studies aiming towards understanding the molecular mechanisms underlying the proliferation of various types of tumors involving signal-transducing adaptor protein-2 as an adaptor molecule that modulates STAT3 activity, and we recently found that AT-rich interactive domain-containing protein 5a functions as an mRNA stabilizer that orchestrates an immunosuppressive TME in malignant mesenchymal tumors. In this review, we summarize recent advances in our understanding of the functional role of STAT3 in tumor progression and introduce novel molecular mechanisms of cancer development and malignant transformation involving STAT3 activation that we have identified to date. Finally, we discuss potential therapeutic strategies for cancer that target the signaling pathway to augment STAT3 activity.
Collapse
Affiliation(s)
- Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Correspondence: (S.H.); (T.M.)
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence: (S.H.); (T.M.)
| |
Collapse
|
33
|
Fang Y, Su C. Research Progress on the Microenvironment and Immunotherapy of Advanced Non-Small Cell Lung Cancer With Liver Metastases. Front Oncol 2022; 12:893716. [PMID: 35965533 PMCID: PMC9367973 DOI: 10.3389/fonc.2022.893716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Lung cancer is a malignant tumor with the highest morbidity and mortality, and more than 75% of patients are diagnosed at an advanced stage. Liver metastases occur in 20% of non-small cell lung cancer patients, and their prognosis are poor. In recent years, immune checkpoint inhibitor monotherapy and combination therapy have made breakthrough progress in advanced Non-small cell lung cancer (NSCLC) patients. However, compared with the overall population, the liver metastases population was an independent prognostic factor for poor immunotherapy response. Whether and how immunotherapy can work in NSCLC patients with liver metastases is a major and unresolved challenge. Although more and more data have been disclosed, the research progress of NSCLC liver metastasis is still limited. How liver metastasis modulates systemic antitumor immunity and the drug resistance mechanisms of the liver immune microenvironment have not been elucidated. We systematically focused on non-small cell lung cancer patients with liver metastases, reviewed and summarized their pathophysiological mechanisms, immune microenvironment characteristics, and optimization of immunotherapy strategies.
Collapse
|
34
|
Bian DJH, Sabri S, Abdulkarim BS. Interactions between COVID-19 and Lung Cancer: Lessons Learned during the Pandemic. Cancers (Basel) 2022; 14:cancers14153598. [PMID: 35892857 PMCID: PMC9367272 DOI: 10.3390/cancers14153598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary COVID-19 is a respiratory infectious disease caused by the coronavirus SARS-CoV-2. Lung cancer is the leading cause of all cancer-related deaths worldwide. As both SARS-CoV-2 and lung cancer affect the lungs, the aim of this narrative review is to provide a consolidation of lessons learned throughout the pandemic regarding lung cancer and COVID-19. Risk factors found in lung cancer patients, such as advanced cancers, smoking, male, etc., have been associated with severe COVID-19. The cancer treatments hormonal therapy, immunotherapy, and targeted therapy have shown no association with severe COVID-19 disease, but chemotherapy and radiation therapy have shown conflicting results. Logistical changes and modifications in treatment plans were instituted during the pandemic to minimize SARS-CoV-2 exposure while maintaining life-saving cancer care. Finally, medications have been developed to treat early COVID-19, which can be highly beneficial in vulnerable cancer patients, with paxlovid being the most efficacious drug currently available. Abstract Cancer patients, specifically lung cancer patients, show heightened vulnerability to severe COVID-19 outcomes. The immunological and inflammatory pathophysiological similarities between lung cancer and COVID-19-related ARDS might explain the predisposition of cancer patients to severe COVID-19, while multiple risk factors in lung cancer patients have been associated with worse COVID-19 outcomes, including smoking status, older age, etc. Recent cancer treatments have also been urgently evaluated during the pandemic as potential risk factors for severe COVID-19, with conflicting findings regarding systemic chemotherapy and radiation therapy, while other therapies were not associated with altered outcomes. Given this vulnerability of lung cancer patients for severe COVID-19, the delivery of cancer care was significantly modified during the pandemic to both proceed with cancer care and minimize SARS-CoV-2 infection risk. However, COVID-19-related delays and patients’ aversion to clinical settings have led to increased diagnosis of more advanced tumors, with an expected increase in cancer mortality. Waning immunity and vaccine breakthroughs related to novel variants of concern threaten to further impede the delivery of cancer services. Cancer patients have a high risk of severe COVID-19, despite being fully vaccinated. Numerous treatments for early COVID-19 have been developed to prevent disease progression and are crucial for infected cancer patients to minimize severe COVID-19 outcomes and resume cancer care. In this literature review, we will explore the lessons learned during the COVID-19 pandemic to specifically mitigate COVID-19 treatment decisions and the clinical management of lung cancer patients.
