1
|
Zhang Z, Xu Y, Liu C, Chen L, Zhang Y, He Z, Wang R, Xun C, Ma Y, Yuan X, Wang X, Chen Y, Yang X. Cataloging the Genetic Response: Unveiling Drought-Responsive Gene Expression in Oil Tea Camellia ( Camellia oleifera Abel.) through Transcriptomics. Life (Basel) 2024; 14:989. [PMID: 39202731 PMCID: PMC11355629 DOI: 10.3390/life14080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Drought stress is a critical environmental factor that significantly impacts plant growth and productivity. However, the transcriptome analysis of differentially expressed genes in response to drought stress in Camellia oleifera Abel. is still unclear. This study analyzed the transcriptome sequencing data of C. oleifera under drought treatments. A total of 20,674 differentially expressed genes (DEGs) were identified under drought stress, with the number of DEGs increasing with the duration of drought. Specifically, 11,793 and 18,046 DEGs were detected after 8 and 15 days of drought treatment, respectively, including numerous upregulated and downregulated genes. Gene Ontology (GO) enrichment analysis showed that the DEGs were primarily involved in various biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that carbon metabolism, glyoxylate and dicarboxylate metabolism, proteasome, glycine, serine, and threonine metabolism were the main affected pathways. Among the DEGs, 376 protein kinases, 42 proteases, 168 transcription factor (TF) genes, and 152 other potential functional genes were identified, which may play significant roles in the drought response of C. oleifera. The expression of relevant functional genes was further validated using quantitative real-time PCR (qRT-PCR). These findings contribute to the comprehension of drought tolerance mechanisms in C. oleifera and bolster the identification of drought-resistant genes for molecular breeding purposes.
Collapse
Affiliation(s)
- Zhen Zhang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Yanming Xu
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Caixia Liu
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Longsheng Chen
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Ying Zhang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Zhilong He
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Rui Wang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Chengfeng Xun
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Yushen Ma
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Xiaokang Yuan
- Hunan Key Laboratory of Meteorological Disaster Prevention and Reduction, Hunan Research Institute of Meteorological Sciences, Changsha 410000, China;
| | - Xiangnan Wang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Yongzhong Chen
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Xiaohu Yang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| |
Collapse
|
2
|
Li C, Chen S, Wang Y. Physiological and proteomic changes of Castanopsis fissa in response to drought stress. Sci Rep 2023; 13:12567. [PMID: 37532761 PMCID: PMC10397200 DOI: 10.1038/s41598-023-39235-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
Castanopsis fissa is a native, broadleaf tree species in Guangdong with characteristics of barrenness and fast growth and is often used as a pioneer species for vegetation restoration with excellent ecological benefits. To explore the response of C.fissa to drought, this study investigated the drought tolerance mechanism of C.fissa using physiological and proteomic assessments. Using a potted continuous drought experimental method with normal water supply as a control, we measured photosynthetic parameters, antioxidant enzyme activities, and osmoregulatory substances of C. fissa in response to drought stress for 1 to 4 weeks, respectively. In addition, we used TMT quantitative proteomics to identify differentially expressed proteins (DEPs) between the drought-stress-treated C. fissa leaves and the control leaves. With the extension of drought stress time, the photosynthetic indexes and peroxidase (POD) activity of C. fissa leaves showed a decreasing trend. The malondialdehyde (MDA) content; superoxide Dismutase (SOD) and catalase (CAT) activities; and proline (Pro), soluble sugar (SS) and soluble protein (SP) contents showed an overall increasing trend, all of which reached significant differences at 4 w of stress. We identified 177 and 529 DEPs in the 2 and 4 weeks drought-stress leaves, respectively, in reference to the control leaves. These DEPs were closely related to physiological metabolic processes such as photosynthesis, energy and carbohydrate metabolism, stress response and defense, transcriptional regulation, and signal ion transduction. Drought stress mainly affects photosynthesis, carbohydrate metabolism, and protein synthesis and degradation in C. fissa leaves. At 2 weeks of stress, the expression of carbon metabolism, pyruvate metabolism and ribosome-related proteins was significantly changed, however, and at 4 weeks of stress, protein processing in the endoplasmic reticulum and spliceosome-related proteins were significantly increased in plant leaves. To alleviate the effect of water unavailability, the drought-stressed C.fissa leaves increased its oxidative protective enzyme system to eliminate excess reactive oxygen species (ROS) and also increased its Pro and SP contents to maintain the intracellular osmotic potential balance.
Collapse
Affiliation(s)
- Chaonan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Sanxiong Chen
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yi Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
3
|
Chen M, Zhang Y, Du Z, Kong X, Zhu X. Integrative Metabolic and Transcriptomic Profiling in Camellia oleifera and Camellia meiocarpa Uncover Potential Mechanisms That Govern Triacylglycerol Degradation during Seed Desiccation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2591. [PMID: 37514206 PMCID: PMC10385360 DOI: 10.3390/plants12142591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Camellia seed oil is a top-end quality of cooking oil in China. The oil quality and quantity are formed during seed maturation and desiccation. So far, it remains largely unresolved whether lipid degradation occurs and contributes to Camellia oil traits. In this study, three different Camellia germplasms, C. oleifera cv. Min 43 (M43), C. meiocarpa var. Qingguo (QG), and C. meiocarpa cv Hongguo (HG) were selected, their seed oil contents and compositions were quantified across different stages of seed desiccation. We found that at the late stage of desiccation, M43 and QG lost a significant portion of seed oil, while such an event was not observed in HG. To explore the molecular bases for the oil loss In M43, the transcriptomic profiling of M43 and HG was performed at the early and the late seed desiccation, respectively, and differentially expressed genes (DEGs) from the lipid metabolic pathway were identified and analyzed. Our data demonstrated that different Camellia species have diverse mechanisms to regulate seed oil accumulation and degradation, and that triacylglycerol-to-terpenoid conversion could account for the oil loss in M43 during late seed desiccation.
