1
|
Sharma A, Singh G, Bhatti JS, Gill SK, Arya SK. Antifungal peptides: Therapeutic potential and challenges before their commercial success. Int J Biol Macromol 2025; 284:137957. [PMID: 39603306 DOI: 10.1016/j.ijbiomac.2024.137957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Antifungal peptides (AFPs) are small cationic peptides that are found in a diverse range of taxa including bacteria, plants, mammals and insects. AFPs exhibit the strong antifungal activities against several pathogenic fungi, making them potential candidates for developing novel antifungal agents. AFP cause fungal cell death by rupturing the membranes of the fungal cell wall and inhibits the vital enzymes. Since AFPs are isolated from a range of natural sources, efforts are being made to create synthetic versions of these peptides with improved pharmacological properties. One of their key advantages is that they are less likely to develop resistance as compared to conventional antifungal medications. Although AFPs display immense potential as antifungal agents, challenges still exist in their stability, solubility, absorption, and time-consuming extraction process. Still, the possibility for AFPs to evolve into a novel class of antifungal medicine gives hope for improved treatments for fungal infections. This article offers the comprehensive information on AFPs origin, mode of action, prospective use in antifungal treatments. It also discusses about the application of antifungal peptides beyond the therapeutic field, such as in agriculture for crop protection, in food industry and in aquaculture field. It further elaborates on the challenges and potential paths associated with the progression of AFPs as advanced antifungal agents.
Collapse
Affiliation(s)
- Anindita Sharma
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine School of Health Sciences, Central University of Punjab, India
| | | | | |
Collapse
|
2
|
Ul Haq I, Maryam S, Shyntum DY, Khan TA, Li F. Exploring the frontiers of therapeutic breadth of antifungal peptides: A new avenue in antifungal drugs. J Ind Microbiol Biotechnol 2024; 51:kuae018. [PMID: 38710584 PMCID: PMC11119867 DOI: 10.1093/jimb/kuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The growing prevalence of fungal infections alongside rising resistance to antifungal drugs poses a significant challenge to public health safety. At the close of the 2000s, major pharmaceutical firms began to scale back on antimicrobial research due to repeated setbacks and diminished economic gains, leaving only smaller companies and research labs to pursue new antifungal solutions. Among various natural sources explored for novel antifungal compounds, antifungal peptides (AFPs) emerge as particularly promising. Despite their potential, AFPs receive less focus than their antibacterial counterparts. These peptides have been sourced extensively from nature, including plants, animals, insects, and especially bacteria and fungi. Furthermore, with advancements in recombinant biotechnology and computational biology, AFPs can also be synthesized in lab settings, facilitating peptide production. AFPs are noted for their wide-ranging efficacy, in vitro and in vivo safety, and ability to combat biofilms. They are distinguished by their high specificity, minimal toxicity to cells, and reduced likelihood of resistance development. This review aims to comprehensively cover AFPs, including their sources-both natural and synthetic-their antifungal and biofilm-fighting capabilities in laboratory and real-world settings, their action mechanisms, and the current status of AFP research. ONE-SENTENCE SUMMARY This comprehensive review of AFPs will be helpful for further research in antifungal research.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Divine Y Shyntum
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Taj A Khan
- Division of Infectious Diseases & Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan
| | - Fan Li
- School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Ashrafi S, Amini AA, Karimi P, Bagherian M, Adibzadeh Sereshgi MM, Asgarhalvaei F, Ahmadi K, Yazdi MH, Jahantigh HR, Mahdavi M, Sarrami Forooshani R. Candidiasis in breast cancer: Tumor progression or not? IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1346-1356. [PMID: 39386227 PMCID: PMC11459349 DOI: 10.22038/ijbms.2024.75408.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/06/2024] [Indexed: 10/12/2024]
Abstract
Candida albicans is an "opportunistic fungal agent" in cancer patients that can become colonized in both mucosal and deep tissues and cause severe infections. Most evidence has shown that C. albicans can enhance the progress of different cancers by several mechanisms such as generating virulence factors, participation in endogenous production of pro-inflammatory mediators, and stimulating a wide range of immune cells in the host. The main idea of this review is to describe a range of Candida-used mechanisms that are important in candidiasis-associated malignant processes and cancer development, particularly breast cancer. This review intends to provide a detailed discussion on different regulatory mechanisms of C. albicans that undoubtedly help to open new therapeutic horizons of cancer therapy in patients with fungal infection. The current therapeutic approach is not fully effective in immunocompromised and cancer patients, and further studies are required to find new products with effective antifungal properties and minimal side effects to increase the susceptibility of opportunistic fungal infections to conventional antifungal agents. So, in this situation, a special therapy should be considered to control the infection and simultaneously have the most therapeutic index on tumor patients.
Collapse
Affiliation(s)
- Somayeh Ashrafi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, (IAUPS), Tehran, Iran
- These authors contributed eqully to this work
| | - Abbas Ali Amini
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Pegah Karimi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Biochemistry, Faculty of Basic Sciences, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- These authors contributed eqully to this work
| | - Maryam Bagherian
- Department of Hematology and Oncology and Stem Cell Transplantation, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Asgarhalvaei
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, (IAUPS), Tehran, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Hossein Yazdi
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Immunotherapy Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Jahantigh
- Animal Health and Zoonosis PhD Course, Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Immunotherapy Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Sarrami Forooshani
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| |
Collapse
|
4
|
Lee JK, Park S, Kim YM, Guk T, Lee MY, Park SC, Lee JR, Jang MK. Candidacidal and Antibiofilm Activity of PS1-3 Peptide against Drug-Resistant Candida albicans on Contact Lenses. Pharmaceutics 2022; 14:pharmaceutics14081602. [PMID: 36015228 PMCID: PMC9413542 DOI: 10.3390/pharmaceutics14081602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
The recent emergence of antibiotic-resistant fungi has accelerated research on novel antifungal agents. In particular, Candida albicans infections are related to biofilm formation on medical devices, such as catheters, stents, and contact lenses, resulting in high morbidity and mortality. In this study, we aimed to elucidate the antifungal and antibiofilm effects of a peptide against drug-resistant C. albicans. α-Helical peptides in which the sequence of KWYK was repeated twice and four times, designated peptide series 1 (PS1)-1 and PS1-3, respectively, were generated, and the candidacidal activities of PS1-1, PS1-3, and fluconazole against drug-resistant C. albicans cells were assessed. The PS1-3 peptide showed higher killing activity than PS1-1 or fluconazole and acted via a membranolytic mechanism. In addition, the PS1-3 peptide exhibited more potent activity than PS1-1 and fluconazole in terms of fungal biofilm inhibition and reduction at the minimum fungicidal concentration on the contact lens surface. Overall, these findings established PS1-3 as a potential candidacidal agent for applications on contact lenses.
