1
|
Roberts MD, Davis O, Josephs EB, Williamson RJ. K-mer-based Approaches to Bridging Pangenomics and Population Genetics. Mol Biol Evol 2025; 42:msaf047. [PMID: 40111256 PMCID: PMC11925024 DOI: 10.1093/molbev/msaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/10/2025] [Accepted: 02/04/2025] [Indexed: 03/12/2025] Open
Abstract
Many commonly studied species now have more than one chromosome-scale genome assembly, revealing a large amount of genetic diversity previously missed by approaches that map short reads to a single reference. However, many species still lack multiple reference genomes and correctly aligning references to build pangenomes can be challenging for many species, limiting our ability to study this missing genomic variation in population genetics. Here, we argue that k-mers are a very useful but underutilized tool for bridging the reference-focused paradigms of population genetics with the reference-free paradigms of pangenomics. We review current literature on the uses of k-mers for performing three core components of most population genetics analyses: identifying, measuring, and explaining patterns of genetic variation. We also demonstrate how different k-mer-based measures of genetic variation behave in population genetic simulations according to the choice of k, depth of sequencing coverage, and degree of data compression. Overall, we find that k-mer-based measures of genetic diversity scale consistently with pairwise nucleotide diversity (π) up to values of about π=0.025 (R2=0.97) for neutrally evolving populations. For populations with even more variation, using shorter k-mers will maintain the scalability up to at least π=0.1. Furthermore, in our simulated populations, k-mer dissimilarity values can be reliably approximated from counting bloom filters, highlighting a potential avenue to decreasing the memory burden of k-mer-based genomic dissimilarity analyses. For future studies, there is a great opportunity to further develop methods to identifying selected loci using k-mers.
Collapse
Affiliation(s)
- Miles D Roberts
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Olivia Davis
- Department of Computer Science and Software Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Robert J Williamson
- Department of Computer Science and Software Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
| |
Collapse
|
2
|
Kuznetsov NV, Statsenko Y, Ljubisavljevic M. An Update on Neuroaging on Earth and in Spaceflight. Int J Mol Sci 2025; 26:1738. [PMID: 40004201 PMCID: PMC11855577 DOI: 10.3390/ijms26041738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over 400 articles on the pathophysiology of brain aging, neuroaging, and neurodegeneration were reviewed, with a focus on epigenetic mechanisms and numerous non-coding RNAs. In particular, this review the accent is on microRNAs, the discovery of whose pivotal role in gene regulation was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process that can be easily modeled and described. Instead, multiple temporal processes occur during aging, and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a combination of external and internal factors and can be boosted in accelerated aging. The rate can decrease in decelerated aging due to individual structural and functional reserves created by cognitive, physical training, or pharmacological interventions. Neuroaging can be caused by genetic changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental factors, which are especially noticeable in space environments where adaptive changes can trigger aging-like processes. Numerous candidate molecular biomarkers specific to neuroaging need to be validated to develop diagnostics and countermeasures.
Collapse
Affiliation(s)
- Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
| | - Yauhen Statsenko
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Statsenko Y, Kuznetsov NV, Morozova D, Liaonchyk K, Simiyu GL, Smetanina D, Kashapov A, Meribout S, Gorkom KNV, Hamoudi R, Ismail F, Ansari SA, Emerald BS, Ljubisavljevic M. Reappraisal of the Concept of Accelerated Aging in Neurodegeneration and Beyond. Cells 2023; 12:2451. [PMID: 37887295 PMCID: PMC10605227 DOI: 10.3390/cells12202451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Genetic and epigenetic changes, oxidative stress and inflammation influence the rate of aging, which diseases, lifestyle and environmental factors can further accelerate. In accelerated aging (AA), the biological age exceeds the chronological age. OBJECTIVE The objective of this study is to reappraise the AA concept critically, considering its weaknesses and limitations. METHODS We reviewed more than 300 recent articles dealing with the physiology of brain aging and neurodegeneration pathophysiology. RESULTS (1) Application of the AA concept to individual organs outside the brain is challenging as organs of different systems age at different rates. (2) There is a need to consider the deceleration of aging due to the potential use of the individual structure-functional reserves. The latter can be restored by pharmacological and/or cognitive therapy, environment, etc. (3) The AA concept lacks both standardised terminology and methodology. (4) Changes in specific molecular biomarkers (MBM) reflect aging-related processes; however, numerous MBM candidates should be validated to consolidate the AA theory. (5) The exact nature of many potential causal factors, biological outcomes and interactions between the former and the latter remain largely unclear. CONCLUSIONS Although AA is commonly recognised as a perspective theory, it still suffers from a number of gaps and limitations that assume the necessity for an updated AA concept.