Collapse
Affiliation(s)
- Mingjie Chen
- International Joint Laboratory of Biology and High Value Utilization of Camellia oleifera in Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhenghua Du
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Xiaofang Zhu
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China
| |
Collapse
|
4
|
Li C, Lu M, Zhou J, Wang S, Long Y, Xu Y, Tan X. Transcriptome Analysis of the Late-Acting Self-Incompatibility Associated with RNase T2 Family in Camellia oleifera. PLANTS (BASEL, SWITZERLAND) 2023; 12:1932. [PMID: 37653852 PMCID: PMC10223774 DOI: 10.3390/plants12101932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 09/02/2023]
Abstract
The Camellia oil tree (Camellia oleifera Abel.) is an important nonwood forest species in China, and the majority of its cultivars are late-acting self-incompatibility (LSI) types. Although several studies have examined the mechanism of LSI, the process is quite complicated and unclear. In this study, pollen tube growth and fruit setting of two Camellia oil tree cultivars Huashuo (HS) and Huajin (HJ) were investigated after non and self-pollination, and transcriptomic analysis of the ovaries was performed 48 h after self-pollination to identify the potential genes implicated in the LSI of Camellia oil trees. The results showed that the fruit set of HS was significantly higher than that of HJ after self-pollination. Transcriptomic analysis revealed that plant hormone signal transduction, the phosphatidylinositol signaling system, ATP-binding cassette (ABC) transporters, reactive oxygen species (ROS) metabolism, and Ca2+ signaling were mainly contributed in the LSI of reaction of Camellia oil tree. Moreover, nine RNase T2 genes were identified from the transcriptome analysis, which also showed that CoRNase7 participated in the self-incompatibility reaction in HS. Based on phylogenetic analysis, CoRNase6 was closely related to S-RNase from coffee, and CoRNase7 and CoRNase8 were closely related to S-RNase from Camellia sinensis. The 9 RNase T2 genes successfully produced proteins in prokaryotes. Subcellular localization indicated that CoRNase1 and CoRNase5 were cytoplasmic proteins, while CoRNase7 was a plasma membrane protein. These results screened the main metabolic pathways closely related to LSI in Camellia oil tree, and SI signal transduction might be regulated by a large molecular regulatory network. The discovery of T2 RNases provided evidence that Camellia oil tree might be under RNase-based gametophytic self-incompatibility.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha 410000, China
| | - Mengqi Lu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha 410000, China
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha 410000, China
| | - Sen Wang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- The Belt and Road International Union Research Center for Tropical Arid Nonwood Forest in Hunan Province, Changsha 410000, China
| | - Yi Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha 410000, China
| | - Yan Xu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha 410000, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha 410000, China
| |
Collapse
|
5
|
He Z, Cui K, Wang R, Xu T, Zhang Z, Wang X, Chen Y, Zhu Y. Multi-omics joint analysis reveals how Streptomyces albidoflavus OsiLf-2 assists Camellia oleifera to resist drought stress and improve fruit quality. Front Microbiol 2023; 14:1152632. [PMID: 37007482 PMCID: PMC10063849 DOI: 10.3389/fmicb.2023.1152632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Camellia oleifera (C. oleifera) is a unique edible oil crop in China cultivated in the hilly southern mountains. Although C. oleifera is classified as a drought-tolerant tree species, drought remains the main factor limiting the growth of C. oleifera in summer and autumn. Using endophytes to improve crop drought tolerance is one effective strategy to meet our growing food crop demand. In this study, we showed that endophyte Streptomyces albidoflavus OsiLf-2 could mitigate the negative impact of drought stress on C. oleifera, thus improving seed, oil, and fruit quality. Microbiome analysis revealed that OsiLf-2 treatment significantly affected the microbial community structure in the rhizosphere soil of C. oleifera, decreasing both the diversity and abundance of the soil microbe. Likewise, transcriptome and metabolome analyses found that OsiLf-2 protected plant cells from drought stress by reducing root cell water loss and synthesizing osmoregulatory substances, polysaccharides, and sugar alcohols in roots. Moreover, we observed that OsiLf-2 could induce the host to resist drought stress by increasing its peroxidase activity and synthesizing antioxidants such as cysteine. A multi-omics joint analysis of microbiomes, transcriptomes, and metabolomes revealed OsiLf-2 assists C. oleifera in resisting drought stress. This study provides theoretical and technical support for future research on endophytes application to enhance the drought resistance, yield, and quality of C. oleifera.
Collapse
Affiliation(s)
- Zhilong He
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
| | - Kunpeng Cui
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Rui Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
| | - Ting Xu
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Zhen Zhang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
| | - Xiangnan Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
- *Correspondence: Yongzhong Chen, ; Yonghua Zhu,
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
- *Correspondence: Yongzhong Chen, ; Yonghua Zhu,
| |
Collapse
|
6
|
Ye C, He Z, Peng J, Wang R, Wang X, Fu M, Zhang Y, Wang A, Liu Z, Jia G, Chen Y, Tian B. Genomic and genetic advances of oiltea-camellia ( Camellia oleifera). FRONTIERS IN PLANT SCIENCE 2023; 14:1101766. [PMID: 37077639 PMCID: PMC10106683 DOI: 10.3389/fpls.2023.1101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Oiltea-camellia (C. oleifera) is a widely cultivated woody oil crop in Southern China and Southeast Asia. The genome of oiltea-camellia was very complex and not well explored. Recently, genomes of three oiltea-camellia species were sequenced and assembled, multi-omic studies of oiltea-camellia were carried out and provided a better understanding of this important woody oil crop. In this review, we summarized the recent assembly of the reference genomes of oiltea-camellia, genes related to economic traits (flowering, photosynthesis, yield and oil component), disease resistance (anthracnose) and environmental stress tolerances (drought, cold, heat and nutrient deficiency). We also discussed future directions of integrating multiple omics for evaluating genetic resources and mining key genes of important traits, and the application of new molecular breeding and gene editing technologies to accelerate the breeding process of oiltea-camellia.
Collapse
Affiliation(s)
- Changrong Ye
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
| | - Zhilong He
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Jiayu Peng
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
| | - Rui Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Xiangnan Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Mengjiao Fu
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
| | - Ying Zhang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Ai Wang
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
| | - Zhixian Liu
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
| | - Gaofeng Jia
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
- *Correspondence: Gaofeng Jia, ; Yongzhong Chen, ; Bingchuan Tian,
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- *Correspondence: Gaofeng Jia, ; Yongzhong Chen, ; Bingchuan Tian,
| | - Bingchuan Tian
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
- *Correspondence: Gaofeng Jia, ; Yongzhong Chen, ; Bingchuan Tian,
| |
Collapse
|
7
|
Ding Z, Jiang C. Transcriptome Profiling to the Effects of Drought Stress on Different Propagation Modes of Tea Plant (Camellia sinensis). Front Genet 2022; 13:907026. [PMID: 36035143 PMCID: PMC9399340 DOI: 10.3389/fgene.2022.907026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Tea plant (Camellia sinensis) is an important economic beverage crop. Drought stress seriously affects the growth and development of tea plant and the accumulation of metabolites, as well as the production, processing, yield and quality of tea. Therefore, it is necessary to understand the reaction mechanism of tea plant under drought conditions and find efficient control methods. Based on transcriptome sequencing technology, this study studied the difference of metabolic level between sexual and asexual tea plants under drought stress. In this study, there were multiple levels of up-regulation and down-regulation of differential genes related to cell composition, molecular function and biological processes. Transcriptomic data show that the metabolism of tea plants with different propagation modes of QC and ZZ is different under drought conditions. In the expression difference statistics, it can be seen that the differential genes of QC are significantly more than ZZ; GO enrichment analysis also found that although differential genes in biological process are mainly enriched in the three pathways of metabolic, single organism process and cellular process, cellular component is mainly enriched in cell, cell part, membrane, and molecular function, and binding, catalytic activity, and transporter activity; the enrichment order of differential genes in these pathways is different in QC and ZZ. This difference is caused by the way of reproduction. The further study of these differential genes will lay a foundation for the cultivation methods and biotechnology breeding to improve the quality of tea.