Collapse
Affiliation(s)
- David J. H. Bian
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada;
| | - Siham Sabri
- Cancer Research Program, Research Institute, McGill University Health Center Glen Site, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Bassam S. Abdulkarim
- Cancer Research Program, Research Institute, and Department of Oncology, Cedars Cancer Center, McGill University Health Center Glen Site, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
35
|
Leung JH, Ng B, Lim WW. Interleukin-11: A Potential Biomarker and Molecular Therapeutic Target in Non-Small Cell Lung Cancer. Cells 2022; 11:cells11142257. [PMID: 35883698 PMCID: PMC9318853 DOI: 10.3390/cells11142257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer and is a fast progressive disease when left untreated. Identification of potential biomarkers in NSCLC is an ongoing area of research that aims to detect, diagnose, and prognosticate patients early to optimize treatment. We review the role of interleukin-11 (IL11), a stromal-cell derived pleiotropic cytokine with profibrotic and cellular remodeling properties, as a potential biomarker in NSCLC. This review identifies the need for biomarkers in NSCLC, the potential sources of IL11, and summarizes the available information leveraging upon published literature, publicly available datasets, and online tools. We identify accumulating evidence suggesting IL11 to be a potential biomarker in NSCLC patients. Further in-depth studies into the pathophysiological effects of IL11 on stromal-tumor interaction in NSCLC are warranted and current available literature highlights the potential value of IL11 detection as a diagnostic and prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Jason Hongting Leung
- Department of Cardiothoracic Surgery, National Heart Center Singapore, Singapore 169609, Singapore
- Correspondence:
| | - Benjamin Ng
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609, Singapore; (B.N.); (W.-W.L.)
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169609, Singapore
| | - Wei-Wen Lim
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609, Singapore; (B.N.); (W.-W.L.)
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169609, Singapore
| |
Collapse
|
36
|
Rice SJ, Belani CP. Optimizing data-independent acquisition (DIA) spectral library workflows for plasma proteomics studies. Proteomics 2022; 22:e2200125. [PMID: 35708973 DOI: 10.1002/pmic.202200125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Traditional data-independent acquisition (DIA) workflows employ off-column fractionation with data-dependent acquisition (DDA) to generate spectral libraries for data extraction. Recent advances have led to the establishment of library-independent approaches for DIA analyses. The selection of a DIA workflow may affect the outcome of plasma proteomics studies. Here, we establish a gas-phase fractionation (GPF) workflow to create DIA libraries for DIA with parallel accumulation and serial fragmentation (diaPASEF). This workflow along with three other workflows, fractionated DDA libraries, fractionated DIA libraries, and predicted spectra libraries, were evaluated on 20 plasma samples from nonsmall cell lung cancer patients with low or high levels of IL-6. We sought to optimize protein identification and total experiment time. The novel GPF workflow for diaPASEF outperformed the traditional ddaPASEF workflow in the number of identified and quantified proteins. A library-independent workflow based on predicted spectra identified and quantified the most proteins in our experiment at the cost of computational power. Overall, the choice of DIA library workflow seemed to have a limited effect on the overall outcome of a plasma proteomics experiment, but it can affect the number of proteins identified and the total experiment time.
Collapse
Affiliation(s)
- Shawn J Rice
- Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Chandra P Belani
- Penn State Cancer Institute, Hershey, Pennsylvania, USA.,Department of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
37
|
Alfranca YL, García MEO, Rueda AG, Ballesteros PÁ, Rodríguez DR, Velasco MT. Blood Biomarkers of Response to Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. J Clin Med 2022; 11:jcm11113245. [PMID: 35683629 PMCID: PMC9181575 DOI: 10.3390/jcm11113245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment landscape of non-small cell lung cancer (NSCLC), either used in monotherapy or in combination with chemotherapy. While some patients achieve durable responses, some will not get benefit from this treatment. Early identification of non- responder patients could avoid unnecessary treatment, potentially serious immune-related adverse events and reduce treatment costs. PD-L1 expression using immunohistochemistry is the only approved biomarker for the selection of patients that can benefit from immunotherapy. However, application of PD-L1 as a biomarker of treatment efficacy shows many deficiencies probably due to the complexity of the tumor microenvironment and the technical limitations of the samples. Thus, there is an urgent need to find other biomarkers, ideally blood biomarkers to help us to identify different subgroups of patients in a minimal invasive way. In this review, we summarize the emerging blood-based markers that could help to predict the response to ICIs in NSCLC.