Collapse
Affiliation(s)
- Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Big Data Analytic Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Daria Morozova
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Katsiaryna Liaonchyk
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Gillian Lylian Simiyu
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Darya Smetanina
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Aidar Kashapov
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Sarah Meribout
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Klaus Neidl-Van Gorkom
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Rifat Hamoudi
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PS, UK
| | - Fatima Ismail
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Suraiya Anjum Ansari
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bright Starling Emerald
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Azeez RFA, Zara S, Ricci A, Dev S, Vengamthodi A, Kavully FS, Abdu RA, Kalathil KT, Abdelgawad MA, Mathew B, Carradori S. Integrating N-alkyl amide in the chalcone framework: synthesis and evaluation of its anti-proliferative potential against AGS cancer cell line. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Whole exome sequencing in Alopecia Areata identifies rare variants in KRT82. Nat Commun 2022; 13:800. [PMID: 35145093 PMCID: PMC8831607 DOI: 10.1038/s41467-022-28343-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/22/2021] [Indexed: 01/31/2023] Open
Abstract
Alopecia areata is a complex genetic disease that results in hair loss due to the autoimmune-mediated attack of the hair follicle. We previously defined a role for both rare and common variants in our earlier GWAS and linkage studies. Here, we identify rare variants contributing to Alopecia Areata using a whole exome sequencing and gene-level burden analyses approach on 849 Alopecia Areata patients compared to 15,640 controls. KRT82 is identified as an Alopecia Areata risk gene with rare damaging variants in 51 heterozygous Alopecia Areata individuals (6.01%), achieving genome-wide significance (p = 2.18E−07). KRT82 encodes a hair-specific type II keratin that is exclusively expressed in the hair shaft cuticle during anagen phase, and its expression is decreased in Alopecia Areata patient skin and hair follicles. Finally, we find that cases with an identified damaging KRT82 variant and reduced KRT82 expression have elevated perifollicular CD8 infiltrates. In this work, we utilize whole exome sequencing to successfully identify a significant Alopecia Areata disease-relevant gene, KRT82, and reveal a proposed mechanism for rare variant predisposition leading to disrupted hair shaft integrity. Common variants have been discovered to be associated with Alopecia Areata; however, rare variants have been less well studied. Here, the authors use whole-exome sequencing to identify associated rare variants in the hair keratin gene KRT82. Further, they find that individuals with Alopecia Areata have reduced expression of KRT82 in the skin and hair follicle.
Collapse
|
6
|
Tortajada-Genaro LA. Design of Oligonucleotides for Allele-Specific Amplification Based on PCR and Isothermal Techniques. Methods Mol Biol 2022; 2392:35-51. [PMID: 34773613 DOI: 10.1007/978-1-0716-1799-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-nucleotide variations have been associated to various genetic diseases, variations on drug efficiency, and differences in cancer prognostics. The detection of these changes in nucleic acid sequences from patient samples is particularly useful for accurate diagnosis, therapeutics, and disease management. A reliable allele-specific amplification is still an important challenge for molecular-based diagnostic technologies. In the last years, allele-specific primers have been designed for promoting the enrichment of certain variants, based on a higher stability of primer/template duplexes. Also, several methods are based on the addition of a blocking oligonucleotide that prevent the amplification of a specific variant, enabling that other DNA variants can be observed. In this context, genotyping methods based on isothermal amplification techniques are increasing, especially those assays aimed to be deployed at point-of-care applications. The correct selection of target sequences is crucial for reaching the required analytical performances, in terms of reaction time, amplification yield, and selectivity. The present chapter describes the design criteria for the selection of primers and blockers for relevant PCR approaches and novel isothermal strategies. Several successful examples are provided in order to highlight the main design restrictions and the potential to be extended to other applications.
Collapse
Affiliation(s)
- Luis Antonio Tortajada-Genaro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, Valencia, Spain.