Collapse
Affiliation(s)
- Zhou Ding
- School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Changjun Jiang
- School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Changjun Jiang,
| |
Collapse
|
8
|
Quan W, Wang A, Gao C, Li C. Applications of Chinese Camellia oleifera and its By-Products: A Review. Front Chem 2022; 10:921246. [PMID: 35685348 PMCID: PMC9171030 DOI: 10.3389/fchem.2022.921246] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Camellia oleifera is a woody oil tree species unique to China that has been cultivated and used in China for more than 2,300 years. Most biological research on C. oleifera in recent years has focused on the development of new varieties and breeding. Novel genomic information has been generated for C. oleifera, including a high-quality reference genome at the chromosome level. Camellia seeds are used to process high-quality edible oil; they are also often used in medicine, health foods, and daily chemical products and have shown promise for the treatment and prevention of diseases. C. oleifera by-products, such as camellia seed cake, saponin, and fruit shell are widely used in the daily chemical, dyeing, papermaking, chemical fibre, textile, and pesticide industries. C. oleifera shell can also be used to prepare activated carbon electrodes, which have high electrochemical performance when used as the negative electrode of lithium-ion batteries. C. oleifera is an economically valuable plant with diverse uses, and accelerating the utilization of its by-products will greatly enhance its industrial value.
Collapse
Affiliation(s)
- Wenxuan Quan
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China.,Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, China
| | - Anping Wang
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Chao Gao
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, China
| | - Chaochan Li
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| |
Collapse
|
9
|
Development of expressed sequence tag simple sequence repeat (EST-SSR) markers and genetic resource analysis of tea oil plants (Camellia spp.). CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-021-01248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Maritim TK, Korir RK, Nyabundi KW, Wachira FN, Kamunya SM, Muoki RC. Molecular regulation of anthocyanin discoloration under water stress and high solar irradiance in pluckable shoots of purple tea cultivar. PLANTA 2021; 254:85. [PMID: 34581909 DOI: 10.1007/s00425-021-03736-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
During water-deficit stress, antioxidant enzymes use anthocyanin molecules as co-substrates to scavenge for reactive oxygen species leading to reduced anthocyanin content and ultimately loss of purple leaf pigmentation in tea. Anthocyanins are an important class of flavonoids responsible for liquor color and market acceptability of processed tea from the anthocyanin-rich purple tea cultivar 'TRFK 306'. However, the color in pluckable shoots fade and turn green during the dry and hot season, before rapidly reverting back to purple when weather is favorably wet and cool/cold. Our study revealed that loss of purple leaf pigmentation correlated well with reduced precipitation, high soil water-deficit, increased intensity and duration of sunlight and temperature. Richly purple pigmented leaves harvested during the cool, wet conditions recorded significantly higher anthocyanin content compared to faded samples harvested during the dry season. Similarly, individual anthocyanins were affected by seasonal changes with malvidin being the most abundant. Comparative transcriptomics of two RNA-seq libraries, dry/discolored and wet/colored seasons, revealed depression of most metabolic processes related to anthocyanin accumulation in dry conditions. Specifically, transcripts encoding pathway regulators, MYB-bHLH-WD40 (MBW) complex, were repressed possibly contributing to the suppression of late biosynthetic genes of the pathway. Further, suppression of anthocyanin transport genes could be linked to reduced accumulation of anthocyanin in the vacuole during the dry season. However, slight increase in expression of some transporter and reactive oxygen species (ROS) antioxidant genes in the discolored leaf suggests non-enzymatic degradation of anthocyanin, ultimately leading to loss of purple color during the dry season. Based on increased expression of ROS antioxidant genes (especially catalase and superoxide dismutase) in the discolored leaf, we speculate that anthocyanins are used as co-substrates by antioxidant enzymes to scavenge for ROS (especially hydrogen peroxide) that escape from organelles, leading to reduced anthocyanins and loss of pigmentation during the dry season.
Collapse
Affiliation(s)
- Tony Kipkoech Maritim
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Robert Kiplangat Korir
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Karl Wilson Nyabundi
- Sustainable Ecosystems, Management and Conservation Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Francis Nyamu Wachira
- Department of Life Sciences, South Eastern Kenya University, P.O Box 170-90200, Kitui, Kenya
| | - Samson Machohi Kamunya
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Richard Chalo Muoki
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya.
| |
Collapse
|
11
|
Waititu JK, Zhang X, Chen T, Zhang C, Zhao Y, Wang H. Transcriptome Analysis of Tolerant and Susceptible Maize Genotypes Reveals Novel Insights about the Molecular Mechanisms Underlying Drought Responses in Leaves. Int J Mol Sci 2021; 22:6980. [PMID: 34209553 PMCID: PMC8268334 DOI: 10.3390/ijms22136980] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Maize (Zea mays L.) is the most essential food crop in the world. However, maize is highly susceptible to drought stress, especially at the seedling stage, and the molecular mechanisms underlying drought tolerance remain elusive. In this study, we conducted comparative transcriptome and physiological analyses of drought-tolerant (CML69) and susceptible (LX9801) inbred lines subjected to drought treatment at the seedling stage for three and five days. The tolerant line had significantly higher relative water content in the leaves, as well as lower electrolyte leakage and malondialdehyde levels, than the susceptible line. Using an RNA-seq-based approach, we identified 10,084 differentially expressed genes (DEGs) with 6906 and 3178 DEGs been annotated and unannotated, respectively. Two critical sets of drought-responsive DEGs, including 4687 genotype-specific and 2219 common drought-responsive genes, were mined out of the annotated DEGs. The tolerant-line DEGs were predominantly associated with the cytoskeleton, cell wall modification, glycolysis/gluconeogenesis, transport, osmotic regulation, drought avoidance, ROS scavengers, defense, and transcriptional factors. For the susceptible line, the DEGs were highly enriched in the photosynthesis, histone, and carbon fixation pathways. The unannotated DEGs were implicated in lncRNAs, including 428 previously reported and 22% putative TE-lncRNAs. There was consensus on both the physiological response and RNA-seq outcomes. Collectively, our findings will provide a comprehensive basis of the molecular networks mediating drought stress tolerance of maize at the seedling stage.