Collapse
|
38
|
You DJ, Lee HY, Taylor-Just AJ, Bonner JC. Synergistic induction of IL-6 production in human bronchial epithelial cells in vitro by nickel nanoparticles and lipopolysaccharide is mediated by STAT3 and C/EBPβ. Toxicol In Vitro 2022; 83:105394. [PMID: 35623502 DOI: 10.1016/j.tiv.2022.105394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
We previously reported that delivery of nickel nanoparticles (NiNPs) and bacterial lipopolysaccharide (LPS) into the lungs of mice synergistically increased IL-6 production and inflammation, and male mice were more susceptible than female mice. The primary goal of this study was to utilize an in vitro human lung epithelial cell model (BEAS-2B) to investigate the intracellular signaling mechanisms that mediate IL-6 production by LPS and NiNPs. We also investigated the effect of sex hormones on NiNP and LPS-induced IL-6 production in vitro. LPS and NiNPs synergistically induced IL-6 mRNA and protein in BEAS-2B cells. TPCA-1, a dual inhibitor of IKK-2 and STAT3, blocked the synergistic increase in IL-6 caused by LPS and NiNPs, abolished STAT3 activation, and reduced C/EBPβ. Conversely, SC144, an inhibitor of the gp130 component of the IL-6 receptor, enhanced IL-6 production induced by LPS and NiNPs. Treatment of BEAS-2B cells with sex hormones (17β-estradiol, progesterone, or testosterone) or the anti-oxidant NAC, had no effect on IL-6 induction by LPS and NiNPs. These data suggest that LPS and NiNPs induce IL-6 via STAT3 and C/EBPβ in BEAS-2B cells. While BEAS-2B cells are a suitable model to study mechanisms of IL-6 production, they do not appear to be suitable for studying the effect of sex hormones.
Collapse
Affiliation(s)
- Dorothy J You
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, United States of America
| | - Ho Young Lee
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, United States of America
| | - Alexia J Taylor-Just
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, United States of America
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, United States of America.
| |
Collapse
|
39
|
Somasundaram A, Cillo AR, Lampenfeld C, Workman CJ, Kunning S, Oliveri LN, Velez M, Joyce S, Calderon M, Dadey R, Rajasundaram D, Normolle DP, Watkins SC, Herman JG, Kirkwood JM, Lipson EJ, Ferris RL, Bruno TC, Vignali DAA. Systemic immune dysfunction in cancer patients driven by IL6 induction of LAG3 in peripheral CD8+ T cells. Cancer Immunol Res 2022; 10:885-899. [PMID: 35587532 DOI: 10.1158/2326-6066.cir-20-0736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 06/10/2021] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Many cancer patients do not develop a durable response to the current standard of care immunotherapies, despite substantial advances in targeting immune inhibitory receptors. A potential compounding issue, which may serve as an unappreciated, dominant resistance mechanism, is an inherent systemic immune dysfunction that is often associated with advanced cancer. Minimal response to inhibitory receptor (IR) blockade therapy and increased disease burden have been associated with peripheral CD8+ T-cell dysfunction, characterized by suboptimal T-cell proliferation and chronic expression of IRs (eg. Programmed Death 1 [PD1] and Lymphocyte Activation Gene 3 [LAG3]). Here, we demonstrated that approximately a third of cancer patients analyzed in this study have peripheral CD8+ T cells that expressed robust intracellular LAG3 (LAG3IC), but not surface LAG3 (LAG3SUR) due to A Disintegrin and Metalloproteinase domain-containing protein 10 (ADAM10) cleavage. This associated with poor disease prognosis and decreased CD8+ T-cell function, which could be partially reversed by anti-LAG3. Systemic immune dysfunction was restricted to CD8+ T cells, including, in some cases, a high percentage of peripheral naïve CD8+ T cells, and was driven by the cytokine IL6 via STAT3. These data suggest that additional studies are warrented to determine if the combination of increased LAG3IC in peripheral CD8+ T cells and elevated systemic IL6 can serve as predictive biomarkers and identify which cancer patients may benefit from LAG3 blockade.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Velez
- University of Pittsburgh, Pittsburgh, PA, United States
| | - Sonali Joyce
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Michael Calderon
- University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Rebekah Dadey
- University of Pittsburgh, Pittsburgh, PA, United States
| | | | | | | | | | | | - Evan J Lipson
- Johns Hopkins University School of Medicine, BALTIMORE, MD, United States
| | - Robert L Ferris
