1
|
Tomioka Y, Seki N, Suetsugu T, Hagihara Y, Sanada H, Goto Y, Kikkawa N, Mizuno K, Tanaka K, Inoue H. Identification of Tumor Suppressive miR-144-5p Targets: FAM111B Expression Accelerates the Malignant Phenotypes of Lung Adenocarcinoma. Int J Mol Sci 2024; 25:9974. [PMID: 39337462 PMCID: PMC11432174 DOI: 10.3390/ijms25189974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Accumulating evidence suggests that the passenger strands microRNAs (miRNAs) derived from pre-miRNAs are closely involved in cancer pathogenesis. Analysis of our miRNA expression signature of lung adenocarcinoma (LUAD) and The Cancer Genome Atlas (TCGA) data revealed that miR-144-5p (the passenger strand derived from pre-miR-144) was significantly downregulated in LUAD tissues. The aim of this study was to identify therapeutic target molecules controlled by miR-144-5p in LUAD cells. Ectopic expression assays demonstrated that miR-144-5p attenuated LUAD cell aggressiveness, e.g., inhibited cell proliferation, migration and invasion abilities, and induced cell cycle arrest and apoptotic cells. A total of 18 genes were identified as putative cancer-promoting genes controlled by miR-144-5p in LUAD cells based on our in silico analysis. We focused on a family with sequence similarity 111 member B (FAM111B) and investigated its cancer-promoting functions in LUAD cells. Luciferase reporter assay showed that expression of FAM111B was directly regulated by miR-144-5p in LUAD cells. FAM111B knockdown assays showed that LUAD cells significantly suppressed malignant phenotypes, e.g., inhibited cell proliferation, migration and invasion abilities, and induced cell cycle arrest and apoptotic cells. Furthermore, we investigated the FAM111B-mediated molecular networks in LUAD cells. Identifying target genes regulated by passenger strands of miRNAs may aid in the discovery of diagnostic markers and therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Yuya Tomioka
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan; (Y.G.); (N.K.)
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Yoko Hagihara
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Hiroki Sanada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Yusuke Goto
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan; (Y.G.); (N.K.)
| | - Naoko Kikkawa
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan; (Y.G.); (N.K.)
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Kentaro Tanaka
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| |
Collapse
|
2
|
Wang FX, Shi ZA, Mu G. Regulation of immune cells by miR-451 and its potential as a biomarker in immune-related disorders: a mini review. Front Immunol 2024; 15:1421473. [PMID: 39076992 PMCID: PMC11284029 DOI: 10.3389/fimmu.2024.1421473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
In 2005, Altuvia and colleagues were the first to identify the gene that encodes miR-451 in the human pituitary gland, located in chromosome region 17q11.2. Subsequent studies have confirmed that miR-451 regulates various immune cells, including T cells, B cells, microglia, macrophages, and neutrophils, thereby influencing disease progression. The range of immune-related diseases affected encompasses various cancers, lymphoblastic leukemia, and injuries to the lungs and spinal cord, among others. Moreover, miR-451 is produced by immune cells and can regulate both their own functions and those of other immune cells, thus creating a regulatory feedback loop. This article aims to comprehensively review the interactions between miR-451 and immune cells, clarify the regulatory roles of miR-451 within the immune system, and assess its potential as both a therapeutic target and a biomarker for immune-related diseases.
Collapse
Affiliation(s)
- Fei-xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Zu-an Shi
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Guo Mu
- Department of Anesthesiology, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| |
Collapse
|
3
|
Liu J, Zhang F, Wang J, Wang Y. MicroRNA‑mediated regulation in lung adenocarcinoma: Signaling pathways and potential therapeutic implications (Review). Oncol Rep 2023; 50:211. [PMID: 37859595 PMCID: PMC10603552 DOI: 10.3892/or.2023.8648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Lung adenocarcinoma (LUAD) poses a significant global health burden owing to its high incidence rate and unfavorable prognosis, driven by frequent recurrence and drug resistance. Understanding the biological mechanisms underlying LUAD is imperative to developing advanced therapeutic strategies. Recent research has highlighted the role of dysregulated microRNAs (miRNAs) in LUAD progression through diverse signaling pathways, including the Wnt and AKT pathways. Of particular interest is the novel pathological mechanism involving the interaction between competing endogenous RNAs (ceRNAs) and miRNAs. This review critically analyzed the impact of aberrant miRNA expression on LUAD development, shedding light on the associated signaling pathways. It also highlighted the emerging significance of ceRNA‑miRNA interactions in LUAD pathogenesis. Elucidating the intricate regulatory networks involving miRNAs and ceRNAs presents a promising avenue for the development of potential therapeutic interventions and diagnostic biomarkers in LUAD. Further research in this area is essential to advance precision medicine approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Jiye Liu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
- Department of Rehabilitation Medicine, Huludao Central Hospital, Huludao, Liaoning 125000, P.R. China
| | - Fei Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yibing Wang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
4
|
Abd-Elmawla MA, Abdel Mageed SS, Al-Noshokaty TM, Elballal MS, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Midan HM, Rizk NI, Elrebehy MA, Sayed GA, Tabaa MME, Salman A, Mohammed OA, Ashraf A, Khidr EG, Khaled R, El-Dakroury WA, Helal GK, Moustafa YM, Doghish AS. Melodic maestros: Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of malignant pleural mesothelioma. Pathol Res Pract 2023; 250:154817. [PMID: 37713736 DOI: 10.1016/j.prp.2023.154817] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly lethal form of pleural cancer characterized by a scarcity of effective therapeutic interventions, resulting in unfavorable prognoses for afflicted individuals. Besides, many patients experience substantial consequences from being diagnosed in advanced stages. The available diagnostic, prognostic, and therapeutic options for MPM are restricted in scope. MicroRNAs (miRNAs) are a subset of small, noncoding RNA molecules that exert significant regulatory influence over several cellular processes within cell biology. A wide range of miRNAs have atypical expression patterns in cancer, serving specific functions as either tumor suppressors or oncomiRs. This review aims to collate, epitomize, and analyze the latest scholarly investigations on miRNAs that are believed to be implicated in the dysregulation leading to MPM. miRNAs are also discussed concerning their potential clinical usefulness as diagnostic and prognostic biomarkers for MPM. The future holds promising prospects for enhancing diagnostic, prognostic, and therapeutic modalities for MPM, with miRNAs emerging as a potential trigger for such advancements.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
5
|
Expression of Concern: The low expression of miR-451 predicts a worse prognosis in non-small cell lung cancer cases. PLoS One 2023; 18:e0280774. [PMID: 36652437 PMCID: PMC9847894 DOI: 10.1371/journal.pone.0280774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
6
|
Vykoukal J, Fahrmann JF, Patel N, Shimizu M, Ostrin EJ, Dennison JB, Ivan C, Goodman GE, Thornquist MD, Barnett MJ, Feng Z, Calin GA, Hanash SM. Contributions of Circulating microRNAs for Early Detection of Lung Cancer. Cancers (Basel) 2022; 14:4221. [PMID: 36077759 PMCID: PMC9454665 DOI: 10.3390/cancers14174221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023] Open
Abstract
There is unmet need to develop circulating biomarkers that would enable earlier interception of lung cancer when more effective treatment options are available. Here, a set of 30 miRNAs, selected from a review of the published literature were assessed for their predictive performance in identifying lung cancer cases in the pre-diagnostic setting. The 30 miRNAs were assayed using sera collected from 102 individuals diagnosed with lung cancer within one year following blood draw and 212 controls matched for age, sex, and smoking status. The additive performance of top-performing miRNA candidates in combination with a previously validated four-protein marker panel (4MP) consisting of the precursor form of surfactant protein B (Pro-SFTPB), cancer antigen 125 (CA125), carcinoembryonic antigen (CEA) and cytokeratin-19 fragment (CYFRA21-1) was additionally assessed. Of the 30 miRNAs evaluated, five (miR-320a-3p, miR-210-3p, miR-92a-3p, miR-21-5p, and miR-140-3p) were statistically significantly (Wilcoxon rank sum test p < 0.05) elevated in case sera compared to controls, with individual AUCs ranging from 0.57−0.62. Compared to the 4MP alone, the combination of 3-miRNAs + 4MP improved sensitivity at 95% specificity by 19.1% ((95% CI of difference 0.0−28.6); two-sided p: 0.006). Our findings demonstrate utility for miRNAs for early detection of lung cancer in combination with a four-protein marker panel.