Collapse
Affiliation(s)
- Jong-Kook Lee
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Korea; (J.-K.L.); (S.P.); (Y.-M.K.); (T.G.)
| | - Soyoung Park
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Korea; (J.-K.L.); (S.P.); (Y.-M.K.); (T.G.)
| | - Young-Min Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Korea; (J.-K.L.); (S.P.); (Y.-M.K.); (T.G.)
| | - Taeuk Guk
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Korea; (J.-K.L.); (S.P.); (Y.-M.K.); (T.G.)
| | - Min-Young Lee
- Department of Clinical Laboratory Science, Daejeon Health Institute of Technology, Daejeon 34504, Korea;
| | - Seong-Cheol Park
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Korea; (J.-K.L.); (S.P.); (Y.-M.K.); (T.G.)
- Correspondence: (S.-C.P.); (J.R.L.); (M.-K.J.)
| | - Jung Ro Lee
- LMO Team, National Institute of Ecology (NIE), Seocheon 33657, Korea
- Correspondence: (S.-C.P.); (J.R.L.); (M.-K.J.)
| | - Mi-Kyeong Jang
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Korea; (J.-K.L.); (S.P.); (Y.-M.K.); (T.G.)
- Correspondence: (S.-C.P.); (J.R.L.); (M.-K.J.)
| |
Collapse
|
5
|
Bezerra LP, Silva AF, Santos-Oliveira R, Alencar LM, Amaral JL, Neto NA, Silva RG, Belém MO, de Andrade CR, Oliveira JT, Freitas CD, Souza PF. Combined antibiofilm activity of synthetic peptides and antifungal drugs against Candida spp. Future Microbiol 2022; 17:1133-1146. [PMID: 35880557 DOI: 10.2217/fmb-2022-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction: Candida krusei and Candida albicans are biofilm-forming drug-resistant yeasts that cause bloodstream infections that can lead to death. Materials & methods: nystatin and itraconazole were combined with two synthetic peptides, PepGAT and PepKAA, to evaluate the synergistic effect against Candida biofilms. Additionally, scanning electron and fluorescence microscopies were employed to understand the mechanism behind the synergistic activity. Results: Peptides enhanced the action of drugs to inhibit the biofilm formation of C. krusei and C. albicans and the degradation of mature biofilms of C. krusei. In combination with antifungal drugs, peptides' mechanism of action involved cell wall and membrane damage and overproduction of reactive oxygen species. Additionally, in combination, the peptides reduced the toxicity of drugs to red blood cells. Conclusion: These results reveal that the synthetic peptides enhanced the antibiofilm activity of drugs, in addition to reducing their toxicity. Thus, these peptides have strong potential as adjuvants and to decrease the toxicity of drugs.
Collapse
Affiliation(s)
- Leandro P Bezerra
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Ayrles Fb Silva
- Department of Physic, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Ralph Santos-Oliveira
- Nanoradiopharmaceuticals & Radiopharmacy, Zona Oeste State University, Brazilian Nuclear Energy Commission, Rio de Janeiro, Rio de Janeiro, 23070200, Brazil
| | - Luciana Mr Alencar
- Department of Physics, Laboratory of Biophysics & Nanosystems, Federal University of Maranhao, São Luís, Maranhão, 65080-805, Brazil
| | - Jackson L Amaral
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil.,Department of Physic, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Nilton As Neto
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Rafael Gg Silva
- Department of Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Mônica O Belém
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará, 60192, Brazil
| | - Claudia R de Andrade
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará, 60192, Brazil
| | - Jose Ta Oliveira
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Cleverson Dt Freitas
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil
| | - Pedro Fn Souza
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451, Brazil.,Drug Research & Development Center, Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| |
Collapse
|
6
|
Roudbary M, Vahedi-Shahandashti R, Santos ALSD, Roudbar Mohammadi S, Aslani P, Lass-Flörl C, Rodrigues CF. Biofilm formation in clinically relevant filamentous fungi: a therapeutic challenge. Crit Rev Microbiol 2021; 48:197-221. [PMID: 34358430 DOI: 10.1080/1040841x.2021.1950121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biofilms are highly-organized microbial communities attached to a biotic or an abiotic surface, surrounded by an extracellular matrix secreted by the biofilm-forming cells. The majority of fungal pathogens contribute to biofilm formation within tissues or biomedical devices, leading to serious and persistent infections. The clinical significance of biofilms relies on the increased resistance to conventional antifungal therapies and suppression of the host immune system, which leads to invasive and recurrent fungal infections. While different features of yeast biofilms are well-described in the literature, the structural and molecular basis of biofilm formation of clinically related filamentous fungi has not been fully addressed. This review aimed to address biofilm formation in clinically relevant filamentous fungi.