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Tullia C Bruno
- University of Colorado Boulder, Pittsburgh, PA, United States
| | | |
Collapse
|
40
|
Cai C, Peng X, Zhang Y. Serum IL-6 Level Predicts the Prognosis and Diagnosis in Cervical Cancer Patients. Int J Womens Health 2022; 14:655-663. [PMID: 35547839 PMCID: PMC9081182 DOI: 10.2147/ijwh.s347740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background Interleukin-6 (IL-6) has been reported to be associated with the prognosis of cancers. As for cervical cancer (CC), previous studies investigated the association between IL-6 expression in CC tumor tissue and CC prognosis; however, no studies assessed the effects of serum IL-6 levels on the survival of CC. This study aimed to explore the effects of serum IL-6 levels on prognosis in patients with CC. Methods In total, 327 patients with CC and 355 controls were recruited from this hospital from May 2015 to May 2016. Serum IL-6 levels were measured before treatment. The Kaplan–Meier method was utilized to estimate survival rates. The overall survival (OS) and disease-free survival (DFS) were evaluated. The univariate and multivariate Cox regression analyses were used to identify risk factors associated with the prognosis of CC. Results We found that the serum IL-6 level in the CC group was significantly higher than that in the control group. The diagnostic value of serum IL-6 level in detecting CC patients was moderate, and the specificity and sensitivity were 77.46% and 47.09%, respectively. Data suggested that the serum IL-6 level was significantly linked with the smoking status, FIGO stage, tumor size, treatment methods, and HPV infection. The univariate and multivariate analysis indicated that FIGO stage IIB-IIIC, lymph node metastasis, and high serum IL-6 levels were negatively associated with the OS and DFS in patients with CC. Conclusion Serum IL-6 has a moderate diagnostic ability for detecting CC and may be a potential CC biomarker. High serum IL-6 level is associated with adverse prognosis in patients with CC and could be a prognosis indicator for CC patients.
Collapse
Affiliation(s)
- Chunyan Cai
- Department of Gynaecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Xing Peng
- Department of Gynaecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Yumei Zhang
- Department of Gynaecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| |
Collapse
|
41
|
Systematic analysis of IL-6 as a predictive biomarker and desensitizer of immunotherapy responses in patients with non-small cell lung cancer. BMC Med 2022; 20:187. [PMID: 35550592 PMCID: PMC9102328 DOI: 10.1186/s12916-022-02356-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cytokines have been reported to alter the response to immune checkpoint inhibitors (ICIs) in patients with the tumor in accordance with their plasma concentrations. Here, we aimed to identify the key cytokines which influenced the responses and stimulated resistance to ICIs and tried to improve immunological response and develop novel clinical treatments in non-small cell lung cancer (NSCLC). METHODS The promising predictive cytokines were analyzed via the multi-analyte flow assay. Next, we explored the correlation baseline level of plasma cytokines and clinical outcomes in 45 NSCLC patients treated with ICIs. The mechanism of the potential candidate cytokine in predicting response and inducing resistance to ICIs was then investigated. RESULTS We found NSCLC with a low baseline concentration of IL-6 in plasma specimens or tumor tissues could derive more benefit from ICIs based on the patient cohort. Further analyses revealed that a favorable relationship between PD-L1 and IL-6 expression was seen in NSCLC specimens. Results in vitro showed that PD-L1 expression in the tumor was enhanced by IL-6 via the JAK1/Stat3 pathway, which induced immune evasion. Notably, an adverse correlation was found between IL-6 levels and CD8+ T cells. And a positive association between IL-6 levels and myeloid-derived suppressor cells, M2 macrophages and regulator T cells was also seen in tumor samples, which may result in an inferior response to ICIs. Results of murine models of NSCLC suggested that the dual blockade of IL-6 and PD-L1 attenuated tumor growth. Further analyses detected that the inhibitor of IL-6 stimulated the infiltration of CD8+ T cells and yielded the inflammatory phenotype. CONCLUSIONS This study elucidated the role of baseline IL-6 levels in predicting the responses and promoting resistance to immunotherapy in patients with NSCLC. Our results indicated that the treatment targeting IL-6 may be beneficial for ICIs in NSCLC.