- Unidad Mixta UPV-La Fe, Nanomedicine and sensors, Valencia, Spain.
| |
Collapse
|
7
|
Abstract
Mismatched base pairs alter the flexibility and intrinsic curvature of DNA. The role of such DNA features is not fully understood in the mismatch repair pathway. MutS/DNA complexes exhibit DNA bending, PHE intercalation, and changes of base-pair parameters near the mismatch. Recently, we have shown that base-pair opening in the absence of MutS can discriminate mismatches from canonical base pairs better than DNA bending. However, DNA bending in the absence of MutS was found to be rather challenging to describe correctly. Here, we present a computational study on the DNA bending of canonical and G/T mismatched DNAs. Five types of geometric parameters covering template-based bending toward the experimental DNA structure, global, and local geometry parameters were employed in biased molecular dynamics in the absence of MutS. None of these parameters showed higher discrimination than the base-pair opening. Only roll could induce a sharply localized bending of DNA as observed in the experimental MutS/DNA structure. Further, we demonstrated that the intercalation of benzene mimicking PHE decreases the energetic cost of DNA bending without any effect on mismatch discrimination.
Collapse
Affiliation(s)
- Tomáš Bouchal
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivo Durník
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Kulhánek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
8
|
Loureiro LO, Howe JL, Reuter MS, Iaboni A, Calli K, Roshandel D, Pritišanac I, Moses A, Forman-Kay JD, Trost B, Zarrei M, Rennie O, Lau LYS, Marshall CR, Srivastava S, Godlewski B, Buttermore ED, Sahin M, Hartley D, Frazier T, Vorstman J, Georgiades S, Lewis SME, Szatmari P, Bradley CAL, Tabet AC, Willems M, Lumbroso S, Piton A, Lespinasse J, Delorme R, Bourgeron T, Anagnostou E, Scherer SW. A recurrent SHANK3 frameshift variant in Autism Spectrum Disorder. NPJ Genom Med 2021; 6:91. [PMID: 34737294 PMCID: PMC8568906 DOI: 10.1038/s41525-021-00254-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/23/2021] [Indexed: 01/22/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is genetically complex with ~100 copy number variants and genes involved. To try to establish more definitive genotype and phenotype correlations in ASD, we searched genome sequence data, and the literature, for recurrent predicted damaging sequence-level variants affecting single genes. We identified 18 individuals from 16 unrelated families carrying a heterozygous guanine duplication (c.3679dup; p.Ala1227Glyfs*69) occurring within a string of 8 guanines (genomic location [hg38]g.50,721,512dup) affecting SHANK3, a prototypical ASD gene (0.08% of ASD-affected individuals carried the predicted p.Ala1227Glyfs*69 frameshift variant). Most probands carried de novo mutations, but five individuals in three families inherited it through somatic mosaicism. We scrutinized the phenotype of p.Ala1227Glyfs*69 carriers, and while everyone (17/17) formally tested for ASD carried a diagnosis, there was the variable expression of core ASD features both within and between families. Defining such recurrent mutational mechanisms underlying an ASD outcome is important for genetic counseling and early intervention.