Collapse
Affiliation(s)
- Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - André Luis Souza Dos Santos
- Department of General Microbiology, Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Peyman Aslani
- Department of Parasitology and Mycology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Célia F Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Fernández de Ullivarri M, Bulacios GA, Navarro SA, Lanza L, Mendoza LM, Chalón MC. The killer yeast Wickerhamomyces anomalus Cf20 exerts a broad anti-Candida activity through the production of killer toxins and volatile compounds. Med Mycol 2021; 58:1102-1113. [PMID: 32196549 DOI: 10.1093/mmy/myaa011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 03/04/2020] [Indexed: 01/02/2023] Open
Abstract
Candidiasis is a group of opportunistic infections caused by yeast of the genus Candida. The appearance of drug resistance and the adverse effects of current antifungal therapies require the search for new, more efficient therapeutic alternatives. Killer yeasts have aroused as suitable candidates for mining new antifungal compounds. Killer strains secrete antimicrobial proteins named killer toxins, with promissory antifungal activity. Here we found that the killer yeast Wickerhamomyces anomalus Cf20 and its cell-free supernatant (CFS) inhibited six pathogenic strains and one collection strain of Candida spp. The inhibition is mainly mediated by secreted killer toxins and, to a lesser extent, by volatile compounds such as acetic acid and ethyl acetate. A new large killer toxin (>180 kDa) was purified, which exerted 70-74% of the total CFS anti-Candida activity, and the previously described glucanase KTCf20 was inhibitory in a lesser extent as well. In addition, we demonstrated that Cf20 possesses the genes encoding for the β-1,3-glucanases WaExg1 and WaExg2, proteins with extensively studied antifungal activity, particularly WaExg2. Finally, the 10-fold concentrated CFS exerted a high candidacidal effect at 37°C, completely inhibiting the fungal growth, although the nonconcentrated CFS (RCF 1) had very limited fungistatic activity at this temperature. In conclusion, W. anomalus Cf20 produces different low and high molecular weight compounds with anti-Candida activity that could be used to design new therapies for candidiasis and as a source for novel antimicrobial compounds as well.
Collapse
Affiliation(s)
- Miguel Fernández de Ullivarri
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| | - Gabriela A Bulacios
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| | - Silvia A Navarro
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| | - Lucía Lanza
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| | - Lucia M Mendoza
- Centro de referencia para lactobacilos (CERELA, CONICET), Chacabuco 145, 4000, Tucumán, Argentina
| | - Miriam C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| |
Collapse
|
8
|
Manju Devi S, Raj N, Sashidhar RB. Efficacy of short-synthetic antifungal peptides on pathogenic Aspergillus flavus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104810. [PMID: 33838711 DOI: 10.1016/j.pestbp.2021.104810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The efficacies of three short synthetic antifungal peptides were tested for their inhibitory action on pathogenic fungi, Aspergillus flavus. The sequences of the short synthetic peptides are PPD1- FRLHF, 66-10-FRLKFH, 77-3- FRLKFHF, respectively. These test peptides inhibited fungal growth and showed a membranolytic activity. The fungal biomass and ergosterol levels were significantly low in peptides treated samples. Further, the fungal cell wall component chitin was also found to be lower in peptides treated samples. Scanning electron microscopic images also showed highly wrinkled fungal mycelia. Significant membrane permeabilisation as well as potassium ion leakage was also observed in fungal samples treated with peptides. To assess the membrane damage, the uptake of Sytox green dye was employed. At tested concentration, peptides induced fungal membrane damage as evidenced by the green fluorescence. Further, at tested concentration, these peptides induced an oxidative stress in A.flavus as evidenced by an increase in the ROS production, malondialdehyde levels, increase in the antioxidant enzymes - superoxide dismutase, catalase with concomitant decrease in the reduced glutathione content. Additionally, a growth dependent reduction in aflatoxin levels were also observed in peptides treated samples. Docking studies on the interaction of the peptides with a trans-membrane protein calcium ATPase of A. flavus showed that all the peptides were able to bind to the protein with high z rank score. The activity of the calcium ATPase was significantly decreased in peptides treated fungal samples, thereby validating the docking results. Among all the tested peptides, 77-3 peptide exhibited the maximal membrane damage property.
Collapse
Affiliation(s)
- S Manju Devi
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India
| | - Navya Raj
- Department of Health Informatics, College of Health Sciences, Saudi Electronic University, Dammam, Saudi Arabia
| | - R B Sashidhar
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India.
| |
Collapse
|
9
|
Moghaddam-Taaheri P, Leissa JA, Eppler HB, Jewell CM, Karlsson AJ. Histatin 5 variant reduces Candida albicans biofilm viability and inhibits biofilm formation. Fungal Genet Biol 2021; 149:103529. [PMID: 33596477 DOI: 10.1016/j.fgb.2021.103529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
Candida albicans is a commensal organism and opportunistic pathogen that can form biofilms that colonize surfaces of medical devices, such as implants, catheters, and dentures. Compared to planktonic C. albicans cells, cells in biofilms exhibit increased resistance to treatment. Histatin 5 (Hst-5) is an antimicrobial peptide that is natively secreted by human salivary glands and has strong antifungal activity against C. albicans. However, C. albicans produces secreted aspartic proteases (Saps) that can cleave and inactivate Hst-5, limiting its antifungal properties. We previously showed that residue substitutions K11R and K17R within Hst-5 improve its antifungal activity and prevent proteolytic degradation by Saps when treating planktonic C. albicans. Here, we investigated the use of the K11R-K17R peptide as an alternative therapeutic against C. albicans biofilms by assessing its ability to reduce viability of pre-formed biofilms and to inhibit the formation of biofilms and showed that K11R-K17R had improved activity compared to Hst-5. Based on these results, we incorporated K11R-K17R and Hst-5 into polyelectrolyte multilayer (PEM) surface coatings and demonstrated that films functionalized with K11R-K17R reduced the formation of C. albicans biofilms. Our results demonstrate the therapeutic potential of the K11R-K17R Hst-5 variant in preventing and treating biofilms.