Collapse
|
42
|
Lambert SL, Zhang C, Guo C, Turan T, Masica DL, Englert S, Fang Y, Sheridan J, McLaughlin RT, Tribouley C, Vosganian G, Afar D. Association of Baseline and Pharmacodynamic Biomarkers With Outcomes in Patients Treated With the PD-1 Inhibitor Budigalimab. J Immunother 2022; 45:167-179. [PMID: 35034046 PMCID: PMC8906246 DOI: 10.1097/cji.0000000000000408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022]
Abstract
Budigalimab, a novel anti-PD-1 monoclonal antibody, demonstrated efficacy and biomarker pharmacodynamics in patients with head and neck squamous cell carcinoma (HNSCC) or non-small cell lung cancer (NSCLC) consistent with those reported by other PD-1 inhibitors. Herein are presented additional outcomes of biomarker analyses from the phase 1 study of budigalimab monotherapy in patients with HNSCC and NSCLC (NCT03000257). PD-1 inhibitor naive patients with advanced HNSCC (n=41) or NSCLC (n=40) received budigalimab intravenously at 250 mg every 2 weeks (Q2W) or 500 mg Q4W until progression. Archival tumor specimens were evaluated by immunohistochemistry for CD8 and tumor PD-1 ligand 1 (PD-L1) expression, RNA, and whole-exome sequencing. Serum and whole blood samples were acquired at baseline and at select on-treatment time points. As of October 2019, best overall response of 15% in HNSCC and 18% in NSCLC was observed in all treated patients; both cohorts reported responses in PD-L1+ and PD-L1- tumors. Treatment with budigalimab was associated with increases in multiple soluble biomarkers including interferon gamma-induced chemokines. Expanded overall T-cell counts, total CD8 T-cell counts, and percentages of CD8+CD45RA-CD62L- effector memory T cells were observed at cycle 1, day 15 in responders. Univariate analysis demonstrated an association between prolonged progression-free survival and higher tumor mutational burden/neoantigen load, smaller tumor size, lower platelet-lymphocyte ratios, lower CCL23, lower colony-stimulating factor 1, and lower interleukin-6 levels at baseline. The biomarker analysis presented herein identified additional early pharmacodynamic biomarkers associated with anti-PD-1 activity and improved clinical responses to budigalimab in patients with advanced HNSCC and NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefan Englert
- Data and Statistical Sciences, AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Yuni Fang
- Drug Metabolism, Pharmacokinetics, AbbVie Inc, Redwood City, CA
| | - James Sheridan
- Drug Metabolism, Pharmacokinetics, AbbVie Inc, Redwood City, CA
| | | | | | | | | |
Collapse
|
43
|
Tumor Microenvironment of Hepatocellular Carcinoma: Challenges and Opportunities for New Treatment Options. Int J Mol Sci 2022; 23:ijms23073778. [PMID: 35409139 PMCID: PMC8998420 DOI: 10.3390/ijms23073778] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
The prevalence of liver cancer is constantly rising, with increasing incidence and mortality in Europe and the USA in recent decades. Among the different subtypes of liver cancers, hepatocellular carcinoma (HCC) is the most commonly diagnosed liver cancer. Besides advances in diagnosis and promising results of pre-clinical studies, HCC remains a highly lethal disease. In many cases, HCC is an effect of chronic liver inflammation, which leads to the formation of a complex tumor microenvironment (TME) composed of immune and stromal cells. The TME of HCC patients is a challenge for therapies, as it is involved in metastasis and the development of resistance. However, given that the TME is an intricate system of immune and stromal cells interacting with cancer cells, new immune-based therapies are being developed to target the TME of HCC. Therefore, understanding the complexity of the TME in HCC will provide new possibilities to design novel and more effective immunotherapeutics and combinatorial therapies to overcome resistance to treatment. In this review, we describe the role of inflammation during the development and progression of HCC by focusing on TME. We also describe the most recent therapeutic advances for HCC and possible combinatorial treatment options.