Collapse
Affiliation(s)
- Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Nikul Patel
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Masayoshi Shimizu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edwin J. Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gary E. Goodman
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Matt J. Barnett
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ziding Feng
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samir M. Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
The Role of the Selected miRNAs as Diagnostic, Predictive and Prognostic Markers in Non-Small-Cell Lung Cancer. J Pers Med 2022; 12:jpm12081227. [PMID: 36013176 PMCID: PMC9410235 DOI: 10.3390/jpm12081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Lung cancer remains a leading cause of cancer-related deaths worldwide, overtaking colon, breast, and prostate cancer-related deaths. Due to the limited diagnostic possibilities, it is often diagnosed after it has reached an advanced stage. The delayed diagnosis significantly worsens the patient’s prognosis. In recent years, we have observed an increased interest in the use of microRNAs (miRNAs) as diagnostic, predictive, and prognostic markers in non-small-cell lung cancer (NSCLC). The abnormal expression levels of the miRNAs could be used to detect NSCLC in its early stages while it is still asymptomatic. This could drastically improve the clinical outcome. Furthermore, some miRNAs could serve as promising predictive and prognostic factors for NSCLC. Some of the currently available studies have shown a correlation between the miRNAs’ levels and the sensitivity of tumour cells to different treatment regimens. Analysing and modulating the miRNAs’ expression could be a way to predict and improve the treatment’s outcome.
Collapse
|
8
|
Azari ZD, Aljubran F, Nothnick WB. Inflammatory MicroRNAs and the Pathophysiology of Endometriosis and Atherosclerosis: Common Pathways and Future Directions Towards Elucidating the Relationship. Reprod Sci 2022; 29:2089-2104. [PMID: 35476352 DOI: 10.1007/s43032-022-00955-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Emerging data indicates an association between endometriosis and subclinical atherosclerosis, with women with endometriosis at a higher risk for cardiovascular disease later in life. Inflammation is proposed to play a central role in the pathophysiology of both diseases and elevated levels of systemic pro-inflammatory cytokines including macrophage migration inhibitory factor (MIF), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) are well documented. However, a thorough understanding on the mediators and mechanisms which contribute to altered cytokine expression in both diseases remain poorly understood. MicroRNAs (miRNAs) are important post-transcriptional regulators of inflammatory pathways and numerous studies have reported altered circulating levels of miRNAs in both endometriosis and atherosclerosis. Potential contribution of miRNA-mediated inflammatory cascades common to the pathophysiology of both diseases has not been evaluated but could offer insight into common pathways and early manifestation relevant to both diseases which may help understand cause and effect. In this review, we discuss and summarize differentially expressed inflammatory circulating miRNAs in endometriosis subjects, compare this profile to that of circulating levels associated with atherosclerosis when possible, and then discuss mechanistic studies focusing on these miRNAs in relevant cell, tissue, and animal models. We conclude by discussing the potential utility of targeting the relevant miRNAs in the MIF-IL-6-TNF-α pathway as therapeutic options and offer insight into future studies which will help us better understand not only the role of these miRNAs in the pathophysiology of both endometriosis and atherosclerosis but also commonality between both diseases.
Collapse
Affiliation(s)
- Zubeen D Azari
- Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Fatimah Aljubran
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Warren B Nothnick
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Obstetrics and Gynecology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Center for Reproductive Sciences, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
9
|
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, Mirzaei S, Sethi G. Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol 2022; 173:103680. [PMID: 35405273 DOI: 10.1016/j.critrevonc.2022.103680] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The macrophages are abundantly found in TME and their M2 polarization is in favor of tumor malignancy. On the other hand, non-coding RNAs (ncRNAs) can modulate macrophage polarization in TME to affect cancer progression. The miRNAs can dually induce/suppress M2 polarization of macrophages and by affecting various molecular pathways, they modulate tumor progression and therapy response. The lncRNAs can affect miRNAs via sponging and other molecular pathways to modulate macrophage polarization. A few experiments have also examined role of circRNAs in targeting signaling networks and affecting macrophages. The therapeutic targeting of these ncRNAs can mediate TME remodeling and affect macrophage polarization. Furthermore, exosomal ncRNAs derived from tumor cells or macrophages can modulate polarization and TME remodeling. Suppressing biogenesis and secretion of exosomes can inhibit ncRNA-mediated M2 polarization of macrophages and prevent tumor progression. The ncRNAs, especially exosomal ncRNAs can be considered as non-invasive biomarkers for tumor diagnosis.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Lu Y, Zhang X, Zhang H, Zhu Z. Prognosis and Biological Function of miR-3195 in Non-Small Cell Lung Cancer. Cancer Manag Res 2022; 14:169-176. [PMID: 35046724 PMCID: PMC8761076 DOI: 10.2147/cmar.s345618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Lung cancer has the highest mortality and morbidity rates worldwide. Among the subtypes of lung cancer, non-small cell lung cancer (NSCLC) accounts for approximately 85% of cases. The present study evaluated the potential prognostic value and biological function of miR-3195 in NSCLC. PATIENTS AND METHODS In total, 129 patients with NSCLC were enrolled in this study. The expression of miR-3195 expression in NSCLC tissues and cell lines was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Kaplan-Meier survival curve analysis and multivariate Cox regression analysis were used to elucidate the prognostic value of miR-3195. The Cell Counting Kit-8 (CCK-8) assay and Transwell cell migration experiments were carried out to explore the effective effect of miR-3195 on the biological behavior of NSCLC cells. RESULTS The expression of miR-3195 was downregulated in NSCLC tissues and cell lines. Moreover, the decreased expression of miR-3195 was correlated with positive lymph node metastasis and high TNM stage. The overall survival of patients with low expression of miR-3195 was worse than those with high expression of miR-3195. Furthermore, miR-3195 was an independent prognostic indicator for overall survival in patients with NSCLC. Enhanced expression of miR-3195 restrained cell growth, migration, and invasion of NSCLC tumor cells, while attenuation of miR-3195 expression augmented cell proliferation activities, migration, and invasion potential. CONCLUSION Our findings suggest that miR-3195 may be used as a prognostic biomarker for NSCLC and is likely to act as a tumor suppressor for NSCLC.
Collapse
Affiliation(s)
- Yingjie Lu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Thoracic Surgery Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Xuelin Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Thoracic Surgery Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Huibiao Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Thoracic Surgery Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Zhenghong Zhu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Thoracic Surgery Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Davis JM, Cheng B, Drake MM, Yu Q, Yang B, Li J, Liu C, Younes M, Zhao X, Bailey JM, Shen Q, Ko TC, Cao Y. Pancreatic stromal Gremlin 1 expression during pancreatic tumorigenesis. Genes Dis 2022; 9:108-115. [PMID: 35005111 PMCID: PMC8720668 DOI: 10.1016/j.gendis.2020.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/07/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic pancreatitis (CP) is a major risk factor of pancreatic ductal adenocarcinoma (PDAC). How CP promotes pancreatic oncogenesis remains unclear. A characteristic feature of PDAC is its prominent desmoplasia in the tumor microenvironment, composed of activated fibroblasts and macrophages. Macrophages can be characterized as M1 or M2, with tumor-inhibiting or -promoting functions, respectively. We reported that Gremlin 1 (GREM1), a key pro-fibrogenic factor, is upregulated in the stroma of CP. The current study aimed to investigate the expression of GREM1 and correlation between GREM1 and macrophages within the pancreas during chronic inflammation and the development of PDAC. By mRNA in situ hybridization, we detected GREM1 mRNA expression within α-smooth muscle actin (SMA)-positive fibroblasts of the pancreatic stroma. These designated FibroblastsGrem1+ marginally increased from CP to pancreatic intraepithelial neoplasia (PanIN) and PDAC. Within PDAC, FibroblastsGrem1+ increased with higher pathological tumor stages and in a majority of PDAC subtypes screened. Additionally, FibroblastsGrem1+ positively correlated with total macrophages (MacCD68+) and M2 macrophages (M2CD163+) in PDAC. To begin exploring potential molecular links between FibroblastsGrem1+ and macrophages in PDAC, we examined the expression of macrophage migration inhibitory factor (MIF), an endogenous counteracting molecule of GREM1 and an M1 macrophage promoting factor. By IHC staining of MIF, we found MIF to be expressed by tumor cells, positively correlated with GREM1; by IHC co-staining, we found MIF to be negatively correlated with M2CD163+ expression. Our findings suggest that GREM1 expression by activated fibroblasts may promote PDAC development, and GREM1/MIF may play an important role in macrophage phenotype.