Collapse
Affiliation(s)
- Livia O Loureiro
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer L Howe
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miriam S Reuter
- Canada's Genomics Enterprise (CGEn), The Hospital for Sick Children, Toronto, ON, Canada
| | - Alana Iaboni
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Kristina Calli
- Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Delnaz Roshandel
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Iva Pritišanac
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Alan Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Brett Trost
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mehdi Zarrei
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Olivia Rennie
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lynette Y S Lau
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Christian R Marshall
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Siddharth Srivastava
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brianna Godlewski
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth D Buttermore
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Thomas Frazier
- Autism Speaks and Department of Psychology, John Carroll University, Cleveland, OH, USA
| | - Jacob Vorstman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Suzanne M E Lewis
- Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Peter Szatmari
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Clarrisa A Lisa Bradley
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne-Claude Tabet
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, F-75015, Paris, France
- Genetics Department, Cytogenetic Unit, Robert Debré Hospital, APHP, F-75019, Paris, France
| | | | - Serge Lumbroso
- Biochimie et Biologie Moléculaire, CHU Nimes, Univ. Montpellier, Nimes, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
- Unité de Génétique Moléculaire, IGMA, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
- Institut Universitaire de France, Paris, France
| | | | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, F-75015, Paris, France
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, APHP, F-75019, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, F-75015, Paris, France
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics and the McLaughlin Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Bouchal T, Durník I, Illík V, Réblová K, Kulhánek P. Importance of base-pair opening for mismatch recognition. Nucleic Acids Res 2020; 48:11322-11334. [PMID: 33080020 PMCID: PMC7672436 DOI: 10.1093/nar/gkaa896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/09/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
Mismatch repair is a highly conserved cellular pathway responsible for repairing mismatched dsDNA. Errors are detected by the MutS enzyme, which most likely senses altered mechanical property of damaged dsDNA rather than a specific molecular pattern. While the curved shape of dsDNA in crystallographic MutS/DNA structures suggests the role of DNA bending, the theoretical support is not fully convincing. Here, we present a computational study focused on a base-pair opening into the minor groove, a specific base-pair motion observed upon interaction with MutS. Propensities for the opening were evaluated in terms of two base-pair parameters: Opening and Shear. We tested all possible base pairs in anti/anti, anti/syn and syn/anti orientations and found clear discrimination between mismatches and canonical base-pairs only for the opening into the minor groove. Besides, the discrimination gap was also confirmed in hotspot and coldspot sequences, indicating that the opening could play a more significant role in the mismatch recognition than previously recognized. Our findings can be helpful for a better understanding of sequence-dependent mutability. Further, detailed structural characterization of mismatches can serve for designing anti-cancer drugs targeting mismatched base pairs.
Collapse
Affiliation(s)
- Tomáš Bouchal
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivo Durník
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Viktor Illík
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Kamila Réblová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Kulhánek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
10
|
Abstract
![]()
As
a field, computational toxicology is concerned with using in silico models to predict and understand the origins of
toxicity. It is fast, relatively inexpensive, and avoids the ethical
conundrum of using animals in scientific experimentation. In this
perspective, we discuss the importance of computational models in
toxicology, with a specific focus on the different model types that
can be used in predictive toxicological approaches toward mutagenicity
(SARs and QSARs). We then focus on how quantum chemical methods, such
as density functional theory (DFT), have previously been used in the
prediction of mutagenicity. It is then discussed how DFT allows for
the development of new chemical descriptors that focus on capturing
the steric and energetic effects that influence toxicological reactions.
We hope to demonstrate the role that DFT plays in understanding the
fundamental, intrinsic chemistry of toxicological reactions in predictive
toxicology.
Collapse
Affiliation(s)
- Piers A Townsend
- Centre for Sustainable Chemical Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Matthew N Grayson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
11
|
|
12
|
Kaushal S, Nanda SS, Samal S, Yi DK. Strategies for the Development of Metallic‐Nanoparticle‐Based Label‐Free Biosensors and Their Biomedical Applications. Chembiochem 2019; 21:576-600. [DOI: 10.1002/cbic.201900566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sandeep Kaushal
- Department of ChemistryMyongji University Myong Ji Road 116 17058 Yongin Republic of Korea
| | - Sitansu Sekhar Nanda
- Department of ChemistryMyongji University Myong Ji Road 116 17058 Yongin Republic of Korea
| | - Shashadhar Samal
- Department of Materials Science and EngineeringGIST 123 Cheomdangwagi-ro Buk-gu 61005 Gwangju Republic of Korea
| | - Dong Kee Yi
- Department of ChemistryMyongji University Myong Ji Road 116 17058 Yongin Republic of Korea
| |
Collapse
|
13
|
Růžička M, Souček P, Kulhánek P, Radová L, Fajkusová L, Réblová K. Bending of DNA duplexes with mutation motifs. DNA Res 2019; 26:341-352. [PMID: 31230075 PMCID: PMC6704406 DOI: 10.1093/dnares/dsz013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/27/2019] [Indexed: 01/30/2023] Open
Abstract
Mutations can be induced by environmental factors but also arise spontaneously during DNA replication or due to deamination of methylated cytosines at CpG dinucleotides. Sites where mutations occur with higher frequency than would be expected by chance are termed hotspots while sites that contain mutations rarely are termed coldspots. Mutations are permanently scanned and repaired by repair systems. Among them, the mismatch repair targets base pair mismatches, which are discriminated from canonical base pairs by probing altered elasticity of DNA. Using biased molecular dynamics simulations, we investigated the elasticity of coldspots and hotspots motifs detected in human genes associated with inherited disorders, and also of motifs with Czech population hotspots and de novo mutations. Main attention was paid to mutations leading to G/T and A+/C pairs. We observed that hotspots without CpG/CpHpG sequences are less flexible than coldspots, which indicates that flexible sequences are more effectively repaired. In contrary, hotspots with CpG/CpHpG sequences exhibited increased flexibility as coldspots. Their mutability is more likely related to spontaneous deamination of methylated cytosines leading to C > T mutations, which are primarily targeted by base excision repair. We corroborated conclusions based on computer simulations by measuring melting curves of hotspots and coldspots containing G/T mismatch.