Collapse
Affiliation(s)
| | - Jesse A Leissa
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Haleigh B Eppler
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Biological Sciences Graduate Program, University of Maryland, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Biological Sciences Graduate Program, University of Maryland, College Park, MD, USA; United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Amy J Karlsson
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
10
|
Tekintaş Y, Temel A, Ateş A, Eraç B, Metin DY, Hilmioğlu Polat S, Hoşgör Limoncu M. Antifungal and Antibiofilm Activities of Selective Serotonin Reuptake Inhibitors Alone and in Combination with Fluconazole. Turk J Pharm Sci 2020; 17:667-672. [PMID: 33389969 DOI: 10.4274/tjps.galenos.2019.65481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives Candida spp. are clinically important pathogens that cause difficulties for treatment by biofilm formation. Considering antifungal resistance rates and the limitations in the discovery of new antifungals, the antifungal and antibiofilm effects of various drugs used for different therapeutic purposes are becoming more important. The goal of our study was to determine the antifungal and antibiofilm effects of the selective serotonin reuptake inhibitors (SSRIs), namely sertraline (SRT), paroxetine (PRX), and fluoxetine (FLX) alone and in combination with fluconazole (FLC) against Candida spp. Materials and Methods Twenty Candida spp. strains isolated from clinical samples from Ege University Hospital were identified by the Dalmau method and matrix-assisted laser desorption ionization time of flight mass spectrometry. The minimum inhibitory concentrations (MICs) of the SSRIs and FLC were detected by broth microdilution method. Synergistic interactions between the SSRIs and FLC were investigated by checkerboard assay. The antibiofilm effects of the SSRIs were determined by spectrophotometric microplate method. Results Among the isolates, five different Candida spp. (C. albicans, C. glabrata, C. krusei, C. tropicalis, and C.parapsilosis) were identified. The MICs of the SSRIs ranged between 16-512 μg/mL. While SRT showed the highest antifungal effect, the antibiofilm efficacy of FLX was higher than that of the other agents. Moreover, FLX and PRX showed a synergistic effect with FLC in 13 and 19 isolates, respectively. Four isolates were strong biofilm producers while nine isolates were moderate biofilm producers. C. parapsilosis strains showed higher biofilm production than the other species. At MIC/2 concentration, FLX and SRT alone inhibited mature biofilms in six and five isolates, respectively, while PRX caused increases biofilm formation in seven isolates. Conclusion This study revealed that MIC/2 concentrations of SSRIs could have antifungal and antibiofilm effects. SRT and FLX alone or in combination with antifungals may possibly have therapeutic potential for combating fungal infections.
Collapse
Affiliation(s)
- Yamaç Tekintaş
- İzmir Katip Çelebi University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İzmir, Turkey
| | - Aybala Temel
- İzmir Katip Çelebi University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İzmir, Turkey
| | - Ayşegül Ateş
- Ege University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İzmir, Turkey
| | - Bayrı Eraç
- Ege University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İzmir, Turkey
| | - Dilek Yeşim Metin
- Ege University Faculty of Medicine, Department of Medical Microbiology, İzmir, Turkey
| | | | - Mine Hoşgör Limoncu
- Ege University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İzmir, Turkey
| |
Collapse
|
11
|
Rodríguez-Cerdeira C, Martínez-Herrera E, Carnero-Gregorio M, López-Barcenas A, Fabbrocini G, Fida M, El-Samahy M, González-Cespón JL. Pathogenesis and Clinical Relevance of Candida Biofilms in Vulvovaginal Candidiasis. Front Microbiol 2020; 11:544480. [PMID: 33262741 PMCID: PMC7686049 DOI: 10.3389/fmicb.2020.544480] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022] Open
Abstract
The ability of Candida spp. to form biofilms is crucial for its pathogenicity, and thus, it should be considered an important virulence factor in vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). Its ability to generate biofilms is multifactorial and is generally believed to depend on the site of infection, species and strain involved, and the microenvironment in which the infection develops. Therefore, both cell surface proteins, such as Hwp1, Als1, and Als2, and the cell wall-related protein, Sun41, play a critical role in the adhesion and virulence of the biofilm. Immunological and pharmacological approaches have identified the NLRP3 inflammasome as a crucial molecular factor contributing to host immunopathology. In this context, we have earlier shown that Candida albicans associated with hyphae-secreted aspartyl proteinases (specifically SAP4-6) contribute to the immunopathology of the disease. Transcriptome profiling has revealed that non-coding transcripts regulate protein synthesis post-transcriptionally, which is important for the growth of Candida spp. Other studies have employed RNA sequencing to identify differences in the 1,245 Candida genes involved in surface and invasive cellular metabolism regulation. In vitro systems allow the simultaneous processing of a large number of samples, making them an ideal screening technique for estimating various physicochemical parameters, testing the activity of antimicrobial agents, and analyzing genes involved in biofilm formation and regulation (in situ) in specific strains. Murine VVC models are used to study C. albicans infection, especially in trials of novel treatments and to understand the cause(s) for resistance to conventional therapeutics. This review on the clinical relevance of Candida biofilms in VVC focuses on important advances in its genomics, transcriptomics, and proteomics. Moreover, recent experiments on the influence of biofilm formation on VVC or RVVC pathogenesis in laboratory animals have been discussed. A clear elucidation of one of the pathogenesis mechanisms employed by Candida biofilms in vulvovaginal candidiasis and its applications in clinical practice represents the most significant contribution of this manuscript.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Health Research Institute, SERGAS-UVIGO, Vigo, Spain.,Department of Dermatology, Hospital do Meixoeiro and University of Vigo, Vigo, Spain.,European Women's Dermatologic and Venereologic Society, Tui, Spain.,Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires, Argentina
| | - Erick Martínez-Herrera
- Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires, Argentina.,Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, Mexico
| | - Miguel Carnero-Gregorio
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Health Research Institute, SERGAS-UVIGO, Vigo, Spain.,Department of Molecular Diagnosis (Array & NGS Division), Institute of Cellular and Molecular Studies, Lugo, Spain
| | - Adriana López-Barcenas
- European Women's Dermatologic and Venereologic Society, Tui, Spain.,Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires, Argentina.,Section of Mycology, Department of Dermatology, Manuel Gea González hospital, Mexico City, Mexico