Collapse
Affiliation(s)
- Joram Kiriga Waititu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingen Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Tianci Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Agricultural Science and Technology Center, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| |
Collapse
|
12
|
Farooq TH, Kumar U, Mo J, Shakoor A, Wang J, Rashid MHU, Tufail MA, Chen X, Yan W. Intercropping of Peanut-Tea Enhances Soil Enzymatic Activity and Soil Nutrient Status at Different Soil Profiles in Subtropical Southern China. PLANTS 2021; 10:plants10050881. [PMID: 33925476 PMCID: PMC8145338 DOI: 10.3390/plants10050881] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 01/23/2023]
Abstract
Intercropping is one of the most widely used agroforestry techniques, reducing the harmful impacts of external inputs such as fertilizers. It also controls soil erosion, increases soil nutrients availability, and reduces weed growth. In this study, the intercropping of peanut (Arachishypogaea L.) was done with tea plants (Camellia oleifera), and it was compared with the mono-cropping of tea and peanut. Soil health and fertility were examined by analyzing the variability in soil enzymatic activity and soil nutrients availability at different soil depths (0-10 cm, 10-20 cm, 20-30 cm, and 30-40 cm). Results showed that the peanut-tea intercropping considerably impacted the soil organic carbon (SOC), soil nutrient availability, and soil enzymatic responses at different soil depths. The activity of protease, sucrase, and acid phosphatase was higher in intercropping, while the activity of urease and catalase was higher in peanut monoculture. In intercropping, total phosphorus (TP) was 14.2%, 34.2%, 77.7%, 61.9%; total potassium (TK) was 13.4%, 20%, 27.4%, 20%; available phosphorus (AP) was 52.9%, 26.56%, 61.1%; 146.15% and available potassium (AK) was 11.1%, 43.06%, 46.79% higher than the mono-cropping of tea in respective soil layers. Additionally, available nitrogen (AN) was 51.78%, 5.92%, and 15.32% lower in the 10-20 cm, 20-30 cm, and 30-40 cm layers of the intercropping system than in the mono-cropping system of peanut. Moreover, the soil enzymatic activity was significantly correlated with SOC and total nitrogen (TN) content across all soil depths and cropping systems. The depth and path analysis effect revealed that SOC directly affected sucrase, protease, urease, and catalase enzymes in an intercropping system. It was concluded that an increase in the soil enzymatic activity in the intercropping pattern improved the reaction rate at which organic matter decomposed and released nutrients into the soil environment. Enzyme activity in the decomposition process plays a vital role in forest soil morphology and function. For efficient land use in the cropping system, it is necessary to develop coherent agroforestry practices. The results in this study revealed that intercropping certainly enhance soil nutrients status and positively impacts soil conservation.
Collapse
Affiliation(s)
- Taimoor Hassan Farooq
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Uttam Kumar
- Institute of Applied Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jing Mo
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198 Lleida, Spain;
| | - Jun Wang
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | | | - Muhammad Aammar Tufail
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy;
| | - Xiaoyong Chen
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Arts and Sciences, Governors State University, University Park, IL 60484, USA
- Correspondence: (X.C.); (W.Y.)
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (X.C.); (W.Y.)
| |
Collapse
|
13
|
Park S, Wijeratne AJ, Moon Y, Waterland NL. Time-course transcriptomic analysis of Petunia ×hybrida leaves under water deficit stress using RNA sequencing. PLoS One 2021; 16:e0250284. [PMID: 33901201 PMCID: PMC8075263 DOI: 10.1371/journal.pone.0250284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Water deficit limits plant growth and development, resulting in quality loss of horticultural crops. However, there is limited information on gene regulation and signaling pathways related to water deficit stress response at multiple time points. The objective of this research was to investigate global gene expression patterns under water deficit stress to provide an insight into how petunia (Petunia ×hybrida 'Mitchell Diploid') responded in the process of stress. Nine-week-old petunias were irrigated daily or placed under water stress by withholding water. Stressed plants reduced stomatal conductance after five days of water deficit, indicating they perceived stress and initiated stress response mechanisms. To analyze transcriptomic changes at the early stage of water deficit, leaf tissue samples were collected 1, 3, and 5 days after water was withheld for RNA sequencing. Under water deficit stress, 154, 3611, and 980 genes were upregulated and 41, 2806, and 253 genes were downregulated on day 1, 3, and 5, respectively. Gene Ontology analysis revealed that redox homeostasis processes through sulfur and glutathione metabolism pathways, and hormone signal transduction, especially abscisic acid and ethylene, were enriched under water deficit stress. Thirty-four transcription factor families were identified, including members of AP2/ERF, NAC, MYB-related, C2H2, and bZIP families, and TFs in AP2/ERF family was the most abundant in petunia. Interestingly, only one member of GRFs was upregulated on day 1, while most of TFs were differentially expressed on day 3 and/or 5. The transcriptome data from this research will provide valuable molecular resources for understanding the early stages of water stress-responsive networks as well as engineering petunia with enhanced water stress tolerance.
Collapse
Affiliation(s)
- Suejin Park
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Asela J. Wijeratne
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Youyoun Moon
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Nicole L. Waterland
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
14
|
Estrella-Maldonado H, Ramírez AG, Ortiz GF, Peraza-Echeverría S, Martínez-de la Vega O, Góngora-Castillo E, Santamaría JM. Transcriptomic analysis reveals key transcription factors associated to drought tolerance in a wild papaya (Carica papaya) genotype. PLoS One 2021; 16:e0245855. [PMID: 33513158 PMCID: PMC7845985 DOI: 10.1371/journal.pone.0245855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/08/2021] [Indexed: 11/18/2022] Open
Abstract
Most of the commercial papaya genotypes show susceptibility to water deficit stress and require high volumes of irrigation water to yield properly. To tackle this problem, we have collected wild native genotypes of Carica papaya that have proved to show better physiological performance under water deficit stress than the commercial cultivar grown in Mexico. In the present study, plants from a wild Carica papaya genotype and a commercial genotype were subjected to water deficit stress (WDS), and their response was characterized in physiological and molecular terms. The physiological parameters measured (water potential, photosynthesis, Fv/Fm and electrolyte leakage) confirmed that the papaya wild genotype showed better physiological responses than the commercial one when exposed to WDS. Subsequently, RNA-Seq was performed for 4 cDNA libraries in both genotypes (susceptible and tolerant) under well-watered conditions, and when they were subjected to WDS for 14 days. Consistently, differential expression analysis revealed that after 14 days of WDS, the wild tolerant genotype had a higher number of up-regulated genes, and a higher number of transcription factors (TF) that were differentially expressed in response to WDS, than the commercial genotype. Thus, six TF genes (CpHSF, CpMYB, CpNAC, CpNFY-A, CpERF and CpWRKY) were selected for further qRT-PCR analysis as they were highly expressed in response to WDS in the wild papaya genotype. qRT-PCR results confirmed that the wild genotype had higher expression levels (REL) in all 6 TF genes than the commercial genotype. Our transcriptomic analysis should help to unravel candidate genes that may be useful in the development of new drought-tolerant cultivars of this important tropical crop.