Collapse
Affiliation(s)
- Michal Růžička
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Přemysl Souček
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Petr Kulhánek
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Radová
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Fajkusová
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno, Brno, Czech Republic
| | - Kamila Réblová
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Hashim FA, Mabrouk MS, Al-Atabany W. Review of Different Sequence Motif Finding Algorithms. Avicenna J Med Biotechnol 2019; 11:130-148. [PMID: 31057715 PMCID: PMC6490410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/26/2018] [Indexed: 11/05/2022] Open
Abstract
The DNA motif discovery is a primary step in many systems for studying gene function. Motif discovery plays a vital role in identification of Transcription Factor Binding Sites (TFBSs) that help in learning the mechanisms for regulation of gene expression. Over the past decades, different algorithms were used to design fast and accurate motif discovery tools. These algorithms are generally classified into consensus or probabilistic approaches that many of them are time-consuming and easily trapped in a local optimum. Nature-inspired algorithms and many of combinatorial algorithms are recently proposed to overcome these problems. This paper presents a general classification of motif discovery algorithms with new sub-categories that facilitate building a successful motif discovery algorithm. It also presents a summary of comparison between them.
Collapse
Affiliation(s)
- Fatma A. Hashim
- Department of Biomedical Engineering, Helwan University, Egypt
| | - Mai S. Mabrouk
- Department of Biomedical Engineering, Misr University for Science and Technology (MUST), Egypt
| | | |
Collapse
|
15
|
de Freitas Martins E, Troiano Feliciano G, Hendrik Scheicher R, Reily Rocha A. Simulating DNA Chip Design Using All-Electronic Graphene-Based Substrates. Molecules 2019; 24:E951. [PMID: 30857133 PMCID: PMC6429485 DOI: 10.3390/molecules24050951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 11/16/2022] Open
Abstract
In this paper, we present a theoretical investigation of an all-electronic biochip based on graphene to detect DNA including a full dynamical treatment for the environment. Our proposed device design is based on the changes in the electronic transport properties of graphene interacting with DNA strands under the effect of the solvent. To investigate these systems, we applied a hybrid methodology, combining quantum and classical mechanics (QM/MM) coupled to non-equilibrium Green's functions, allowing for the calculations of electronic transport. Our results show that the proposed device has high sensitivity towards the presence of DNA, and, combined with the presence of a specific DNA probe in the form of a single-strand, it presents good selectivity towards specific nucleotide sequences.
Collapse
Affiliation(s)
- Ernane de Freitas Martins
- Institute of Theoretical Physics, São Paulo State University (UNESP), Campus São Paulo, 01140-070 São Paulo, Brazil.
- Division of Materials Theory, Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden.
| | - Gustavo Troiano Feliciano
- Institute of Chemistry, São Paulo State University (UNESP), Campus Araraquara, 14800-060 Araraquara, Brazil.
| | - Ralph Hendrik Scheicher
- Division of Materials Theory, Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden.
| | - Alexandre Reily Rocha
- Institute of Theoretical Physics, São Paulo State University (UNESP), Campus São Paulo, 01140-070 São Paulo, Brazil.