Collapse
|
44
|
Han L, Shi H, Ma S, Luo Y, Sun W, Li S, Zhang N, Jiang X, Gao Y, Huang Z, Xie C, Gong Y. Agrin Promotes Non-Small Cell Lung Cancer Progression and Stimulates Regulatory T Cells via Increasing IL-6 Secretion Through PI3K/AKT Pathway. Front Oncol 2022; 11:804418. [PMID: 35111682 PMCID: PMC8801576 DOI: 10.3389/fonc.2021.804418] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/23/2021] [Indexed: 01/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has high mortality rates worldwide. Agrin contributes to immune synapse information and is involved in tumor metastasis. However, its roles in NSCLC and tumor immune microenvironment remain unclear. This study examined the effects and the underlying mechanisms of Agrin in NSCLC and tumor-infiltrated immune cells. Clinical tissue samples were used to confirm the bioinformatic predictions. NSCLC cells were used to investigate the effects of Agrin on cell cycle and proliferation, as well as invasion and migration. Tumor xenograft mouse model was used to confirm the effects of Agrin on NSCLC growth and tumor-infiltrated regulatory T cells (Tregs) in vivo. Agrin levels in NSCLC cells were closely related to tumor progression and metastasis, and its function was enriched in the PI3K/AKT pathway. In vitro assays demonstrated that Agrin knockdown suppressed NSCLC cell proliferation and metastasis, while PI3K/AKT activators reversed the inhibitory effects of Agrin deficiency on NSCLC cell behaviors. Agrin expression was negatively associated with immunotherapy responses in NSCLC patients. Agrin knockdown suppressed Tregs, as well as interleukin (IL)-6 expression and secretion, while PI3K/AKT activators and exogenous IL-6 rescued the inhibitory effects. In the mouse model, Agrin downregulation alleviated NSCLC cell growth and Treg infiltration in vivo. Our results indicated that Agrin promotes tumor cell growth and Treg infiltration via increasing IL-6 expression and secretion through PI3K/AKT pathway in NSCLC. Our studies suggested Agrin as a therapeutically potential target to increase the efficacy of immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongjie Shi
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nannan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Islam MR, Alam MK, Paul BK, Koundal D, Zaguia A, Ahmed K. Identification of Molecular Biomarkers and Key Pathways for Esophageal Carcinoma (EsC): A Bioinformatics Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5908402. [PMID: 35071597 PMCID: PMC8769846 DOI: 10.1155/2022/5908402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Esophageal carcinoma (EsC) is a member of the cancer group that occurs in the esophagus; globally, it is known as one of the fatal malignancies. In this study, we used gene expression analysis to identify molecular biomarkers to propose therapeutic targets for the development of novel drugs. We consider EsC associated four different microarray datasets from the gene expression omnibus database. Statistical analysis is performed using R language and identified a total of 1083 differentially expressed genes (DEGs) in which 380 are overexpressed and 703 are underexpressed. The functional study is performed with the identified DEGs to screen significant Gene Ontology (GO) terms and associated pathways using the Database for Annotation, Visualization, and Integrated Discovery repository (DAVID). The analysis revealed that the overexpressed DEGs are principally connected with the protein export, axon guidance pathway, and the downexpressed DEGs are principally connected with the L13a-mediated translational silencing of ceruloplasmin expression, formation of a pool of free 40S subunits pathway. The STRING database used to collect protein-protein interaction (PPI) network information and visualize it with the Cytoscape software. We found 10 hub genes from the PPI network considering three methods in which the interleukin 6 (IL6) gene is the top in all methods. From the PPI, we found that identified clusters are associated with the complex I biogenesis, ubiquitination and proteasome degradation, signaling by interleukins, and Notch-HLH transcription pathway. The identified biomarkers and pathways may play an important role in the future for developing drugs for the EsC.
Collapse
Affiliation(s)
- Md. Rakibul Islam
- Department of Software Engineering, Daffodil International University (DIU), Ashulia, Savar, Dhaka 1342, Bangladesh
| | - Mohammad Khursheed Alam
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
- Center for Transdisciplinary Research (CFTR), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Public Health, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bikash Kumar Paul
- Department of Software Engineering, Daffodil International University (DIU), Ashulia, Savar, Dhaka 1342, Bangladesh
- Group of Bio-Photomatix, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Deepika Koundal
- Department of Systemics, School of Computer Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Atef Zaguia
- Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Kawsar Ahmed
- Group of Bio-Photomatix, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9
| |
Collapse
|
46
|
Parakh S, Ernst M, Poh AR. Multicellular Effects of STAT3 in Non-small Cell Lung Cancer: Mechanistic Insights and Therapeutic Opportunities. Cancers (Basel) 2021; 13:6228. [PMID: 34944848 PMCID: PMC8699548 DOI: 10.3390/cancers13246228] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and accounts for 85% of lung cancer cases. Aberrant activation of the Signal Transducer and Activator of Transcription 3 (STAT3) is frequently observed in NSCLC and is associated with a poor prognosis. Pre-clinical studies have revealed an unequivocal role for tumor cell-intrinsic and extrinsic STAT3 signaling in NSCLC by promoting angiogenesis, cell survival, cancer cell stemness, drug resistance, and evasion of anti-tumor immunity. Several STAT3-targeting strategies have also been investigated in pre-clinical models, and include preventing upstream receptor/ligand interactions, promoting the degradation of STAT3 mRNA, and interfering with STAT3 DNA binding. In this review, we discuss the molecular and immunological mechanisms by which persistent STAT3 activation promotes NSCLC development, and the utility of STAT3 as a prognostic and predictive biomarker in NSCLC. We also provide a comprehensive update of STAT3-targeting therapies that are currently undergoing clinical evaluation, and discuss the challenges associated with these treatment modalities in human patients.