Collapse
Affiliation(s)
- Joy M. Davis
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Binglu Cheng
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Madeline M. Drake
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qiang Yu
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Baibing Yang
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing Li
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chunhui Liu
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mamoun Younes
- Department of Pathology & Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiurong Zhao
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer M. Bailey
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qiang Shen
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tien C. Ko
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yanna Cao
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
12
|
Qin L, Guitart M, Curull V, Sánchez-Font A, Duran X, Tang J, Admetlló M, Barreiro E. Systemic Profiles of microRNAs, Redox Balance, and Inflammation in Lung Cancer Patients: Influence of COPD. Biomedicines 2021; 9:biomedicines9101347. [PMID: 34680465 PMCID: PMC8533450 DOI: 10.3390/biomedicines9101347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
Lung cancer (LC) risk increases in patients with chronic respiratory diseases (COPD). MicroRNAs and redox imbalance are involved in lung tumorigenesis in COPD patients. Whether systemic alterations of those events may also take place in LC patients remains unknown. Our objectives were to assess the plasma levels of microRNAs, redox balance, and cytokines in LC patients with/without COPD. MicroRNAs (RT-PCR) involved in LC, oxidized DNA, MDA-protein adducts, GSH, TEAC, VEGF, and TGF-beta (ELISA) were quantified in plasma samples from non-LC controls (n = 45), LC-only patients (n = 32), and LC-COPD patients (n = 91). In LC-COPD patients compared to controls and LC-only, MDA-protein adduct levels increased, while those of GSH decreased, and two patterns of plasma microRNA were detected. In both LC patient groups, miR-451 expression was downregulated, while those of microRNA-let7c were upregulated, and levels of TEAC and TGF-beta increased compared to the controls. Correlations were found between clinical and biological variables. A differential expression profile of microRNAs was detected in patients with LC. Moreover, in LC patients with COPD, plasma oxidative stress levels increased, whereas those of GSH declined. Systemic oxidative and antioxidant markers are differentially expressed in LC patients with respiratory diseases, thus implying its contribution to the pathogenesis of tumorigenesis in these patients.
Collapse
Affiliation(s)
- Liyun Qin
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
| | - Maria Guitart
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Víctor Curull
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Albert Sánchez-Font
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Jun Tang
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Mireia Admetlló
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (M.G.); (V.C.); (A.S.-F.); (J.T.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0385; Fax: +34-93-316-0410
| |
Collapse
|
13
|
Soofiyani SR, Hosseini K, Soleimanian A, Abkhooei L, Hoseini AM, Tarhriz V, Ghasemnejad T. An Overview on the Role of miR-451 in Lung Cancer: Diagnosis, Therapy, and Prognosis. Microrna 2021; 10:181-190. [PMID: 34514995 DOI: 10.2174/2211536610666210910130828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are highly conserved non-coding RNAs involved in many physiological processes such as cell proliferation, inhibition, development of apoptosis, differentiation, suppresses tumorigenicity, and regulating cell growth. The description of the alterations of miRNA expression patterns in cancers will be helpful to recognize biomarkers for early detection and possible therapeutic intervention in the treatment of cancers. Recent studies have shown that miR-451 is broadly dysregulated in lung cancer and is a crucial agent in lung tumor progression. This review summarizes recent advances of the potential role of miR-451 in lung cancer diagnosis, prognosis, and treatment and provides an insight into the potential use of miR-451 for the development of advanced therapeutic methods in lung cancer.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Kamram Hosseini
- Student research committee, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Alireza Soleimanian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Liela Abkhooei
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad. Iran
| | - Akbar Mohammad Hoseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine and Tabriz Blood Transfusion Center, Tabriz. Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| |
Collapse
|
14
|
Ueta E, Tsutsumi K, Kato H, Matsushita H, Shiraha H, Fujii M, Matsumoto K, Horiguchi S, Okada H. Extracellular vesicle-shuttled miRNAs as a diagnostic and prognostic biomarker and their potential roles in gallbladder cancer patients. Sci Rep 2021; 11:12298. [PMID: 34112884 PMCID: PMC8192895 DOI: 10.1038/s41598-021-91804-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating microRNAs (miRNAs) in serum extracellular vesicles (EVs) are a promising biomarker in cancer. We aimed to elucidate the serum EVs miRNA biomarkers to identify patients with gallbladder cancer (GBC) and to clarify their potential roles. One hundred nineteen serum EVs from GBC and non-GBC individuals were isolated by pure-EVs-yieldable size-exclusion chromatography, and then were analyzed using a comprehensive miRNAs array and RT-qPCR-based validation. The functional roles of the identified miRNAs were also investigated using GBC cell lines. Serum EVs miR-1246 and miR-451a were significantly upregulated and downregulated, respectively in GBC patients (P = 0.005 and P = 0.001), in line with their expression levels in cancer tissue according to an in silico analysis. The combination of CEA and CA19-9 with miR-1246 showed the highest diagnostic power (AUC, 0.816; Sensitivity, 72.0%; Specificity, 90.8%), and miR-1246 was an independent prognostic marker of GBC (Hazard ratio, 3.05; P = 0.017) according to a Cox proportional hazards model. In vitro, miR-1246 promoted cell proliferation and invasion, while miR-451a inhibited cell proliferation and induced apoptosis with the targeting of MIF, PSMB8 and CDKN2D. Taken together, miR-1246 in serum EVs has potential application as a diagnostic and prognostic marker and miR-451a may be a novel therapeutic target in GBC.
Collapse
Affiliation(s)
- Eijiro Ueta
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Koichiro Tsutsumi
- Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan.
| | - Hironari Kato
- Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Hiroshi Matsushita
- Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Hidenori Shiraha
- Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Masakuni Fujii
- Department of Internal Medicine, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Kazuyuki Matsumoto
- Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan.,Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| |
Collapse
|
15
|
Liu X, Zhang D, Wang H, Ren Q, Li B, Wang L, Zheng G. MiR-451a enhances the phagocytosis and affects both M1 and M2 polarization in macrophages. Cell Immunol 2021; 365:104377. [PMID: 34004369 DOI: 10.1016/j.cellimm.2021.104377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022]
Abstract
Leukemia associated macrophages (LAMs), which are different from tumor-associated macrophages as well as classical M1 and M2 macrophages, are specifically activated by leukemic microenvironment. We have reported the heterogeneity of gene expression profiles in LAMs. However, the expression profiles of microRNA (miRNA) in LAMs and their regulatory mechanisms have not been established. Here, the expression profiles of miRNA in LAMs from bone marrow and spleen of acute myeloid leukemia mice were analyzed. Then, the effects of miR-451a, which was upregulated in LAMs, on macrophages were studied by transfecting miRNA mimic to peritoneal macrophages. The results showed that overexpression of miR-451a altered the morphology, enhanced the phagocytic ability of macrophages, and promotes the expression of differentiation marker CD11b in macrophages. Furthermore, miR-451a increased the proliferation capacity of both M1- and M2-polarized macrophages, but not M0 macrophages. Moreover, miR-451a further enhanced the expression of iNOS upon M1 activation. Therefore, our results reveal the miRNA expression profiles in LAMs, and broaden the knowledge about miRNA regulation in macrophages.
Collapse
Affiliation(s)
- Xiaoli Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Hao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Bin Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China.