| | - Gabriella Fabbrocini
- European Women's Dermatologic and Venereologic Society, Tui, Spain.,Department of Dermatology, University of Naples Federico II, Naples, Italy
| | - Monika Fida
- European Women's Dermatologic and Venereologic Society, Tui, Spain.,Department of Dermatology, University of Medicine, Tirana, Tirana, Albania
| | - May El-Samahy
- European Women's Dermatologic and Venereologic Society, Tui, Spain.,Department of Dermatology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - José Luís González-Cespón
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Health Research Institute, SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
12
|
Souza PF, Marques LS, Oliveira JT, Lima PG, Dias LP, Neto NA, Lopes FE, Sousa JS, Silva AF, Caneiro RF, Lopes JL, Ramos MV, Freitas CD. Synthetic antimicrobial peptides: From choice of the best sequences to action mechanisms. Biochimie 2020; 175:132-145. [DOI: 10.1016/j.biochi.2020.05.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/16/2020] [Accepted: 05/30/2020] [Indexed: 12/28/2022]
|
13
|
Ferrari L, Martelli P, Saleri R, De Angelis E, Ferrarini G, Cavalli V, Passeri B, Bazzoli G, Ogno G, Magliani W, Borghetti P. An engineered anti-idiotypic antibody-derived killer peptide (KP) early activates swine inflammatory monocytes, CD3 +CD16 + natural killer T cells and CD4 +CD8α + double positive CD8β + cytotoxic T lymphocytes associated with TNF-α and IFN-γ secretion. Comp Immunol Microbiol Infect Dis 2020; 72:101523. [PMID: 32758800 DOI: 10.1016/j.cimid.2020.101523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/19/2022]
Abstract
This study evaluated the early modulation of the phenotype and cytokine secretion in swine immune cells treated with an engineered killer peptide (KP) based on an anti-idiotypic antibody functionally mimicking a yeast killer toxin. The influence of KP on specific immunity was investigated using porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) as ex vivo antigens. Peripheral blood mononuclear cells (PBMC) from healthy pigs were stimulated with KP and with a scramble peptide for 20 min, 1, 4 and 20 h or kept unstimulated. The cells were analyzed using flow cytometry and ELISA. The same time-periods were used for KP pre-incubation/co-incubation to determine the effect on virus-recalled interferon-gamma (IFN-γ) secreting cell (SC) frequencies and single cell IFN-γ productivity using ELISPOT. KP induced an early dose-dependent shift to pro-inflammatory CD172α+CD14+high monocytes and an increase of CD3+CD16+ natural killer (NK) T cells. KP triggered CD8α and CD8β expression on classical CD4-CD8αβ+ cytotoxic T lymphocytes (CTL) and double positive (DP) CD4+CD8α+ Th memory cells (CD4+CD8α+low CD8β+low). A fraction of DP cells also expressed high levels of CD8α. The two identified DP CD4+CD8α+high CD8β+low/+high CTL subsets were associated with tumor necrosis factor alpha (TNF-α) and IFN-γ secretion. KP markedly boosted the reactivity and cross-reactivity of PRRSV type-1- and PCV2b-specific IFN-γ SC. The results indicate the efficacy of KP in stimulating Th1-biased immunomodulation and support studies of KP as an immunomodulator or vaccine adjuvant.
Collapse
Affiliation(s)
- Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Giulia Ferrarini
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Benedetta Passeri
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Gianluca Bazzoli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Giulia Ogno
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Walter Magliani
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14 - 43126, Parma, Italy.
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| |
Collapse
|
14
|
Clitherow KH, Binaljadm TM, Hansen J, Spain SG, Hatton PV, Murdoch C. Medium-Chain Fatty Acids Released from Polymeric Electrospun Patches Inhibit Candida albicans Growth and Reduce the Biofilm Viability. ACS Biomater Sci Eng 2020; 6:4087-4095. [PMID: 32685674 PMCID: PMC7362581 DOI: 10.1021/acsbiomaterials.0c00614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 01/23/2023]
Abstract
Oral candidiasis is a very common oral condition among susceptible individuals, with the main causative organism being the fungus Candida albicans. Current drug delivery systems to the oral mucosa are often ineffective because of short drug/tissue contact times as well as increased prevalence of drug-resistant Candida strains. We evaluated the potency of saturated fatty acids as antifungal agents and investigated their delivery by novel electrospun mucoadhesive oral patches using agar disk diffusion and biofilm assays. Octanoic (C8) and nonanoic (C9) acids were the most effective at inhibiting C. albicans growth on disk diffusion assays, both in solution or when released from polycaprolactone (PCL) or polyvinylpyrrolidone/RS100 (PVP/RS100) electrospun patches. In contrast, dodecanoic acid (C12) displayed the most potent antifungal activity against pre-existing C. albicans biofilms in solution or when released by PCL or PVP/RS100 patches. Both free and patch-released saturated fatty acids displayed a significant toxicity to wild-type and azole-resistant strains of C. albicans. These data not only provide evidence that certain saturated fatty acids have the potential to be used as antifungal agents but also demonstrate that this therapy could be delivered directly to Candida-infected sites using electrospun mucoadhesive patches, demonstrating a potential new therapeutic approach to treat oral thrush.
Collapse
Affiliation(s)
- Katharina H Clitherow
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| | - Tahani M Binaljadm
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| | - Jens Hansen
- Afyx Therapeutics, Lergravsej 57, 2. tv, 2300 Copenhagen, Denmark
| | - Sebastian G Spain
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Paul V Hatton
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| |
Collapse
|
15
|
da Silva ACB, Sardi JDCO, de Oliveira DGL, de Oliveira CFR, Dos Santos HF, Dos Santos EL, Crusca E, Cardoso MH, Franco OL, Macedo MLR. Development of a novel anti-biofilm peptide derived from profilin of Spodoptera frugiperda. BIOFOULING 2020; 36:516-527. [PMID: 32619153 DOI: 10.1080/08927014.2020.1776857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Candida yeast infections are the fourth leading cause of death worldwide. Peptides with antimicrobial activity are a promising alternative treatment for such infections. Here, the antifungal activity of a new antimicrobial peptide-PEP-IA18-was evaluated against Candida species. PEP-IA18 was designed from the primary sequence of profilin, a protein from Spodoptera frugiperda, and displayed potent activity against Candida albicans and Candida tropicalis, showing a minimum inhibitory concentration (MIC) of 2.5 µM. Furthermore, the mechanism of action of PEP-IA18 involved interaction with the cell membrane (ergosterol complexation). Treatment at MIC and/or 10 × MIC significantly reduced biofilm formation and viability. PEP-IA18 showed low toxicity toward human fibroblasts and only revealed hemolytic activity at high concentrations. Thus, PEP-IA18 exhibited antifungal and anti-biofilm properties with potential applicability in the treatment of infections caused by Candida species.