Collapse
Affiliation(s)
| | | | | | | | | | - Elsa Góngora-Castillo
- Centro de Investigación Científica de Yucatán A.C., Mérida, Yucatán, México
- * E-mail: (EGC); (JMS)
| | - Jorge M. Santamaría
- Centro de Investigación Científica de Yucatán A.C., Mérida, Yucatán, México
- * E-mail: (EGC); (JMS)
| |
Collapse
|
15
|
Das RR, Pradhan S, Parida A. De-novo transcriptome analysis unveils differentially expressed genes regulating drought and salt stress response in Panicum sumatrense. Sci Rep 2020; 10:21251. [PMID: 33277539 PMCID: PMC7718891 DOI: 10.1038/s41598-020-78118-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Screening the transcriptome of drought tolerant variety of little millet (Panicum sumatrense), a marginally cultivated, nutritionally rich, susbsistent crop, can identify genes responsible for its hardiness and enable identification of new sources of genetic variation which can be used for crop improvement. RNA-Seq generated ~ 230 million reads from control and treated tissues, which were assembled into 86,614 unigenes. In silico differential gene expression analysis created an overview of patterns of gene expression during exposure to drought and salt stress. Separate gene expression profiles for leaf and root tissue revealed the differences in regulatory mechanisms operating in these tissues during exposure to abiotic stress. Several transcription factors were identified and studied for differential expression. 61 differentially expressed genes were found to be common to both tissues under drought and salinity stress and were further validated using qRT-PCR. Transcriptome of P. sumatrense was also used to mine for genic SSR markers relevant to abiotic stress tolerance. This study is first report on a detailed analysis of molecular mechanisms of drought and salinity stress tolerance in a little millet variety. Resources generated in this study can be used as potential candidates for further characterization and to improve abiotic stress tolerance in food crops.
Collapse
Affiliation(s)
- Rasmita Rani Das
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, 751023, India
| | - Seema Pradhan
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, 751023, India
| | - Ajay Parida
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, 751023, India.
| |
Collapse
|
16
|
Zheng C, Ma JQ, Ma CL, Yao MZ, Chen JD, Chen L. Identifying Conserved Functional Gene Modules Underlying the Dynamic Regulation of Tea Plant Development and Secondary Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11026-11037. [PMID: 32902975 DOI: 10.1021/acs.jafc.0c04744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tea plants adjust development and metabolism by integrating environmental and endogenous signals in complex but poorly defined gene networks. Here, we present an integrative analysis framework for the identification of conserved modules controlling important agronomic traits using a comprehensive collection of RNA-seq datasets in Camellia plants including 189 samples. In total, 212 secondary metabolism-, 182 stress response-, and 182 tissue development-related coexpressed modules were revealed. Functional modules (e.g., drought response, theobromine biosynthesis, and new shoot development-related modules) and potential regulators that were highly conserved across diverse genetic backgrounds and/or environmental conditions were then identified by cross-experiment comparisons and consensus clustering. Moreover, we investigate the preservation of gene networks between Camellia sinensis and other Camellia species. This revealed that the coexpression patterns of several recently evolved modules related to secondary metabolism and environmental adaptation were rewired and showed higher connectivity in tea plants. These conserved modules are excellent candidates for modeling the core mechanism of tea plant development and secondary metabolism and should serve as a great resource for hypothesis generation and tea quality improvement.
Collapse
Affiliation(s)
- Chao Zheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jian-Qiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Ming-Zhe Yao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jie-Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
17
|
Global Transcriptome and Correlation Analysis Reveal Cultivar-Specific Molecular Signatures Associated with Fruit Development and Fatty Acid Determination in Camellia oleifera Abel. Int J Genomics 2020; 2020:6162802. [PMID: 32953873 PMCID: PMC7481963 DOI: 10.1155/2020/6162802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background Oil-tea Camellia is a very important edible oil plant widely distributed in southern China. Tea oil extracted from the oil-tea Camellia seeds is beneficial to health and is considered as a health edible oil. We attempt to identify genes related to fatty acid biosynthesis in an oil-tea Camellia seed kernel, generated a comprehensive transcriptome analysis of the seed kernel at different developmental stages, and explore optimal picking time of fruit. Material and Methods. A gas chromatography-mass spectrometer was used to detect the content of various fatty acids in samples. Transcriptome analysis was performed to detect gene dynamics and corresponding functions. Results Multiple phenotypic data were counted in detail, including the oil content, oleic acid content, linoleic acid content, linolenic acid content, fruit weight, fruit height, fruit diameter, single seed weight, seed length, and seed width in different developmental stages, which indicate that a majority of indicators increased with the development of oil-tea Camellia. The transcriptomics was conducted to perform a comprehensive and system-level view on dynamic gene expression networks for different developmental stages. Short Time-series Expression Miner (STEM) analysis of XL106 (the 6 time points) and XL210 (8 time points) was performed to screen related fatty acid (FA) gene set, from which 1041 candidate genes related to FA were selected in XL106 and 202 related genes were screened in XL210 based on GO and KEGG enrichment. Then, candidate genes and trait dataset were combined to conduct correlation analysis, and 10 genes were found to be strongly connected with several key traits. Conclusions The multiple phenotypic data revealed the dynamic law of changes during the picking stage. Transcriptomic analysis identified a large number of potential key regulatory factors that can control the oil content of dried kernels, oleic acid, linoleic acid, linolenic acid, fresh seed rate, and kernel-to-seed ratio, thereby providing a new insight into the molecular networks underlying the picking stage of oil-tea Camellia, which provides a theoretical basis for the optimal fruit picking point.