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China.
| |
Collapse
|
16
|
Zhong S, Golpon H, Zardo P, Borlak J. miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res 2021; 230:164-196. [PMID: 33253979 DOI: 10.1016/j.trsl.2020.11.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide and miRNAs play a key role in LC development. To better diagnose LC and to predict drug treatment responses we evaluated 228 articles encompassing 16,697 patients and 12,582 healthy controls. Based on the criteria of ≥3 independent studies and a sensitivity and specificity of >0.8 we found blood-borne miR-20a, miR-10b, miR-150, and miR-223 to be excellent diagnostic biomarkers for non-small cell LC whereas miR-205 is specific for squamous cell carcinoma. The systematic review also revealed 38 commonly regulated miRNAs in tumor tissue and the circulation, thus enabling the prediction of histological subtypes of LC. Moreover, theranostic biomarker candidates with proven responsiveness to checkpoint inhibitor treatments were identified, notably miR-34a, miR-93, miR-106b, miR-181a, miR-193a-3p, and miR-375. Conversely, miR-103a-3p, miR-152, miR-152-3p, miR-15b, miR-16, miR-194, miR-34b, and miR-506 influence programmed cell death-ligand 1 and programmed cell death-1 receptor expression, therefore providing a rationale for the development of molecularly targeted therapies. Furthermore, miR-21, miR-25, miR-27b, miR-19b, miR-125b, miR-146a, and miR-210 predicted response to platinum-based treatments. We also highlight controversial reports on specific miRNAs. In conclusion, we report diagnostic miRNA biomarkers for in-depth clinical evaluation. Furthermore, in an effort to avoid unnecessary toxicity we propose predictive biomarkers. The biomarker candidates support personalized treatment decisions of LC patients and await their confirmation in randomized clinical trials.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Heiko Golpon
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Patrick Zardo
- Clinic for Cardiothoracic and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
17
|
Smolarz M, Widlak P. Serum Exosomes and Their miRNA Load-A Potential Biomarker of Lung Cancer. Cancers (Basel) 2021; 13:cancers13061373. [PMID: 33803617 PMCID: PMC8002857 DOI: 10.3390/cancers13061373] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Early detection of lung cancer in screening programs is a rational way to reduce mortality associated with this malignancy. Low-dose computed tomography, a diagnostic tool used in lung cancer screening, generates a relatively large number of false-positive results, and its complementation with molecular biomarkers would greatly improve the effectiveness of such programs. Several biomarkers of lung cancer based on different components of blood, including miRNA signatures, were proposed. However, only a few of them have been positively validated in the context of early cancer detection yet, which imposes a constant need for new biomarker candidates. An emerging source of cancer biomarkers are exosomes and other types of extracellular vesicles circulating in body fluids. Hence, different molecular components of serum/plasma-derived exosomes were tested and showed different levels in lung cancer patients and healthy individuals. Several studies focused on the miRNA component of these vesicles. Proposed signatures of exosome miRNA had promising diagnostic value, though none of them have yet been clinically validated. These signatures involved a few dozen miRNA species overall, including a few species that recurred in different signatures. It is worth noting that all these miRNA species have cancer-related functions and have been associated with lung cancer progression. Moreover, a few of them, including known oncomirs miR-17, miR-19, miR-21, and miR-221, appeared in multiple miRNA signatures of lung cancer based on both the whole serum/plasma and serum/plasma-derived exosomes.
Collapse
|
18
|
Sima M, Rossnerova A, Simova Z, Rossner P. The Impact of Air Pollution Exposure on the MicroRNA Machinery and Lung Cancer Development. J Pers Med 2021; 11:60. [PMID: 33477935 PMCID: PMC7833364 DOI: 10.3390/jpm11010060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Small non-coding RNA molecules (miRNAs) play an important role in the epigenetic regulation of gene expression. As these molecules have been repeatedly implicated in human cancers, they have been suggested as biomarkers of the disease. Additionally, miRNA levels have been shown to be affected by environmental pollutants, including airborne contaminants. In this review, we searched the current literature for miRNAs involved in lung cancer, as well as miRNAs deregulated as a result of exposure to air pollutants. We then performed a synthesis of the data and identified those molecules commonly deregulated under both conditions. We detected a total of 25 miRNAs meeting the criteria, among them, miR-222, miR-21, miR-126-3p, miR-155 and miR-425 being the most prominent. We propose these miRNAs as biomarkers of choice for the identification of human populations exposed to air pollution with a significant risk of developing lung cancer.
Collapse
Affiliation(s)
- Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Zuzana Simova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| |
Collapse
|
19
|
Suppression of HELLS by miR-451a represses mTOR pathway to hinder aggressiveness of SCLC. Genes Genomics 2021; 43:105-114. [PMID: 33460027 DOI: 10.1007/s13258-020-01028-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Uncovering molecular pathogenesis and mechanisms of small cell lung cancer (SCLC) will contribute to SCLC therapy. Multiple studies demonstrated that miR-451a acts as an anti-tumor miRNA in non-small cell lung cancer. However, the mechanism of miR-451a in SCLC was ambiguous. OBJECTIVE We aimed to explore the function of miR-451a in SCLC and decipher the underlying mechanisms. METHODS TargetScan and dual-luciferase reporter assays were used to analyze the target genes of miR-451a. Cell counting kit-8 and colony formation assays were performed to assess the roles of miR-451a on cell growth. Gene set enrichment analysis (GSEA) was utilized to enrich biological pathways. Western blot was used to measure protein expression. RESULTS MiR-451a expression was reduced dramatically in SCLC tissues and cell lines (NCI-H1688 and NCI-H446). Helicase, Lymphoid Specific (HELLS) was proved to be a target gene of miR-451a. In addition, cell proliferation assays in SCLC cells transfected with miR-451a mimic and/or HELLS revealed that miR-451a inhibited cell proliferation via targeting HELLS. Moreover, the roles of miR-451a/HELLS in expression of key proteins in mTOR and apoptosis signaling pathways suggested that miR-451a inactivated mTOR and activated apoptosis signaling pathway via directly silencing HELLS. CONCLUSIONS Our study indicated that miR-451a hinders SCLC cell proliferation in vitro through regulating mTOR and apoptosis signaling pathways via silencing HELLS, suggesting that miR-451a could be a promising tumor suppressor in SCLC. And there is a potential for miR-451a to be a drug target and biomarker for SCLC.
Collapse
|
20
|
Wang HM, Lu YJ, He L, Gu NJ, Wang SY, Qiu XS, Wang EH, Wu GP. HPV16 E6/E7 promote the translocation and glucose uptake of GLUT1 by PI3K/AKT pathway via relieving miR-451 inhibitory effect on CAB39 in lung cancer cells. Ther Adv Chronic Dis 2020; 11:2040622320957143. [PMID: 32994913 PMCID: PMC7502796 DOI: 10.1177/2040622320957143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Background HPV16 E6/E7 proteins are the main oncogenes and only long-term persistent infection causes lung cancer. Our previous studies have shown that HPV16 E6/E7 protein up-regulates the expression of GLUT1 in lung cancer cells. However, whether E6 and E7 protein can promote the glucose uptake of GLUT1 and its molecular mechanism are unclear. Methods The regulatory relationships of E6 or E7, miR-451, CAB39, PI3K/AKT, and GLUT1 were detected by double directional genetic manipulations in lung cancer cell lines. Immunofluorescence and flow cytometry were used to detect the effect of CAB39 on promoting the translocation to the plasma membrane of GLUT1. Flow cytometry and confocal microscopy were performed to detect the glucose uptake levels of GLUT1. Results The overexpression both E6 and E7 proteins significantly down-regulated the expression level of miR-451, and the loss of miR-451 further up-regulated the expression of its target gene CAB39 at both protein and mRNA levels. Subsequently, CAB39 up-regulated the expression of GLUT1 at both protein and mRNA levels. Our results demonstrated that HPV16 E6/E7 up-regulated the expression and activation of GLUT1 through the HPV-miR-451-CAB39-GLUT1 axis. More interestingly, we found that CAB39 prompted GLUT1 translocation to the plasma membrane and glucose uptake, and this promotion depended on the PI3K/AKT pathway. Conclusion Our findings provide new evidence to support the critical roles of miR-451 and CAB39 in the pathogenesis of HPV-related lung cancer.
Collapse
Affiliation(s)
- Hong-Miao Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ying-Jie Lu
- Department of Dermatology, Jilin Province People's Hospital, Changchun, China
| | - Ling He
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Na-Jin Gu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shi-Yu Wang
- Department of Internal Medicine, White River Health System, Batesville, AR, USA
| | - Xue-Shan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - En-Hua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guang-Ping Wu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, No. 155 Nanjing Bei Street, Heping District, Shenyang 110001, China
| |
Collapse
|
21
|
LncRNA SNHG15 regulates EGFR-TKI acquired resistance in lung adenocarcinoma through sponging miR-451 to upregulate MDR-1. Cell Death Dis 2020; 11:525. [PMID: 32655137 PMCID: PMC7354989 DOI: 10.1038/s41419-020-2683-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Lung adenocarcinoma (LUAD) is the main component of non-small-cell lung cancer (NSCLC) and causes a great health concern globally. The top priority of LUAD treatment is to deal with gefitinib resistance. Long non-coding RNAs are certified to modify gefitinib resistance in the course of tumor aggravation. The study focuses on addressing the function of small nucleolar RNA host gene 15 (SNHG15) on modifying gefitinib resistance in LUAD. Previously, NOTCH pathway is implicated in LUAD chemo-resistance. SNHG15 level was boosted following the depletion of NOTCH-1 in A549/GR and H1975/GR cells. Functional studies indicated that SNHG15 and multidrug resistance protein 1 (MDR-1) were overexpressed and possess tumor-promoting functions in gefitinib-resistant LUAD cells while miR-451 was downregulated and possess tumor-suppressive behaviors in gefitinib-resistant LUAD cells. Mechanically, the SNHG15 was cytoplasmically distributed in GR LUAD cells. In addition, SNHG15 released MDR-1 from the suppression of miR-451, leading to MDR-1 promotion. In addition, the elevation of SNHG15 could be attributed to ZEB1. Rescue assays highlighted that downstream molecules MDR-1 and miR-451 could reverse the effects of SNHG15 downregulation on gefitinib-resistant LUAD cells. SNHG15 could alter chemo-resistance of LUAD cells to Gefitinib via regulating miR-451/MDR-1, which could be inspiring findings for the advancement of chemo-therapies for LUAD.