Collapse
Affiliation(s)
- Amanda Carolina Borges da Silva
- Protein Purification Laboratory and Biological Functions, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Janaina de Cassia Orlandi Sardi
- Protein Purification Laboratory and Biological Functions, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Daniella Gorete Lourenço de Oliveira
- Protein Purification Laboratory and Biological Functions, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Center for Biotechnology and Bioprospecting Studies Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Helder Freitas Dos Santos
- Center for Biotechnology and Bioprospecting Studies Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Edson Lucas Dos Santos
- Center for Biotechnology and Bioprospecting Studies Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Edson Crusca
- Department of Biochemistry, Institute of Chemistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Marlon Henrique Cardoso
- S-inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande, MS, Brazil
- Center for Proteomic and Biochemical Analysis, Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, DF, Brazil
- Graduate Program in Molecular Pathology, Faculty of Medicine, University of Brasilia, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- S-inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande, MS, Brazil
- Center for Proteomic and Biochemical Analysis, Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, DF, Brazil
- Graduate Program in Molecular Pathology, Faculty of Medicine, University of Brasilia, Brasília, DF, Brazil
| | - Maria Lígia Rodrigues Macedo
- Protein Purification Laboratory and Biological Functions, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
16
|
Oshiro KGN, Rodrigues G, Monges BED, Cardoso MH, Franco OL. Bioactive Peptides Against Fungal Biofilms. Front Microbiol 2019; 10:2169. [PMID: 31681179 PMCID: PMC6797862 DOI: 10.3389/fmicb.2019.02169] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Infections caused by invasive fungal biofilms have been widely associated with high morbidity and mortality rates, mainly due to the advent of antibiotic resistance. Moreover, fungal biofilms impose an additional challenge, leading to multidrug resistance. This fact, along with the contamination of medical devices and the limited number of effective antifungal agents available on the market, demonstrates the importance of finding novel drug candidates targeting pathogenic fungal cells and biofilms. In this context, an alternative strategy is the use of antifungal peptides (AFPs) against fungal biofilms. AFPs are considered a group of bioactive molecules with broad-spectrum activities and multiple mechanisms of action that have been widely used as template molecules for drug design strategies aiming at greater specificity and biological efficacy. Among the AFP classes most studied in the context of fungal biofilms, defensins, cathelicidins and histatins have been described. AFPs can also act by preventing the formation of fungal biofilms and eradicating preformed biofilms through mechanisms associated with cell wall perturbation, inhibition of planktonic fungal cells’ adhesion onto surfaces, gene regulation and generation of reactive oxygen species (ROS). Thus, considering the critical scenario imposed by fungal biofilms and associated infections and the application of AFPs as a possible treatment, this review will focus on the most effective AFPs described to date, with a core focus on antibiofilm peptides, as well as their efficacy in vivo, application on surfaces and proposed mechanisms of action.
Collapse
Affiliation(s)
- Karen G N Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Bruna Estéfani D Monges
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
17
|
Salazar VA, Arranz-Trullén J, Prats-Ejarque G, Torrent M, Andreu D, Pulido D, Boix E. Insight into the Antifungal Mechanism of Action of Human RNase N-terminus Derived Peptides. Int J Mol Sci 2019; 20:ijms20184558. [PMID: 31540052 PMCID: PMC6770517 DOI: 10.3390/ijms20184558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a polymorphic fungus responsible for mucosal and skin infections. Candida cells establish themselves into biofilm communities resistant to most currently available antifungal agents. An increase of severe infections ensuing in fungal septic shock in elderly or immunosuppressed patients, along with the emergence of drug-resistant strains, urge the need for the development of alternative antifungal agents. In the search for novel antifungal drugs our laboratory demonstrated that two human ribonucleases from the vertebrate-specific RNaseA superfamily, hRNase3 and hRNase7, display a high anticandidal activity. In a previous work, we proved that the N-terminal region of the RNases was sufficient to reproduce most of the parental protein bactericidal activity. Next, we explored their potency against a fungal pathogen. Here, we have tested the N-terminal derived peptides that correspond to the eight human canonical RNases (RN1-8) against planktonic cells and biofilms of C. albicans. RN3 and RN7 peptides displayed the most potent inhibitory effect with a mechanism of action characterized by cell-wall binding, membrane permeabilization and biofilm eradication activities. Both peptides are able to eradicate planktonic and sessile cells, and to alter their gene expression, reinforcing its role as a lead candidate to develop novel antifungal and antibiofilm therapies.
Collapse
Affiliation(s)
- Vivian A Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Javier Arranz-Trullén
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - David Pulido
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
18
|
Meto A, Colombari B, Sala A, Pericolini E, Meto A, Peppoloni S, Blasi E. Antimicrobial and antibiofilm efficacy of a copper/calcium hydroxide-based endodontic paste against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Dent Mater J 2019; 38:591-603. [PMID: 31257304 DOI: 10.4012/dmj.2018-252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endodontic biofilm is a microbial community, enclosed in a polymeric matrix of polysaccharide origin where are found pathogens, like bacteria and opportunistic fungi responsible for various endodontic pathologies. As clinical importance is the fact, that biofilm is extremely resistant to common intracanal irrigants, antimicrobial drugs and host immune responses. The aim of this study was to evaluate the in vitro efficacy of a Cu/CaOH2-based endodontic paste, against bacteria and fungi, such as Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. We found that such compound significantly reduced microbial replication time and cell growth. Moreover, biofilm formation and persistence were also affected; treated biofilms showed both a reduced number of cells and levels of released pyoverdine. This study provides the first evidence on effectiveness of this endodontic compound against microbial biofilms. Given its wide range of action, its use in prevention and treatment of the main oral biofilm-associated infections will be discussed.