Collapse
Affiliation(s)
- Sagun Parakh
- Department of Medical Oncology, The Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, VIC 3084, Australia;
- Tumor Targeting Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Matthias Ernst
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Ashleigh R. Poh
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| |
Collapse
|
47
|
Diversity and heterogeneity of immune states in non-small cell lung cancer and small cell lung cancer. PLoS One 2021; 16:e0260988. [PMID: 34855926 PMCID: PMC8638918 DOI: 10.1371/journal.pone.0260988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Blood-based biomarkers including systemic inflammation (SI) indicators or circulating factors (cytokines, chemokines, or growth factors) are associated with a poor prognosis for lung cancer patients. Collectively these biomarkers can predict the immune state of a patient. We wanted to define and compare the immune states of small cell and non-small cell lung cancer patients, in the hopes that the information gained could lead to overall improvements in patient care and outcomes. Specimens and data from 235 patients was utilized, 49 surgically resected non-small cell lung cancer (NSCLC) patients with no evidence of disease (DF), 135 advanced non-small cell lung cancer (NSCLC), 51 small cell lung cancer (SCLC). SI markers neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte (PLR), systemic inflammation index (SII), and systemic inflammation response index (SIRI) were determined from blood counts. Forty-seven plasma cytokines were measured using a multiplex bead-based assay. Progression-free survival (PFS) and overall survival (OS) were assessed using Kaplan-Meier and Cox Proportional Hazards models. NSCLC patients had significantly high levels of SI markers than SCLC and DF patients, while NLR, PLR and SII were also higher in SCLC than DF patients. SI optimized marker values to differentiate SI value were; 6.04 (NLR), 320 (PLR), 1615 (SII), and 7.3 (SIRI). Elevated levels NLR (p<0.001), PLR (p<0.001), and SII (p = 0.018) were associated with a worse PFS and OS in NSCLC, while none of the markers were associated with PFS in SCLC patients. NSCLC patients with a poor outcome displayed heterogeneous immune states relative to systemic inflammation and circulating IL-6 markers. These groups could be distinguished based on the cytokines IL-8, TNFα, and IL-27. We identified heterogeneity of immune states in SCLC and NSCLC patients and in NSCLC patients with the poorest prognosis. This heterogeneity could be exploited to improve outcomes for these patients.
Collapse
|
48
|
Sen’kova AV, Savin IA, Brenner EV, Zenkova MA, Markov AV. Core genes involved in the regulation of acute lung injury and their association with COVID-19 and tumor progression: A bioinformatics and experimental study. PLoS One 2021; 16:e0260450. [PMID: 34807957 PMCID: PMC8608348 DOI: 10.1371/journal.pone.0260450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is a specific form of lung damage caused by different infectious and non-infectious agents, including SARS-CoV-2, leading to severe respiratory and systemic inflammation. To gain deeper insight into the molecular mechanisms behind ALI and to identify core elements of the regulatory network associated with this pathology, key genes involved in the regulation of the acute lung inflammatory response (Il6, Ccl2, Cat, Serpine1, Eln, Timp1, Ptx3, Socs3) were revealed using comprehensive bioinformatics analysis of whole-genome microarray datasets, functional annotation of differentially expressed genes (DEGs), reconstruction of protein-protein interaction networks and text mining. The bioinformatics data were validated using a murine model of LPS-induced ALI; changes in the gene expression patterns were assessed during ALI progression and prevention by anti-inflammatory therapy with dexamethasone and the semisynthetic triterpenoid soloxolone methyl (SM), two agents with different mechanisms of action. Analysis showed that 7 of 8 revealed ALI-related genes were susceptible to LPS challenge (up-regulation: Il6, Ccl2, Cat, Serpine1, Eln, Timp1, Socs3; down-regulation: Cat) and their expression was reversed by the pre-treatment of mice with both anti-inflammatory agents. Furthermore, ALI-associated nodal genes were analysed with respect to SARS-CoV-2 infection and lung cancers. The overlap with DEGs identified in postmortem lung tissues from COVID-19 patients revealed genes (Saa1, Rsad2, Ifi44, Rtp4, Mmp8) that (a) showed a high degree centrality in the COVID-19-related regulatory network, (b) were up-regulated in murine lungs after LPS administration, and (c) were susceptible to anti-inflammatory therapy. Analysis of ALI-associated key genes using The Cancer Genome Atlas showed their correlation with poor survival in patients with lung neoplasias (Ptx3, Timp1, Serpine1, Plaur). Taken together, a number of key genes playing a core function in the regulation of lung inflammation were found, which can serve both as promising therapeutic targets and molecular markers to control lung ailments, including COVID-19-associated ALI.