Collapse
|
22
|
Gilfillan M, Das P, Shah D, Alam MA, Bhandari V. Inhibition of microRNA-451 is associated with increased expression of Macrophage Migration Inhibitory Factor and mitgation of the cardio-pulmonary phenotype in a murine model of Bronchopulmonary Dysplasia. Respir Res 2020; 21:92. [PMID: 32321512 PMCID: PMC7178994 DOI: 10.1186/s12931-020-01353-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) has been implicated as a protective factor in the development of bronchopulmonary dysplasia (BPD) and is known to be regulated by MicroRNA-451 (miR-451). The aim of this study was to evaluate the role of miR-451 and the MIF signaling pathway in in vitro and in vivo models of BPD. Methods Studies were conducted in mouse lung endothelial cells (MLECs) exposed to hyperoxia and in a newborn mouse model of hyperoxia-induced BPD. Lung and cardiac morphometry as well as vascular markers were evaluated. Results Increased expression of miR-451 was noted in MLECs exposed to hyperoxia and in lungs of BPD mice. Administration of a miR-451 inhibitor to MLECs exposed to hyperoxia was associated with increased expression of MIF and decreased expression of angiopoietin (Ang) 2. Treatment with the miR-451 inhibitor was associated with improved lung morphometry indices, significant reduction in right ventricular hypertrophy, decreased mean arterial wall thickness and improvement in vascular density in BPD mice. Western blot analysis demonstrated preservation of MIF expression in BPD animals treated with a miR-451 inhibitor and increased expression of vascular endothelial growth factor-A (VEGF-A), Ang1, Ang2 and the Ang receptor, Tie2. Conclusion We demonstrated that inhibition of miR-451 is associated with mitigation of the cardio-pulmonary phenotype, preservation of MIF expression and increased expression of several vascular growth factors.
Collapse
Affiliation(s)
- Margaret Gilfillan
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,St Christopher's Hospital for Children, Philadelphia, PA, 19134, USA
| | - Pragnya Das
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA
| | - Dilip Shah
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA
| | - Mohammad Afaque Alam
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Temple University, Philadelphia, PA, 19140, USA
| | - Vineet Bhandari
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA. .,St Christopher's Hospital for Children, Philadelphia, PA, 19134, USA. .,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA. .,Temple University, Philadelphia, PA, 19140, USA. .,Pediatrics, Obstetrics and Gynecology and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA. .,Neonatology, The Children's Regional Hospital at Cooper, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
23
|
Wang T, Zhou Q, Shang Y. MiRNA-451a inhibits airway remodeling by targeting Cadherin 11 in an allergic asthma model of neonatal mice. Int Immunopharmacol 2020; 83:106440. [PMID: 32234673 DOI: 10.1016/j.intimp.2020.106440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/29/2020] [Accepted: 03/21/2020] [Indexed: 12/29/2022]
Abstract
Airway remodeling happens in childhood asthma, in parallel with, but not necessarily subsequent to, airway inflammation. The differentiation of airway epithelial cells into myofibroblasts via epithelial-mesenchymal-transition (EMT) is one of the mechanisms underlying airway remodeling. This study aimed at identifying novel molecules involved in pediatric asthma-associated airway remodeling. Asthma model was established by challenging C57BL/6 mouse pups with ovalbumin (OVA). We found that the expression of Cadherin 11 (CDH11), a type II cadherin, was increased by OVA treatments in the airway epithelium. Our earlier microarray data suggested miRNA-451a-5p (miRNA-451a) as a potential regulator of CDH11. In contrast to CDH11, miRNA-451a expression decreased in the asthmatic lung. MiRNA-451a was then packaged into a lentivirus vector and systematically given to the asthmatic pups. Our data indicated that OVA-induced infiltration of inflammatory cells, including eosnophils, neutrophils, macrophages and lymphocytes, was reduced by miRNA-451a over-expression. EMT was initiated in asthmatic mice as demonstrated by increased alpha-smooth muscle actin (α-SMA) positive cells present in airway epithelium, which was inhibited by miRNA-451a. CDH11 elevation in vivo was also inhibited by miRNA-451a. Dual-Luciferase analysis further showed CDH11 as a novel valid target of miRNA-451a. Additionally, in vitro, EMT was triggered in human 16HBE airway epithelial cells by pro-fibrotic transforming growth factor β (TGF-β). Corresponding to the anti-EMT effects observed in vivo, miRNA-451a also inhibited TGF-β-induced collagen deposition in cultured airway epithelial cells by targeting in CDH11. In summary, our study demonstrates that the deregulated miRNA-451a-CDH11 axis contributes to airway remodeling in childhood asthma.
Collapse
Affiliation(s)
- Tianyue Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Qianlan Zhou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
24
|
Bai H, Wu S. miR-451: A Novel Biomarker and Potential Therapeutic Target for Cancer. Onco Targets Ther 2019; 12:11069-11082. [PMID: 31908476 PMCID: PMC6924581 DOI: 10.2147/ott.s230963] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded small RNAs involved in a variety of cellular processes, including ontogeny, cell proliferation, differentiation, and apoptosis. They can also function as oncogenes or tumor suppressor genes. Recent studies have revealed that miRNA-451 (miR-451) is involved in the regulation of various human physiological and pathological processes. Furthermore, it has been shown that miR-451 not only directly affects the biological functions of tumor cells but also indirectly affects tumor cell invasion and metastasis upon secretion into the tumor microenvironment via exosomes. Thus, miR-451 also influences the progression of tumorigenesis and drug resistance. This review summarizes the expression of miR-451 in various cancer types and the relationship between miR-451 and the diagnosis, treatment, and drug resistance of solid tumors. In addition, we address possible mechanisms of action of miR-451 and its potential application as a biomarker in the diagnosis and treatment of human cancers.
Collapse
Affiliation(s)
- Hua Bai
- Department of Gynecology and Obstetrics, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Suhui Wu
- Department of Gynecology and Obstetrics, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
25
|
Du Z, Wu J, Wang J, Liang Y, Zhang S, Shang Z, Zuo W. MicroRNA-1298 is downregulated in non-small cell lung cancer and suppresses tumor progression in tumor cells. Diagn Pathol 2019; 14:132. [PMID: 31801557 PMCID: PMC6894281 DOI: 10.1186/s13000-019-0911-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have been reported to serve pivotal roles in tumorigenesis. This study sough to assess the expression and clinical significance of microRNA-1298 (miR-1298) in patients with non-small cell lung cancer (NSCLC), and explore the functional role of miR-1298 in tumorigenesis. METHODS One hundred and twenty-one NSCLC patients were recruited in this study. The expression of miR-1298 was estimated using quantitative real-time PCR. Kaplan-Meier survival curves and Cox regression analysis were used to evaluate the prognostic value of miR-1298. Gain- and loss-of-function experiments were preformed to explore the biological function of miR-1298 in NSCLC cells. RESULTS Expression levels of miR-1298 were downregulated in NSCLC tissues and cells compared with the corresponding normal controls. The decreased expression of miR-1298 was associated with patients' lymph node metastasis and TNM stage. The low expression of miR-1298 predicted poor overall survival and served as an independent prognostic indicator in NSCLC patients. According to the cell experiments, NSCLC cell proliferation, migration and invasion were inhibited by the overexpression of miR-1298. CONCLUSION All the data indicated that the downregulation of miR-1298 predicts poor prognosis of NSCLC, and the overexpression of miR-1298 in NSCLC cells leads to inhibited tumorigenesis. The aberrant miR-1298 may serve as a novel biomarker and therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Zhonghai Du
- Cancer center, Weifang Traditional Chinese Hospital, No. 1055 Weizhou Road, Weifang, 261041, Shandong, China
| | - Jun Wu
- Cancer center, Weifang Traditional Chinese Hospital, No. 1055 Weizhou Road, Weifang, 261041, Shandong, China
| | - Juan Wang
- Cancer center, Weifang Traditional Chinese Hospital, No. 1055 Weizhou Road, Weifang, 261041, Shandong, China
| | - Yan Liang
- Cancer center, Weifang Traditional Chinese Hospital, No. 1055 Weizhou Road, Weifang, 261041, Shandong, China.