Collapse
Affiliation(s)
- Aida Meto
- School of Doctorate in Clinical and Experimental Medicine, University of Modena and Reggio Emilia
| | - Bruna Colombari
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine; University of Modena and Reggio Emilia
| | - Arianna Sala
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine; University of Modena and Reggio Emilia
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine; University of Modena and Reggio Emilia
| | - Agron Meto
- Department of Therapy, Faculty of Dental Medicine, Aldent University
| | - Samuele Peppoloni
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine; University of Modena and Reggio Emilia
| | - Elisabetta Blasi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine; University of Modena and Reggio Emilia.,School of Specialization in Microbiology and Virology, University of Modena and Reggio Emilia
| |
Collapse
|
19
|
Mannazzu I, Domizio P, Carboni G, Zara S, Zara G, Comitini F, Budroni M, Ciani M. Yeast killer toxins: from ecological significance to application. Crit Rev Biotechnol 2019; 39:603-617. [PMID: 31023102 DOI: 10.1080/07388551.2019.1601679] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Killer toxins are proteins that are often glycosylated and bind to specific receptors on the surface of their target microorganism, which is then killed through a target-specific mode of action. The killer phenotype is widespread among yeast and about 100 yeast killer species have been described to date. The spectrum of action of the killer toxins they produce targets spoilage and pathogenic microorganisms. Thus, they have potential as natural antimicrobials in food and for biological control of plant pathogens, as well as therapeutic agents against animal and human infections. In spite of this wide range of possible applications, their exploitation on the industrial level is still in its infancy. Here, we initially briefly report on the biodiversity of killer toxins and the ecological significance of their production. Their actual and possible applications in the agro-food industry are discussed, together with recent advances in their heterologous production and the manipulation for development of peptide-based therapeutic agents.
Collapse
Affiliation(s)
- Ilaria Mannazzu
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Paola Domizio
- b Department of Agricultural , Food and Forestry Systems (GESAAF) , Firenze , Italy
| | - Gavino Carboni
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Severino Zara
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Giacomo Zara
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Francesca Comitini
- c Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Marilena Budroni
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Maurizio Ciani
- c Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| |
Collapse
|
20
|
Carrano G, Paulone S, Lainz L, Sevilla MJ, Blasi E, Moragues MD. Anti-Candidaalbicans germ tube antibodies reduce in vitro growth and biofilm formation of C. albicans. Rev Iberoam Micol 2019; 36:9-16. [PMID: 30686747 DOI: 10.1016/j.riam.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/11/2018] [Accepted: 07/25/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Invasive candidiasis by Candida albicans is associated with high morbidity and mortality, due in part to the late implementation of an appropriate antifungal therapy hindered by the lack of an early diagnosis. AIMS We aimed to evaluate the in vitro antifungal activity of the antibodies against C. albicans germ tubes (CAGTA) raised in a rabbit model of candidemia. METHODS We measured the effect of CAGTA activity by colorimetric XTT and crystal violet assays, and colony forming units count, both on C. albicans planktonic cells and during the course of biofilm formation and maturation. Viability and cell morphology were assessed by optical, fluorescent or scanning electron microscopy. RESULTS CAGTA ≥50μg/ml caused a strong inhibition of C. albicans blastospores growth, and DiBAC fluorescent staining evidenced a fungicidal activity. Moreover, electron microscopy images revealed that CAGTA induced morphological alterations of the surface of C. albicans germ tubes grown free as well as in biofilm. Interestingly, CAGTA ≥80μg/ml reduced the amount of C. albicans biofilm, and this effect started at the initial adhesion stage of the biofilm formation, during the first 90min. CONCLUSIONS This is the first report showing that CAGTA reduce C. albicans growth, and impair its metabolic activity and ability to form biofilm in vitro. The antigens recognized by CAGTA could be the basis for the development of immunization protocols that might protect against Candida infections.
Collapse
Affiliation(s)
- Giulia Carrano
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain; Department of Nursing I, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Simona Paulone
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy; PhD Programme in Clinical Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucía Lainz
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - María-Jesús Sevilla
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Elisabetta Blasi
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy; PhD Programme in Clinical Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
21
|
Pulsed Laser Deposited Biocompatible Lithium-Doped Hydroxyapatite Coatings with Antimicrobial Activity. COATINGS 2019. [DOI: 10.3390/coatings9010054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Simple and lithium-doped biological-origin hydroxyapatite layers were synthesized by Pulsed Laser Deposition technique on medical grade Ti substrates. Cytotoxic effects of lithium addition and the biocompatibility of obtained coatings were assessed using three cell lines of human origin (new initiated dermal fibroblasts, immortalized keratinocytes HaCaT, and MG-63 osteosarcoma). Antimicrobial properties of obtained coatings were assessed on two strains (i.e., Staphylococcus aureus and Candida albicans), belonging to species representative for the etiology of medical devices biofilm-associated infections. Our findings suggest that synthesized lithium-doped coatings exhibited low cytotoxicity on human osteosarcoma and skin cells and therefore, an excellent biocompatibility, correlated with a long-lasting anti-staphylococcal and -fungal biofilm activity. Along with low fabrication costs generated by sustainable resources, these biological-derived materials demonstrate their promising potential for future prospective solutions—viable alternatives to commercially available biomimetic HA implants—for the fabrication of a new generation of implant coatings.
Collapse
|
22
|
Černáková L, Light C, Salehi B, Rogel-Castillo C, Victoriano M, Martorell M, Sharifi-Rad J, Martins N, Rodrigues CF. Novel Therapies for Biofilm-Based Candida spp. Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1214:93-123. [DOI: 10.1007/5584_2019_400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
CURVELO JOSÉA, MORAES DANIELCDE, ANJOS CAMILAADOS, PORTELA MARISTELAB, SOARES ROSANGELAM. Histatin 5 and human lactoferrin inhibit biofilm formation of a fluconazole resistant Candida albicans clinical isolate. ACTA ACUST UNITED AC 2019; 91:e20180045. [DOI: 10.1590/0001-3765201920180045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/17/2018] [Indexed: 01/03/2023]
|
24
|
Xu K, Wang JL, Chu MP, Jia C. Activity of coumarin against Candida albicans biofilms. J Mycol Med 2018; 29:28-34. [PMID: 30606640 DOI: 10.1016/j.mycmed.2018.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the antibiofilm activity of coumarin against Candida albicans. METHODS The efficacy of coumarin against biofilm formation and the mature biofilm of C. albicans was quantified by crystal violet (CV) staining and the 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay. The effect of coumarin on C. albicans adhesion was assessed on polystyrene plates and by using the cell surface hydrophobicity (CSH) assay. The morphological transition of C. albicans was conducted in two types of hyphae-inducing media at 37°C. The expression of hypha/biofilm-related genes was evaluated using qRT-PCR analysis. A rescue experiment involving addition of exogenous cyclic adenosine monophosphate (cAMP) was performed to investigate the involvement of cAMP in the yeast-to-hyphae transition. A C. albicans-infected Caenorhabditis elegans model was used to test the anti-virulence efficacy of coumarin. RESULTS Treatment with coumarin strongly affected the capacity of C. albicans to form biofilm and significantly impaired the preformed mature biofilm. The addition of coumarin notably inhibited C. albicans adhesion, CSH, and filamentation. The expression of some adhesion- and hypha-related genes, including HWP1, HYR1, ECE1, and ALS3, was remarkably down-regulated upon exposure to coumarin. Supplementation with cAMP partly rescued the coumarin-induced defects in hyphal development. Finally, coumarin prolonged survival in C. albicans-infected nematodes. CONCLUSION Coumarin inhibited C. albicans biofilm, which was associated with attenuated adhesion and hyphal growth.