Collapse
|
18
|
Xu W, Dong Y, Yu Y, Xing Y, Li X, Zhang X, Hou X, Sun X. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plants under differential biotic stresses. Sci Rep 2020; 10:2429. [PMID: 32051495 PMCID: PMC7015943 DOI: 10.1038/s41598-020-59168-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 12/03/2022] Open
Abstract
The selection of reliable reference genes (RGs) for normalization under given experimental conditions is necessary to develop an accurate qRT-PCR assay. To the best of our knowledge, only a small number of RGs have been rigorously identified and used in tea plants (Camellia sinensis (L.) O. Kuntze) under abiotic stresses, but no critical RG identification has been performed for tea plants under any biotic stresses till now. In the present study, we measured the mRNA transcriptional levels of ten candidate RGs under five experimental conditions; these genes have been identified as stable RGs in tea plants. By using the ΔCt method, geNorm, NormFinder and BestKeeper, CLATHRIN1 and UBC1, TUA1 and SAND1, or SAND1 and UBC1 were identified as the best combination for normalizing diurnal gene expression in leaves, stems and roots individually; CLATHRIN1 and GAPDH1 were identified as the best combination for jasmonic acid treatment; ACTIN1 and UBC1 were identified as the best combination for Toxoptera aurantii-infested leaves; UBC1 and GAPDH1 were identified as the best combination for Empoasca onukii-infested leaves; and SAND1 and TBP1 were identified as the best combination for Ectropis obliqua regurgitant-treated leaves. Furthermore, our results suggest that if the processing time of the treatment was long, the best RGs for normalization should be recommended according to the stability of the proposed RGs in different time intervals when intragroup differences were compared, which would strongly increase the accuracy and sensitivity of target gene expression in tea plants under biotic stresses. However, when the differences of intergroup were compared, the RGs for normalization should keep consistent across different time points. The results of this study provide a technical guidance for further study of the molecular mechanisms of tea plants under different biotic stresses.
Collapse
Affiliation(s)
- Wei Xu
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yanan Dong
- College of Plant Protection, Jilin Agricultural University, Changchun, China.,Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yongchen Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Yuxian Xing
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Xiwang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Xin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Xiangjie Hou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China. .,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Li FD, Tong W, Xia EH, Wei CL. Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species. BMC Bioinformatics 2019; 20:553. [PMID: 31694521 PMCID: PMC6836513 DOI: 10.1186/s12859-019-3166-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Tea is the oldest and among the world’s most popular non-alcoholic beverages, which has important economic, health and cultural values. Tea is commonly produced from the leaves of tea plants (Camellia sinensis), which belong to the genus Camellia of family Theaceae. In the last decade, many studies have generated the transcriptomes of tea plants at different developmental stages or under abiotic and/or biotic stresses to investigate the genetic basis of secondary metabolites that determine tea quality. However, these results exhibited large differences, particularly in the total number of reconstructed transcripts and the quality of the assembled transcriptomes. These differences largely result from limited knowledge regarding the optimized sequencing depth and assembler for transcriptome assembly of structurally complex plant species genomes. Results We employed different amounts of RNA-sequencing data, ranging from 4 to 84 Gb, to assemble the tea plant transcriptome using five well-known and representative transcript assemblers. Although the total number of assembled transcripts increased with increasing sequencing data, the proportion of unassembled transcripts became saturated as revealed by plant BUSCO datasets. Among the five representative assemblers, the Bridger package shows the best performance in both assembly completeness and accuracy as evaluated by the BUSCO datasets and genome alignment. In addition, we showed that Bridger and BinPacker harbored the shortest runtimes followed by SOAPdenovo and Trans-ABySS. Conclusions The present study compares the performance of five representative transcript assemblers and investigates the key factors that affect the assembly quality of the transcriptome of the tea plants. This study will be of significance in helping the tea research community obtain better sequencing and assembly of tea plant transcriptomes under conditions of interest and may thus help to answer major biological questions currently facing the tea industry.
Collapse
Affiliation(s)
- Fang-Dong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.,School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
20
|
Wu B, Ruan C, Han P, Ruan D, Xiong C, Ding J, Liu S. Comparative transcriptomic analysis of high- and low-oil Camellia oleifera reveals a coordinated mechanism for the regulation of upstream and downstream multigenes for high oleic acid accumulation. 3 Biotech 2019; 9:257. [PMID: 31192082 DOI: 10.1007/s13205-019-1792-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/03/2019] [Indexed: 01/08/2023] Open
Abstract
Tea oil camellia (Camellia oleifera) is an important woody oil tree in southern China. However, little is known regarding the molecular mechanisms that contribute to high oleic acid accumulation in tea oil camellia. Herein, we measured the oil content and fatty acid compositions of high- and low-oil tea oil camellia seeds and investigated the global gene expression profiles by RNA-seq. The results showed that at the early, second and third seed developmental stages, a total of 64, 253, and 124 genes, respectively, were significantly differentially expressed between the high- and low-oil cultivars. Gene ontology (GO) enrichment analysis of the identified differentially expressed transcription factors (TFs; ABI3, FUS3, LEC1, WRI1, TTG2 and DOF4.6) revealed some critical GO terms associated with oil biosynthesis and fatty acid accumulation, including glycolysis, zinc ion binding, positive regulation of fatty acid biosynthetic process, triglyceride biosynthetic process, seed coat development, abscisic acid-mediated signaling pathway and embryo development. Comprehensive comparisons of transcriptomic profiles and expression analysis of multigenes based on qRT-PCR showed that coordinated high expression of the upstream genes HAD, EAR and KASI directly increased the relative levels of C16:0-ACP, which provided enough precursor resources for oleic acid biosynthesis. Continuous high expression of the SAD gene accelerated oleic acid synthesis and accumulation, and coordinated low expression of the downstream genes FAD2, FAD3, FAD7, FAD8 and FAE1 decreased the consumption of oleic acid for conversion. The coordinated regulation of these multigenes ensures the high accumulation of oleic acid in the seeds of tea oil camellia. Our data represent a comprehensive transcriptomic study of high- and low-oil tea oil camellia, not only increasing the number of sequences associated with lipid biosynthesis and fatty acid accumulation in public resource databases but also providing a scientific basis for genetic improvement of the oleic acid content in woody oil trees.
Collapse
|
21
|
Parmar R, Seth R, Singh P, Singh G, Kumar S, Sharma RK. Transcriptional profiling of contrasting genotypes revealed key candidates and nucleotide variations for drought dissection in Camellia sinensis (L.) O. Kuntze. Sci Rep 2019; 9:7487. [PMID: 31097754 PMCID: PMC6522520 DOI: 10.1038/s41598-019-43925-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Tea is popular health beverage consumed by millions of people worldwide. Drought is among the acute abiotic stress severely affecting tea cultivation, globally. In current study, transcriptome sequencing of four diverse tea genotypes with inherent contrasting genetic response to drought (tolerant & sensitive) generated more than 140 million reads. De novo and reference-based assembly and functional annotation of 67,093 transcripts with multifarious public protein databases yielded 54,484 (78.2%) transcripts with significant enrichment of GO and KEGG drought responsive pathways in tolerant genotypes. Comparative DGE and qRT analysis revealed key role of ABA dependent & independent pathways, potassium & ABC membrane transporters (AtABCG22, AtABCG11, AtABCC5 & AtABCC4) and antioxidant defence system against oxidative stress in tolerant genotypes, while seems to be failed in sensitive genotypes. Additionally, highly expressed UPL3HECT E3 ligases and RING E3 ligases possibly enhance drought tolerance by actively regulating functional modification of stress related genes. Further, ascertainment of, 80803 high quality putative SNPs with functional validation of key non-synonymous SNPs suggested their implications for developing high-throughput genotyping platform in tea. Futuristically, functionally relevant genomic resources can be potentially utilized for gene discovery, genetic engineering and marker-assisted genetic improvement for better yield and quality in tea under drought conditions.