| | - Sensen Zhang
- Cancer center, Weifang Traditional Chinese Hospital, No. 1055 Weizhou Road, Weifang, 261041, Shandong, China
| | - Zhimei Shang
- Cancer center, Weifang Traditional Chinese Hospital, No. 1055 Weizhou Road, Weifang, 261041, Shandong, China
| | - Wenchao Zuo
- Cancer center, Weifang Traditional Chinese Hospital, No. 1055 Weizhou Road, Weifang, 261041, Shandong, China
| |
Collapse
|
26
|
Guda MR, Rashid MA, Asuthkar S, Jalasutram A, Caniglia JL, Tsung AJ, Velpula KK. Pleiotropic role of macrophage migration inhibitory factor in cancer. Am J Cancer Res 2019; 9:2760-2773. [PMID: 31911860 PMCID: PMC6943360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that serves many roles in inflammation and immunity; however, it is also involved in carcinogenesis. This is a review of the clinical and experimental data published on MIF and its role in various types of cancers such as glioblastomas, lung cancer, breast cancer, gastric cancer, melanoma, bladder cancer, and head and neck cancers. The goal of this review is to show MIFs role in various types of cancers. Data show that MIF is overexpressed in these malignancies in humans, and contributes to the deregulation of the cell cycle, angiogenesis, and metastasis. Clinical studies show that MIF overexpression in these types of tumors significantly decreases survival rate, and increases tumor aggression. There are multiple anti-MIF molecules that are currently being explored and investigations should be continued.
Collapse
Affiliation(s)
- Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Matthew A Rashid
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Anvesh Jalasutram
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - John L Caniglia
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Illinois Neurological InstitutePeoria, IL, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Pediatrics, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Microbiology, Yogi Vemana UniversityKadapa, AP, India
| |
Collapse
|
27
|
Santoscoy-Ascencio G, Baños-Hernández CJ, Navarro-Zarza JE, Hernández-Bello J, Bucala R, López-Quintero A, Valdés-Alvarado E, Parra-Rojas I, Illades-Aguiar B, Muñoz-Valle JF. Macrophage migration inhibitory factor promoter polymorphisms are associated with disease activity in rheumatoid arthritis patients from Southern Mexico. Mol Genet Genomic Med 2019; 8:e1037. [PMID: 31701681 PMCID: PMC6978234 DOI: 10.1002/mgg3.1037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a cytokine capable of stimulating inflammatory cytokine and matrix metalloproteinase production from macrophages and synovial fibroblasts, which leads to persistent inflammation and bone degradation, two of the major pathological processes in rheumatoid arthritis (RA). The aim of this study was to evaluate the association of MIF promoter polymorphisms (−794CATT5‐8rs5844572 and −173G > C, rs755622), circulating MIF levels, and mRNA expression with RA susceptibility and disease activity. Methods A case–control study was conducted in 200 RA patients and 200 control subjects (CS) from Southern Mexico. Genotyping was performed by conventional PCR and PCR‐RFLP methods. MIF mRNA expression was quantified by real‐time PCR and MIF serum levels were determined by an ELISA kit. Results The 7,7 (−794CATT5‐8) and −173CC (−173G > C) genotypes were associated with higher disease activity in RA patients. MIF serum levels were increased, and MIF mRNA expression was reduced in RA patients as compared to CS. In addition, RA patients with moderate disease activity had higher MIF levels than those with low disease activity. The −794CATT5‐8 and −173G > C MIF polymorphisms were not associated with RA susceptibility. Conclusion These results suggest an important role of MIF polymorphisms and MIF serum levels with disease activity in RA.
Collapse
Affiliation(s)
- Guillermo Santoscoy-Ascencio
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Departamento de Biología Molecular, Unidad de Patología Clínica, Guadalajara, Jalisco, Mexico
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - José Eduardo Navarro-Zarza
- Departamento de Medicina Interna-Reumatología, Hospital General de Chilpancingo Dr. Raymundo Abarca Alarcón, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, Universidad de Guadalajara, Zapopan, Mexico
| | - Richard Bucala
- Department of Medicine/Section of Rheumatology, Yale University School of Medicine, New Haven, CT, USA
| | - Andres López-Quintero
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, Universidad de Guadalajara, Zapopan, Mexico
| | - Emmanuel Valdés-Alvarado
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Berenice Illades-Aguiar
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, Universidad de Guadalajara, Zapopan, Mexico
| |
Collapse
|
28
|
Kong W, Feng L, Yang M, Chen Q, Wang H, Wang X, Hou J. Prognostic value of microRNA-451 in various cancers: A meta-analysis. Pathol Res Pract 2019; 215:152726. [PMID: 31708373 DOI: 10.1016/j.prp.2019.152726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/13/2019] [Accepted: 10/26/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Increasing evidence shows microRNA-451 plays a crucial role in various tumors, but there is inconsistency. The aim of this study was to explore the prognostic role of miR-451 in various tumors. METHODS Online PubMed, EMBASE, Web of Science, and the Cochrane library database were searched through February 2019. Hazard ratios (HRs) were extracted and used to describe the association between expression of microRNA-451 and survival outcome, and the correlation between microRNA-451 and clinicopathologic features were described by pooled odds ratios (ORs). RESULTS Sixteen retrospective studies containing 2122 patients were incorporated in this meta-analysis. High expression of miR-451 was considered statistically associated with prolonged overall survival (OS) (HR = 0.62, 95% CI 0.49-0.80, p < 0.001) as well as RFS/DFS (HR = 0.55, 95% CI 0.42-0.71, p < 0.001) compared with low expression of miR-451. Besides, the pooled ORs revealed significant association between high expression of miR-451 with lymph node invasion (yes vs. no) (OR = 0.64, 95% CI 0.46-0.90, P = 0.01), tumor diameter (big vs. small) (OR = 0.77, 95% CI 0.60-0.97, P = 0.028) and tumor stage (III + IV vs. I + II) (OR = 0.62, 95% CI 0.42-0.93, P = 0.019). CONCLUSION MicroRNA-451 may serve as a promising clinical prognostic biomarker in various carcinomas.
Collapse
Affiliation(s)
- Weihao Kong
- Department of Emergency Surgery, Department of Emergency Medicine, The First affiliated hospital of Anhui Medical University, Heifei, China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingwei Yang
- Department of Radiation Oncology, The First affiliated hospital of Anhui Medical University, Heifei, China
| | - Qihang Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hengyi Wang
- Department of Emergency Surgery, Department of Emergency Medicine, The First affiliated hospital of Anhui Medical University, Heifei, China.
| | - Xingyu Wang
- Department of Emergency Surgery, Department of Emergency Medicine, The First affiliated hospital of Anhui Medical University, Heifei, China.
| | - Jun Hou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
29
|
Koh HM, Kim DC, Kim YM, Song DH. Prognostic role of macrophage migration inhibitory factor expression in patients with squamous cell carcinoma of the lung. Thorac Cancer 2019; 10:2209-2217. [PMID: 31602798 PMCID: PMC6885432 DOI: 10.1111/1759-7714.13198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) has been shown to play an important role in the inflammatory and immune response in squamous cell carcinoma (SCC). Recent studies have reported that MIF is involved in the tumorigenesis and overexpressed in various cancers. In this study, we assessed the prognostic role of MIF expression in SCC of the lung, and demonstrated the effect of knockdown of MIF on the migration in lung SCC cell lines. Methods The relationship between MIF expression and clinicopathological parameters and the prognostic role of MIF expression were evaluated with immunohistochemical staining in 96 patients with SCC of the lung. The expression of MIF mRNA and protein was analyzed by semi‐quantitative polymerase chain reaction and Western blot in lung SCC cell. The effect of knockdown of MIF was assessed by wound healing assay. Results The high percentage of MIF‐positive cells was significantly associated with lymph node metastasis (P = 0.004), and was a poor prognostic factor of disease‐free survival (DFS) (hazard ratio [HR]: 3.125; 95% confidence interval [CI], 1.628–5.998; P = 0.001) and disease‐specific survival (DSS) (HR: 2.303; 95% CI, 1.172–4.525; P = 0.016). Moreover, Kaplan‐Meier analysis showed that SCC patients with a high percentage of MIF‐positive cells had a significantly lower DFS (P = 0.001) and DSS (P = 0.014) than those with a low percentage. Furthermore, wound healing assay revealed that knockdown of MIF resulted in decreased cellular migration. Conclusion MIF is closely associated with tumor progression and could be a prognostic factor in SCC of the lung.