Collapse
Affiliation(s)
- Aleksandra V. Sen’kova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Innokenty A. Savin
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenyi V. Brenner
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Marina A. Zenkova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey V. Markov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
49
|
Seong JB, Kim B, Kim S, Kim MH, Park YH, Lee Y, Lee HJ, Hong CW, Lee DS. Macrophage peroxiredoxin 5 deficiency promotes lung cancer progression via ROS-dependent M2-like polarization. Free Radic Biol Med 2021; 176:322-334. [PMID: 34637923 DOI: 10.1016/j.freeradbiomed.2021.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
Strategies for cancer treatment have traditionally focused on suppressing cancer cell behavior, but many recent studies have demonstrated that regulating the tumor microenvironment (TME) can also inhibit disease progression. Macrophages are major TME components, and the direction of phenotype polarization is known to regulate tumor behavior, with M2-like polarization promoting progression. It is also known that reactive oxygen species (ROS) in macrophages drive M2 polarization, and M2 polarization promote lung cancer progression. Lung cancer patients with lower expression of the antioxidant enzyme peroxiredoxin 5 (Prx5) demonstrate poorer survival. This study revealed that Prx5 deficiency in macrophages induced M2 macrophage polarization by lung cancer. We report that injection of lung cancer cells produced larger tumors in Prx5-deficit mice than wild-type mice independent of cancer cell Prx5 expression. Through co-culture with lung cancer cell lines, Prx5-deficient macrophages exhibited M2 polarization, and reduced expression levels of the M1-associated inflammatory factors iNOS, TNFα, and Il-1β. Moreover, these Prx5-deficient macrophages promoted the proliferation and migration of co-cultured lung cancer cells. Conversely, suppression of ROS generation by N-acetyl cysteine (NAC) inhibited the M2-like polarization of Prx5-deficient macrophages, increased expression levels of inflammatory factors, inhibited the proliferation and migration of co-cultured lung cancer cells, and suppressed tumor growth in mice. These findings suggest that blocking the M2 polarization of macrophages may promote lung cancer regression.
Collapse
Affiliation(s)
- Jung Bae Seong
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Bokyung Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoon Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hye Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea; Research Institute eBiogen Inc., Seoul, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
50
|
Market M, Tennakoon G, Auer RC. Postoperative Natural Killer Cell Dysfunction: The Prime Suspect in the Case of Metastasis Following Curative Cancer Surgery. Int J Mol Sci 2021; 22:ijms222111378. [PMID: 34768810 PMCID: PMC8583911 DOI: 10.3390/ijms222111378] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Surgical resection is the foundation for the curative treatment of solid tumors. However, metastatic recurrence due to the difficulty in eradicating micrometastases remain a feared outcome. Paradoxically, despite the beneficial effects of surgical removal of the primary tumor, the physiological stress resulting from surgical trauma serves to promote cancer recurrence and metastasis. The postoperative environment suppresses critical anti-tumor immune effector cells, including Natural Killer (NK) cells. The literature suggests that NK cells are critical mediators in the formation of metastases immediately following surgery. The following review will highlight the mechanisms that promote the formation of micrometastases by directly or indirectly inducing NK cell suppression following surgery. These include tissue hypoxia, neuroendocrine activation, hypercoagulation, the pro-inflammatory phase, and the anti-inflammatory phase. Perioperative therapeutic strategies designed to prevent or reverse NK cell dysfunction will also be examined for their potential to improve cancer outcomes by preventing surgery-induced metastases.
Collapse
Affiliation(s)
- Marisa Market
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1G 8M5, Canada; (M.M.); (G.T.)
- The Ottawa Hospital Research Institute, Ottawa, ON K1G 4E3, Canada
| | - Gayashan Tennakoon
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1G 8M5, Canada; (M.M.); (G.T.)
| | - Rebecca C. Auer
- The Ottawa Hospital Research Institute, Ottawa, ON K1G 4E3, Canada
- Department of General Surgery, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Correspondence: ; Tel.: +1-613-722-7000
| |
Collapse
|