| |
Collapse
|
16
|
Attwood SW, Edel MJ. iPS-Cell Technology and the Problem of Genetic Instability-Can It Ever Be Safe for Clinical Use? J Clin Med 2019; 8:E288. [PMID: 30823421 PMCID: PMC6462964 DOI: 10.3390/jcm8030288] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
The use of induced Pluripotent Stem Cells (iPSC) as a source of autologous tissues shows great promise in regenerative medicine. Nevertheless, several major challenges remain to be addressed before iPSC-derived cells can be used in therapy, and experience of their clinical use is extremely limited. In this review, the factors affecting the safe translation of iPSC to the clinic are considered, together with an account of efforts being made to overcome these issues. The review draws upon experiences with pluripotent stem-cell therapeutics, including clinical trials involving human embryonic stem cells and the widely transplanted mesenchymal stem cells. The discussion covers concerns relating to: (i) the reprogramming process; (ii) the detection and removal of incompletely differentiated and pluripotent cells from the resulting medicinal products; and (iii) genomic and epigenetic changes, and the evolutionary and selective processes occurring during culture expansion, associated with production of iPSC-therapeutics. In addition, (iv) methods for the practical culture-at-scale and standardization required for routine clinical use are considered. Finally, (v) the potential of iPSC in the treatment of human disease is evaluated in the light of what is known about the reprogramming process, the behavior of cells in culture, and the performance of iPSC in pre-clinical studies.
Collapse
Affiliation(s)
- Stephen W Attwood
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK.
| | - Michael J Edel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain.
- Victor Chang Cardiac Research Institute, Sydney, NSW 2145, Australia.
- Harry Perkins Research Institute, Fiona Stanley Hospital, University of Western Australia, PO Box 404, Bull Creek, Western Australia 6149, Australia.
| |
Collapse
|
17
|
Špačková N, Réblová K. Role of Inosine⁻Uracil Base Pairs in the Canonical RNA Duplexes. Genes (Basel) 2018; 9:genes9070324. [PMID: 29958383 PMCID: PMC6070904 DOI: 10.3390/genes9070324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
Adenosine to inosine (A–I) editing is the most common modification of double-stranded RNA (dsRNA). This change is mediated by adenosine deaminases acting on RNA (ADARs) enzymes with a preference of U>A>C>G for 5′ neighbor and G>C=A>U or G>C>U=A for 3′ neighbor. A–I editing occurs most frequently in the non-coding regions containing repetitive elements such as ALUs. It leads to disruption of RNA duplex structure, which prevents induction of innate immune response. We employed standard and biased molecular dynamics (MD) simulations to analyze the behavior of RNA duplexes with single and tandem inosine–uracil (I–U) base pairs in different sequence context. Our analysis showed that the I–U pairs induce changes in base pair and base pair step parameters and have different dynamics when compared with standard canonical base pairs. In particular, the first I–U pair from tandem I–U/I–U systems exhibited increased dynamics depending on its neighboring 5′ base. We discovered that UII sequence, which is frequently edited, has lower flexibility compared with other sequences (AII, GII, CII), hence it only modestly disrupts dsRNA. This might indicate that the UAA motifs in ALUs do not have to be sufficiently effective in preventing immune signaling.
Collapse
Affiliation(s)
- Naďa Špačková
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Kamila Réblová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
18
|
Cheng H, Dharmadhikari AV, Varland S, Ma N, Domingo D, Kleyner R, Rope AF, Yoon M, Stray-Pedersen A, Posey JE, Crews SR, Eldomery MK, Akdemir ZC, Lewis AM, Sutton VR, Rosenfeld JA, Conboy E, Agre K, Xia F, Walkiewicz M, Longoni M, High FA, van Slegtenhorst MA, Mancini GMS, Finnila CR, van Haeringen A, den Hollander N, Ruivenkamp C, Naidu S, Mahida S, Palmer EE, Murray L, Lim D, Jayakar P, Parker MJ, Giusto S, Stracuzzi E, Romano C, Beighley JS, Bernier RA, Küry S, Nizon M, Corbett MA, Shaw M, Gardner A, Barnett C, Armstrong R, Kassahn KS, Van Dijck A, Vandeweyer G, Kleefstra T, Schieving J, Jongmans MJ, de Vries BBA, Pfundt R, Kerr B, Rojas SK, Boycott KM, Person R, Willaert R, Eichler EE, Kooy RF, Yang Y, Wu JC, Lupski JR, Arnesen T, Cooper GM, Chung WK, Gecz J, Stessman HAF, Meng L, Lyon GJ. Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 2018; 102:985-994. [PMID: 29656860 DOI: 10.1016/j.ajhg.2018.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/27/2018] [Indexed: 11/30/2022] Open
Abstract
N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.