Collapse
Affiliation(s)
- Hyun Min Koh
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Dong Chul Kim
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea.,Gyeongsang Institute of Health Science, Jinju, South Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Yu-Min Kim
- Gyeongsang Institute of Health Science, Jinju, South Korea
| | - Dae Hyun Song
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea.,Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea.,Gyeongsang Institute of Health Science, Jinju, South Korea
| |
Collapse
|
30
|
Qin X, Chen R, Xiong R, Tan Z, Gao S, Lin C, Huo T. Comprehensive analysis of non-small-cell lung cancer microarray datasets identifies several prognostic biomarkers. Future Oncol 2019; 15:3135-3148. [PMID: 31426680 DOI: 10.2217/fon-2018-0824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To find accurate and effective biomarkers for diagnosis of non-small-cell lung cancer (NSCLC) patients. Materials & methods: We downloaded microarray datasets GSE19188, GSE33532, GSE101929 and GSE102286 from the database of Gene Expression Omnibus. We screened out differentially expressed genes (DEGs) and miRNAs (DEMs) with GEO2R. We also performed analyses for the enrichment of DEGs' and DEMs' function and pathway by several tools including database for annotation, visualization and integrated discovery, protein-protein interaction and Kaplan-Meier-plotter. Results: Total 913 DEGs were screened out, among which ten hub genes were discovered. All the hub genes were linked to the worsening overall survival of the NSCLC patients. Besides, 98 DEMs were screened out. MiR-9 and miR-520e were the most significantly regulated miRNAs. Conclusion: Our results could provide potential targets for the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Xiuxiu Qin
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Ruoshi Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Rui Xiong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Zimiao Tan
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Shanshan Gao
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Chunshui Lin
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Tianming Huo
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| |
Collapse
|
31
|
Khordadmehr M, Jigari-Asl F, Ezzati H, Shahbazi R, Sadreddini S, Safaei S, Baradaran B. A comprehensive review on miR-451: A promising cancer biomarker with therapeutic potential. J Cell Physiol 2019; 234:21716-21731. [PMID: 31140618 DOI: 10.1002/jcp.28888] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are proposed as a family of short noncoding molecules able to manage and control the expression of the gene targets at the posttranscriptional level. They contribute in several fundamental physiological mechanisms as well as a verity of human and animal diseases such as cancer progression. Among these tiny RNAs, miR-451 placed on chromosome 17 at 17q11.2 presents an essential role in many biological processes in health condition and also in pathogenesis of different diseases. Besides, it has been recently considered as a valuable biomarker for cancer detection, prognosis and treatment. Therefore, this review will provide the critical functions of miR-451 on biological mechanisms including cell cycle and proliferation, cell survival and apoptosis, differentiation and development as well as disease initiation and progression such as tumor formation, migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Farinaz Jigari-Asl
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Ezzati
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Jadideslam G, Ansarin K, Sakhinia E, Babaloo Z, Abhari A, Ghahremanzadeh K, Khalili M, Radmehr R, Kabbazi A. Diagnostic biomarker and therapeutic target applications of miR-326 in cancers: A systematic review. J Cell Physiol 2019; 234:21560-21574. [PMID: 31069801 DOI: 10.1002/jcp.28782] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are endogenous mediators of RNA interference and have key roles in the modulation of gene expression under healthy, inflamed, stimulated, carcinogenic, or other cells, and tissues of a pathological state. Many studies have proved the association between miRNAs and cancer. The role of miR-326 as a tumor suppressor miRNA in much human cancer confirmed. We will explain the history and the role of miRNAs changes, especially miR-326 in cancers and other pathological conditions. Attuned with these facts, this review highlights recent preclinical and clinical research performed on miRNAs as novel promising diagnostic biomarkers of patients at early stages, prediction of prognosis, and monitoring of the patients in response to treatment. All related publications retrieved from the PubMed database, with keywords such as epigenetic, miRNA, microRNA, miR-326, cancer, diagnostic biomarker, and therapeutic target similar terms from 1899 to 2018 with limitations in the English language. Recently, researchers have focused on the impacts of miRNAs and their association in inflammatory, autoinflammatory, and cancerous conditions. Recent studies have suggested a major pathogenic role in cancers and autoinflammatory diseases. Investigations have explained the role of miRNAs in cancers, autoimmunity, and autoinflammatory diseases, and so on. The miRNA-326 expression has an important role in cancer conditions and other diseases.
Collapse
Affiliation(s)
- Golamreza Jadideslam
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Internal Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Department of Internal Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine and Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Department of Immunology Medicine Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Division of Clinical Biochemistry, Department of Biochemistry and Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Ghahremanzadeh
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohamadreza Khalili
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Rahman Radmehr
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Alireza Kabbazi
- Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Schultz B, Spock C, Tom L, Kong Y, Canadas K, Kim S, Waner M, O. T, Antaya R, Narayan D. MicroRNA Microarray Profiling in Infantile Hemangiomas. EPLASTY 2019; 19:e13. [PMID: 31068993 PMCID: PMC6482871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective: MicroRNAs are short, noncoding RNA molecules that negatively regulate the stability and translational efficiency of target mRNAs. They are critical regulators of growth and development. Our aim was to identify microRNAs involved in the growth and regulation of infantile hemangiomas. In addition, we searched for the presence of Piwi-interacting RNAs in hemangioma tissue as another regulator of infantile hemangiomas. Methods: RNA was extracted from hemangioma specimens from 3 clinical, age-based categories: proliferative (N = 16), quiescent (N = 8), and involuting (N = 9). RNAs from human dermal microvascular endothelial cells were used as controls. MicroRNA microarray was performed, and the expression profiles of the hemangiomas and endothelial cells were compared using the t test. 5' End-labeling of RNA of our hemangioma specimens was performed for Piwi-interacting RNA detection. Results: Analysis confirmed statistically significant downregulated (N = 18) and upregulated (N = 15) microRNAs. Piwi-interacting RNA analysis did not detect Piwi-interacting RNA transcripts in the hemangioma specimens. Conclusions: The differential expression of microRNAs found in our hemangioma specimens provides insight into the regulation of hemangioma formation and proliferation, quiescence, and fibrofatty involution. Piwi-interacting RNA transcripts were not detected in the hemangioma specimens. These novel findings will help in establishing new therapeutic and diagnostic initiatives for these tumors.
Collapse
Affiliation(s)
| | | | | | - Yong Kong
- bYale School of Public Health: Biostatistics, New Haven, Conn
| | | | - Samuel Kim
- dSection of Plastic and Reconstructive Surgery
| | | | - Teresa O.
- fVascular Birthmark Institute, New York, NY
| | - Richard Antaya
- eDepartments of Dermatology and Pediatrics, Yale School of Medicine, New Haven, Conn
| | - Deepak Narayan
- dSection of Plastic and Reconstructive Surgery,Correspondence:
| |
Collapse
|
34
|
Zhang J, Jiang Y, Han X, Roy M, Liu W, Zhao X, Liu J. Differential expression profiles and functional analysis of plasma miRNAs associated with chronic myeloid leukemia phases. Future Oncol 2019; 15:763-776. [PMID: 30501399 DOI: 10.2217/fon-2018-0741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: This study was aimed to investigate the expression profiles and biological function of plasma miRNAs at different phases of chronic myeloid leukemia (CML). Materials & methods: Differentially expressed miRNAs were identified by microarray. The candidate miRNAs were validated by quantitative real-time PCR at chronic phase, accelerated phase and blast crisis. The functional analysis of miRNAs was carried out by using DAVID. Results: The putative targets of dysregulated miRNAs were involved in important signaling pathways. Plasma let-7b-5p and miR-451a expression was lower in CML patients, and plasma miR-451a gradually decreased from chronic phase to accelerated phase and blast crisis. Conclusion: Dysregulated plasma miRNAs maybe play regulatory roles in pathogenesis of CML. Let-7b-5p and miR-451a can be used as potential biomarkers for the diagnosis and prognosis of CML.