Collapse
Affiliation(s)
- Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Pradeep Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Gopal Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Sanjay Kumar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
22
|
Liu XX, Luo XF, Luo KX, Liu YL, Pan T, Li ZZ, Duns GJ, He FL, Qin ZD. Small RNA sequencing reveals dynamic microRNA expression of important nutrient metabolism during development of Camellia oleifera fruit. Int J Biol Sci 2019; 15:416-429. [PMID: 30745831 PMCID: PMC6367553 DOI: 10.7150/ijbs.26884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/10/2018] [Indexed: 12/13/2022] Open
Abstract
To obtain insight into the function of miRNAs in the synthesis and storage of important nutrients during the development of Camellia oleifera fruit, Illumina sequencing of flower and fruit small-RNA was conducted. The results revealed that 797 miRNAs were significantly differentially expressed between flower and fruit samples of Camellia oleifera. Through integrated GO and KEGG function annotations, it was determined that the miRNA target genes were mainly involved in metabolic pathways, plant hormone signal transduction, fruit development, mitosis and regulation of biosynthetic processes. Carbohydrate accumulation genes were differentially regulated by miR156, miR390 and miR395 in the fruit growth and development process. MiR477 is the key miRNA functioning in regulation of genes and involved in fatty acid synthesis. Additionally, miR156 also has the function of regulating glycolysis and nutrient transformation genes.
Collapse
Affiliation(s)
- Xiao-Xia Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Xiao-Fang Luo
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ke-Xin Luo
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ya-Lin Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ting Pan
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Zhi-Zhang Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Gregory J Duns
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Fu-Lin He
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Zuo-Dong Qin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Provincial Engineering Research Center for Ginkgo biloba, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
23
|
Rahimi M, Kordrostami M, Mortezavi M. Evaluation of tea ( Camellia sinensis L.) biochemical traits in normal and drought stress conditions to identify drought tolerant clones. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:59-69. [PMID: 30804630 PMCID: PMC6352540 DOI: 10.1007/s12298-018-0564-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/14/2018] [Accepted: 05/28/2018] [Indexed: 05/31/2023]
Abstract
Abiotic stresses, such as drought, can induce different morphological, physiological and molecular responses in the tea plants. Since there have not been any experiments on the screening of tea genotypes in terms of drought tolerance, this study was conducted to screen the drought resistance of 14 tea clones of Iran germplasm in a randomized complete block design with three replications, separately in two stressed and non-stressed conditions at Fashalam tea station. The results of grouping the clones under normal and stress conditions and comparing their results with the results of mean comparison of the agronomic and biochemical traits showed that in all cases, clones 100, Bazri and 399 were in the group that can be identified as the drought-tolerant group. Also, the results showed that in the most cases, clones 278, 276 and 285 were placed in a group that had low values for all of the traits and could be considered as a group that are susceptible to drought stress.
Collapse
Affiliation(s)
- Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, End of Haft Bagh-e-Alavi Highway Knowledge Paradise, P.O. Box: 76315-117, Kerman, 7631133131 Iran
| | - Mojtaba Kordrostami
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mojtaba Mortezavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, End of Haft Bagh-e-Alavi Highway Knowledge Paradise, P.O. Box: 76315-117, Kerman, 7631133131 Iran
| |
Collapse
|
24
|
Different Nitrate and Ammonium Ratios Affect Growth and Physiological Characteristics of Camellia oleifera Abel. Seedlings. FORESTS 2018. [DOI: 10.3390/f9120784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Camellia oleifera Abel., is an important woody plant, and its fruit contains high-quality edible oil. Production of C. oleifera has significantly expanded over the last 20 years in China. Due to the lack of appropriate information on nutrient management, its production has encountered low yield and low oil quality problems. As nitrogen (N) is an essential nutrient and the most abundant in C. oleifera tissues, the present study investigated effects of different ratios of nitrate (NO3−) and ammonium (NH4+) on the growth of a cultivar Xianglin 27 at the seedling stage. Uniform seedlings were grown in a soil-based substrate in containers and fertigated with solutions composed of six ratios of NO3− and NH4+, respectively for five months. Results showed that C. oleifera prefers both NO3− and NH4+ at a ratio of 1:1. Seedlings receiving this solution had the highest total N in leaves and total dry weight; elevated chrolophyll, soluble saccharide and protein contents as well as higher activities of peroxidase (POD), superoxide dismutase (SOD), nitrate reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT). Our study shows for the first time that N supply for producing C. oleifera should be an equal ratio of NO3− and NH4+.
Collapse
|
25
|
Unraveling the Roles of Regulatory Genes during Domestication of Cultivated Camellia: Evidence and Insights from Comparative and Evolutionary Genomics. Genes (Basel) 2018; 9:genes9100488. [PMID: 30308953 PMCID: PMC6211025 DOI: 10.3390/genes9100488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 01/01/2023] Open
Abstract
With the increasing power of DNA sequencing, the genomics-based approach is becoming a promising resolution to dissect the molecular mechanism of domestication of complex traits in trees. Genus Camellia possesses rich resources with a substantial value for producing beverage, ornaments, edible oil and more. Currently, a vast number of genetic and genomic research studies in Camellia plants have emerged and provided an unprecedented opportunity to expedite the molecular breeding program. In this paper, we summarize the recent advances of gene expression and genomic resources in Camellia species and focus on identifying genes related to key economic traits such as flower and fruit development and stress tolerances. We investigate the genetic alterations and genomic impacts under different selection programs in closely related species. We discuss future directions of integrating large-scale population and quantitative genetics and multiple omics to identify key candidates to accelerate the breeding process. We propose that future work of exploiting the genomic data can provide insights related to the targets of domestication during breeding and the evolution of natural trait adaptations in genus Camellia.