Collapse
Affiliation(s)
| | | | - Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Ning Ma
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deepti Domingo
- School of Biological Sciences, Faculty of Genes and Evolution, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Robert Kleyner
- Stanley Institute for Cognitive Genomics, 1Bungtown Road, Cold Spring Harbor Laboratory, NY 11724, USA
| | - Alan F Rope
- Department of Medical Genetics, Kaiser Permanente Northwest, Portland, OR 97227, USA
| | - Margaret Yoon
- Stanley Institute for Cognitive Genomics, 1Bungtown Road, Cold Spring Harbor Laboratory, NY 11724, USA
| | - Asbjørg Stray-Pedersen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, N-0424 Oslo, and Institute of Clinical Medicine, University of Oslo, N-0318 Oslo, Norway
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah R Crews
- Department of Pharmacology, Creighton University Medical School, Omaha, NE, 68178, USA
| | - Mohammad K Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea M Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Vernon R Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erin Conboy
- Department of Clinical Genomics, Mayo Clinic, MN 55905, USA
| | - Katherine Agre
- Department of Clinical Genomics, Mayo Clinic, MN 55905, USA
| | - Fan Xia
- Baylor Genetics, Houston, TX, 77021, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Magdalena Walkiewicz
- Baylor Genetics, Houston, TX, 77021, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; The National Institute of Allergy and Infectious Disease, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Mauro Longoni
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Frances A High
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Marjon A van Slegtenhorst
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | | | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Nicolette den Hollander
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Sakkubai Naidu
- Kennedy Krieger Institute, 801 North Broadway Baltimore, MD 21205, USA
| | - Sonal Mahida
- Kennedy Krieger Institute, 801 North Broadway Baltimore, MD 21205, USA
| | - Elizabeth E Palmer
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2031, Australia
| | - Lucinda Murray
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Derek Lim
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, FL 33155, USA
| | - Michael J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Western Bank, Sheffield S10 2TH, UK
| | - Stefania Giusto
- Oasi Research Institute - Istituto di Ricovero e Cura a Carattere Scientifico, Troina 94018, Italy
| | - Emanuela Stracuzzi
- Oasi Research Institute - Istituto di Ricovero e Cura a Carattere Scientifico, Troina 94018, Italy
| | - Corrado Romano
- Oasi Research Institute - Istituto di Ricovero e Cura a Carattere Scientifico, Troina 94018, Italy
| | | | - Raphael A Bernier
- Department of Psychiatry, University of Washington, Seattle WA, 98195, USA
| | - Sébastien Küry
- Department of Medical Genetics, Centre Hospitalier Universitaire, Nantes 44093, France
| | - Mathilde Nizon
- Department of Medical Genetics, Centre Hospitalier Universitaire, Nantes 44093, France
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Alison Gardner
- Adelaide Medical School and Robinson Research Institute, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Christopher Barnett
- Paediatric and Reproductive Genetics, South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), Adelaide, SA 5006, Australia
| | - Ruth Armstrong
- East Anglian Medical Genetics Service, Clinical Genetics, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Karin S Kassahn
- Department of Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, SA 5006, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Antwerp 2000, Belgium
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp 2000, Belgium
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Jolanda Schieving
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Marjolijn J Jongmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9PL, UK; Division of Evolution and Genomic Sciences School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Samantha K Rojas
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | | | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp 2000, Belgium
| | - Yaping Yang
- Baylor Genetics, Houston, TX, 77021, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway; Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jozef Gecz
- School of Biological Sciences, Faculty of Genes and Evolution, the University of Adelaide, Adelaide, SA 5000, Australia; Adelaide Medical School and Robinson Research Institute, the University of Adelaide, Adelaide, SA 5000, Australia; Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Holly A F Stessman
- Department of Pharmacology, Creighton University Medical School, Omaha, NE, 68178, USA
| | - Linyan Meng
- Baylor Genetics, Houston, TX, 77021, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Gholson J Lyon
- Stanley Institute for Cognitive Genomics, 1Bungtown Road, Cold Spring Harbor Laboratory, NY 11724, USA.
| |
Collapse
|