Collapse
Affiliation(s)
- Ji Zhang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, PR China
| | - Yawen Jiang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| | - Xu Han
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| | - Mridul Roy
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Xielan Zhao
- Department of Hematology, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| |
Collapse
|
35
|
Uchida A, Seki N, Mizuno K, Yamada Y, Misono S, Sanada H, Kikkawa N, Kumamoto T, Suetsugu T, Inoue H. Regulation of KIF2A by Antitumor miR-451a Inhibits Cancer Cell Aggressiveness Features in Lung Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11020258. [PMID: 30813343 PMCID: PMC6406917 DOI: 10.3390/cancers11020258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
In the human genome, miR-451a is encoded close to the miR-144 on chromosome region 17q11.2. Our previous study showed that both strands of pre-miR-144 acted as antitumor miRNAs and were involved in lung squamous cell carcinoma (LUSQ) pathogenesis. Here, we aimed to investigate the functional significance of miR-451a and to identify its targeting of oncogenic genes in LUSQ cells. Downregulation of miR-451a was confirmed in LUSQ clinical specimens, and low expression of miR-451a was significantly associated with poor prognosis of LUSQ patients (overall survival: p = 0.035, disease-free survival: p = 0.029). Additionally, we showed that ectopic expression of miR-451a significantly blocked cancer cell aggressiveness. In total, 15 putative oncogenic genes were shown to be regulated by miR-451a in LUSQ cells. Among these targets, high kinesin family member 2A (KIF2A) expression was significantly associated with poor prognosis (overall survival: p = 0.043, disease-free survival: p = 0.028). Multivariate analysis showed that KIF2A expression was an independent prognostic factor in patients with LUSQ (hazard ratio = 1.493, p = 0.034). Aberrant KIF2A expression promoted the malignant transformation of this disease. Analytic strategies based on antitumor miRNAs and their target oncogenes are effective tools for identification of novel molecular pathogenesis of LUSQ.
Collapse
Affiliation(s)
- Akifumi Uchida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Yasutaka Yamada
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Shunsuke Misono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Hiroki Sanada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Naoko Kikkawa
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Tomohiro Kumamoto
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| |
Collapse
|
36
|
Biersack B. Relations between approved platinum drugs and non-coding RNAs in mesothelioma. Noncoding RNA Res 2018; 3:161-173. [PMID: 30809599 PMCID: PMC6260483 DOI: 10.1016/j.ncrna.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Malignant mesothelioma diseases feature an increasing risk due to their severe forms and their association with asbestos exposure. Platinum(II) complexes such as cisplatin and carboplatin are clinically approved for the therapy of mesothelioma often in combination with antimetabolites such as pemetrexed or gemcitabine. It was observed that pathogenic properties of mesothelioma cells and the response of mesothelioma tumors towards platinum-based drugs are strongly influenced by non-coding RNAs, in particular, by small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These non-coding RNAs controlled drug sensitivity and the development of tumor resistance towards platinum drugs. An overview of the interactions between platinum drugs and non-coding RNAs is given and the influence of non-coding RNAs on platinum drug efficacy in mesothelioma is discussed. Suitable non-coding RNA-modulating agents with potentially beneficial effects on cisplatin treatment of mesothelioma diseases are mentioned. The understanding of mesothelioma diseases concerning the interactions of non-coding RNAs and platinum drugs will optimize existing therapy schemes and pave the way to new treatment options in future.
Collapse
Key Words
- ABC, ATP-binding cassette
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- AKI, acute kidney injury
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- CAF, cancer-associated fibroblast
- CBDCA, cyclobutane-1,1-dicarboxylate
- Carboplatin
- Cisplatin
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3′-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- MRP1, multidrug resistance protein 1
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TNBC, triple-negative breast cancer
- TSA, trichostatin A
Collapse
|
37
|
The intratumoral distribution influences the prognostic impact of CD68- and CD204-positive macrophages in non-small cell lung cancer. Lung Cancer 2018; 123:127-135. [DOI: 10.1016/j.lungcan.2018.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/29/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
|
38
|
Rajasinghe LD, Pindiprolu RH, Gupta SV. Delta-tocotrienol inhibits non-small-cell lung cancer cell invasion via the inhibition of NF-κB, uPA activator, and MMP-9. Onco Targets Ther 2018; 11:4301-4314. [PMID: 30100736 PMCID: PMC6065470 DOI: 10.2147/ott.s160163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Delta-tocotrienol (δT), an isomer of vitamin E, exhibits anticancer properties in different cancer types including non-small-cell lung cancer (NSCLC). Yet, anti-invasive effects of δT and its underlying cellular mechanism in NSCLC have not been fully explored. Matrix metalloproteinase 9 (MMP-9)-based cell migration and invasion are critical cellular mechanisms in cancer development. The current evidence indicates that MMP-9 is upregulated in most patients, and the inhibition of MMPs is involved in decreasing invasion and metastasis in NSCLC. Therefore, its suppression is a promising strategy for attenuating cell invasion and metastasis processes in NSCLC. Purpose The aim of this study was to evaluate the possibility of MMP-9 inhibition as the underlying mechanism behind the antimetastatic properties of δT on NSCLC cells. Methods The effects of δT on cell proliferation, migration, invasion, adhesion, and aggregation capabilities were investigated using different cell-based assays. An inhibitory effect of MMP-9 enzyme activity with δT was also identified using gel zymography. Using real-time PCR and Western blot analysis, a number of cellular proteins, regulatory genes, and miRNA involved in the Notch-1 and urokinase-type plasminogen activator (uPA)-mediated MMP-9 pathways were examined. Results The study found that δT inhibited cell proliferation, cell migration, invasion, aggregation, and adhesion in a concentration-dependent manner and reduced MMP-9 activities. Real-time PCR and Western blot analysis data revealed that δT increased miR-451 expressions and downregulated Notch-1-mediated nuclear factor-κB (NF-κB), which led to the repressed expression of MMP-9 and uPA proteins. Conclusion δT attenuated tumor invasion and metastasis by the repression of MMP-9/uPA via downregulation of Notch-1 and NF-κB pathways and upregulation of miR-451. The data suggest that δT may have potential therapeutic benefit against NSCLC metastasis.
Collapse
Affiliation(s)
| | - Rohini H Pindiprolu
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA,
| | - Smiti Vaid Gupta
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA,
| |
Collapse
|
39
|
Martínez-Rivera V, Negrete-García MC, Ávila-Moreno F, Ortiz-Quintero B. Secreted and Tissue miRNAs as Diagnosis Biomarkers of Malignant Pleural Mesothelioma. Int J Mol Sci 2018; 19:ijms19020595. [PMID: 29462963 PMCID: PMC5855817 DOI: 10.3390/ijms19020595] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare but aggressive tumor that originates in the pleura, is diagnosed in advanced stages and has a poor prognosis. Accurate diagnosis of MPM is often difficult and complex, and the gold standard diagnosis test is based on qualitative analysis of markers in pleural tissue by immunohistochemical staining. Therefore, it is necessary to develop quantitative and non-subjective alternative diagnostic tools. MicroRNAs are non-coding RNAs that regulate essential cellular mechanisms at the post-transcriptional level. Recent evidence indicates that miRNA expression in tissue and body fluids is aberrant in various tumors, revealing miRNAs as promising diagnostic biomarkers. This review summarizes evidence regarding secreted and tissue miRNAs as biomarkers of MPM and the biological characteristics associated with their potential diagnostic value. In addition to studies regarding miRNAs with potential diagnostic value for MPM, studies that aimed to identify the miRNAs involved in molecular mechanisms associated with MPM development are described with an emphasis on relevant aspects of the experimental designs that may influence the accuracy, consistency and real diagnostic value of currently reported data.
Collapse
Affiliation(s)
- Vanessa Martínez-Rivera
- Research Unit, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Calzada de Tlalpan 4502, Colonia Sección XVI, 14080 Mexico City, Mexico.
| | - María Cristina Negrete-García
- Research Unit, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Calzada de Tlalpan 4502, Colonia Sección XVI, 14080 Mexico City, Mexico.
| | - Federico Ávila-Moreno
- Unidad de Investigación en Biomedicina (UBIMED), Cancer Epigenomics and Lung Disease Laboratory 12, Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios #1 Colonia los Reyes Iztacala, 54090 Mexico City, Mexico.
| | - Blanca Ortiz-Quintero
- Research Unit, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Calzada de Tlalpan 4502, Colonia Sección XVI, 14080 Mexico City, Mexico.
| |
Collapse
|