Collapse
Affiliation(s)
- K Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China.
| | - J L Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - M P Chu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - C Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
25
|
Rodríguez-Cerdeira C, Gregorio MC, Molares-Vila A, López-Barcenas A, Fabbrocini G, Bardhi B, Sinani A, Sánchez-Blanco E, Arenas-Guzmán R, Hernandez-Castro R. Biofilms and vulvovaginal candidiasis. Colloids Surf B Biointerfaces 2018; 174:110-125. [PMID: 30447520 DOI: 10.1016/j.colsurfb.2018.11.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023]
Abstract
Candida species, including C. albicans, are part of the mucosal flora of most healthy women, and inhabit the gastrointestinal and genitourinary tracts. Under favourable conditions, they can colonize the vulvovaginal mucosa, giving rise to symptomatic vulvovaginal candidiasis (VVC). The mechanism by which Candida spp. produces inflammation is unknown. Both, the blastoconidia and the pseudohyphae are capable of destroying the vaginal epithelium by direct invasion. Although the symptoms are not always related to the fungal burden, in general, VVC is associated with a greater number of yeasts and pseudohyphae. Some years ago, C. albicans was the species most frequently involved in the different forms of VVC. However, infections by different species have emerged during the last two decades producing an increase in causative species of VVC such as C. glabrata, C. parapsilosis, C. krusei and C. tropicalis. Candida species are pathogenic organisms that have two forms of development: planktonic and biofilm. A biofilm is defined as a community of microorganisms attached to a surface and encompassed by an extracellular matrix. This form of presentation gives microorganisms greater resistance to antifungal agents. This review, about Candia spp. with a special emphasis on Candida albicans discusses specific areas such as biofilm structure and development, cell morphology and biofilm formation, biofilm-associated gene expression, the cell surface and adherence, the extracellular matrix, biofilm metabolism, and biofilm drug resistance in vulvovaginitis biofilms as an important virulence factor in fungi.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Dermatology Department, Hospital do Meixoeiro and University of Vigo, Vigo, Spain; European Women's Dermatologic and Venereologic Society (EWDVS), Vigo, Spain.
| | - Miguel Carnero Gregorio
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Alberto Molares-Vila
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Department of Analytical & Food Chemistry, Universidade de Vigo (UVIGO), Spain
| | - Adriana López-Barcenas
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Mycology Service, Hospital Manuel Gea González, Mexico City, Mexico
| | | | | | - Ardiana Sinani
- Dermatology Service, Military Medical Unit, University Trauma Hospital, Tirana, Albania
| | | | | | | |
Collapse
|
26
|
Pericolini E, Colombari B, Ferretti G, Iseppi R, Ardizzoni A, Girardis M, Sala A, Peppoloni S, Blasi E. Real-time monitoring of Pseudomonas aeruginosa biofilm formation on endotracheal tubes in vitro. BMC Microbiol 2018; 18:84. [PMID: 30107778 PMCID: PMC6092828 DOI: 10.1186/s12866-018-1224-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/30/2018] [Indexed: 11/24/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for both acute and chronic infections in humans. In particular, its ability to form biofilm, on biotic and abiotic surfaces, makes it particularly resistant to host’s immune defenses and current antibiotic therapies as well. Innovative antimicrobial materials, like hydrogel, silver salts or nanoparticles have been used to cover new generation catheters with promising results. Nevertheless, biofilm remains a major health problem. For instance, biofilm produced onto endotracheal tubes (ETT) of ventilated patients plays a relevant role in the onset of ventilation-associated pneumonia. Most of our knowledge on Pseudomonas aeruginosa biofilm derives from in vitro studies carried out on abiotic surfaces, such as polystyrene microplates or plastic materials used for ETT manufacturing. However, these approaches often provide underestimated results since other parameters, in addition to bacterial features (i.e. shape and material composition of ETT) might strongly influence biofilm formation. Results We used an already established biofilm development assay on medically-relevant foreign devices (CVC catheters) by a stably transformed bioluminescent (BLI)-Pseudomonas aeruginosa strain, in order to follow up biofilm formation on ETT by bioluminescence detection. Our results demonstrated that it is possible: i) to monitor BLI-Pseudomonas aeruginosa biofilm development on ETT pieces in real-time, ii) to evaluate the three-dimensional structure of biofilm directly on ETT, iii) to assess metabolic behavior and the production of microbial virulence traits of bacteria embedded on ETT-biofilm. Conclusions Overall, we were able to standardize a rapid and easy-to-perform in vitro model for real-time monitoring Pseudomonas aeruginosa biofilm formation directly onto ETT pieces, taking into account not only microbial factors, but also ETT shape and material. Our study provides a rapid method for future screening and validation of novel antimicrobial drugs as well as for the evaluation of novel biomaterials employed in the production of new classes of ETT. Electronic supplementary material The online version of this article (10.1186/s12866-018-1224-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | - Bruna Colombari
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianmarco Ferretti
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Girardis
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Arianna Sala
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Samuele Peppoloni
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Blasi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|