Collapse
|
26
|
Predicting Potential Distribution and Evaluating Suitable Soil Condition of Oil Tea Camellia in China. FORESTS 2018. [DOI: 10.3390/f9080487] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oil tea Camellia, as a major cash and oil crop, has a high status in the forestry cultivation systems in China. To meet the current market demand for oil tea Camellia, its potential distribution and suitable soil condition was researched, to instruct its cultivation and popularization. The potential distribution of oil tea Camellia in China was predicted by the maximum entropy model, using global environmental and soil databases. Then, we collected 10-year literature data about oil tea Camellia soil and applied multiple imputation and factor modeling for an in-depth analysis of soil suitability for growing of oil tea Camellia. The prediction indicated that oil tea Camellia was mainly distributed in Hunan, Jiangxi, Zhejiang, Hainan, East Hubei, Southwest Anhui and most of Guangdong. Climatic factors were more influential than soil factors. The minimum temperature of the coldest month, mean temperature of the coldest quarter and annual precipitation were the most significant contributors to the habitat suitability distribution. In the cultivated area of oil tea Camellia, soil fertility was poor, organic matter was the most significant factor for the soil conditions. Based on climatic and soil factor analyses, our data suggest there is a great potential to spread the oil tea Camellia cultivation industry.
Collapse
|
27
|
Li X, Fan Z, Guo H, Ye N, Lyu T, Yang W, Wang J, Wang JT, Wu B, Li J, Yin H. Comparative genomics analysis reveals gene family expansion and changes of expression patterns associated with natural adaptations of flowering time and secondary metabolism in yellow Camellia. Funct Integr Genomics 2018; 18:659-671. [PMID: 29948459 DOI: 10.1007/s10142-018-0617-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/12/2018] [Accepted: 05/31/2018] [Indexed: 11/27/2022]
Abstract
Yellow-flowering species are unique in the genus Camellia not only for their bright yellow pigments but also the health-improving substances in petals. However, little is known regarding the biosynthesis pathways of pigments and secondary metabolites. Here, we performed comparative genomics studies in two yellow-flowered species of the genus Camellia with distinctive flowering periods. We obtained 112,190 and 89,609 unigenes from Camellia nitidissima and Camellia chuongtsoensis, respectively, and identified 9547 gene family clusters shared with various plant species and 3414 single-copy gene families. Global gene expression analysis revealed six comparisons of differentially expressed gene sets in different developmental stages of floral bud. Through the identification of orthologous pairs, conserved and specific differentially expressed genes (DEGs) between species were compared. Functional enrichment analysis suggested that the gibberellin (GA) biosynthesis pathway might be related to the alteration of flowering responses. Furthermore, the expression patterns of secondary metabolism pathway genes were analyzed between yellow- and red-flowered Camellias. We showed that the key enzymes involved in glycosylation of flavonoids displayed differential expression patterns, indicating that the direct glycosylation of flavonols rather than anthocyanins was pivotal to coloration and health-improving metabolites in the yellow Camellia petals. Finally, the gene family analysis of UDP-glycosyltransferases revealed an expansion of group C members in C. nitidissima. Through comparative genomics analysis, we demonstrate that changes of gene expression and gene family members are critical to the variation of natural traits. This work provides valuable insights into the molecular regulation of trait adaptations of floral pigmentation and flowering timing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Haobo Guo
- Colleges of Engineering and Computer Science, SimCenter, University of Tennessee Chattanooga, Chattanooga, TN, 37403, USA
| | - Ning Ye
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, 210037, China
| | - Tao Lyu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- College of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wen Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Jie Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Jia-Tong Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Bin Wu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China.
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China.
| |
Collapse
|
28
|
Xie Y, Wang X. Comparative transcriptomic analysis identifies genes responsible for fruit count and oil yield in the oil tea plant Camellia chekiangoleosa. Sci Rep 2018; 8:6637. [PMID: 29703942 PMCID: PMC5923238 DOI: 10.1038/s41598-018-24073-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/21/2018] [Indexed: 12/02/2022] Open
Abstract
Fruit yield is an important trait for horticultural crops. However, the limited fruit yield of Camellia chekiangoleosa, a novel promising oil tree, restricts the production of oil. The breeding improvement is little due to its long generation time and lack of available genomic sequence. We identified distinct fruit count phenotypes, high-yield (HY) and low-yield (LY). To understand the underlying genetic basis, we focused on global gene discovery and expression levels in floral buds, which affect fruit count. A total of 140,299 de novo assembled unigenes were obtained using RNA-seq technology, and more genes were expressed in HY than in LY. 2395 differentially expressed genes (DEGs) were identified and enriched in membrane, energy metabolism, secondary metabolism, fatty acid biosynthesis and metabolism, and 18 other metabolic pathways. Of the DEGs, twelve identified transcription factors, including AP2, mostly involve in inflorescence and flower development and in hormone networks. Key DEGs in fatty acid biosynthesis (Fab) FabB, FabF, FabZ, and AccD were highly expressed in floral buds and associated with high oil yield in fruits. We hypothesized that a potential link exists between fruit count and its oil yield. These findings help to elucidate the molecular cues affecting fruit count and oil yield.
Collapse
Affiliation(s)
- Yun Xie
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang, 311800, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, 30602, USA.
| |
Collapse
|
29
|
Lin P, Wang K, Zhou C, Xie Y, Yao X, Yin H. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition. Int J Mol Sci 2018; 19:ijms19010118. [PMID: 29301285 PMCID: PMC5796067 DOI: 10.3390/ijms19010118] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/27/2017] [Indexed: 01/19/2023] Open
Abstract
Camellia oleifera is a major tree species for producing edible oil. Its seed oil is well known for the high level of oleic acids; however, little is known regarding the molecular mechanism of lipid biosynthesis in C. oleifera. Here, we measured the oil contents and fatty acid (FA) compositions at four developmental stages and investigated the global gene expression profiles through transcriptomics sequencing. We identified differentially-expressed genes (DEGs) among the developmental stages and found that the distribution of numbers of DEGs was associated with the accumulation pattern of seed oil. Gene Ontology (GO) enrichment analysis revealed some critical biological processes related to oil accumulation, including lipid metabolism and phosphatidylcholine metabolism. Furthermore, we investigated the expression patterns of lipid biosynthesis genes. We showed that most of the genes were identified with single or multiple copies, and some had correlated profiles along oil accumulation. We proposed that the higher levels of stearoyl-ACP desaturases (SADs) coupled with lower activities of fatty acid desaturase 2 (FAD2) might be responsive to the boost of oleic acid at the late stage of C. oleifera seeds’ development. This work presents a comprehensive transcriptomics study of C. oleifera seeds and uncovers valuable DEGs that are associated with the seed oil accumulation.
Collapse
Affiliation(s)
- Ping Lin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| | - Kailiang Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| | - Changfu Zhou
- Research Institute of Horticulture, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yunhai Xie
- Forestry Seedling Management Station of Zhejiang Province, Hangzhou 310020, China.
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| | - Hengfu Yin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|