1
|
Tamizhmani P, Balamurugan B, Thirunavukarasu K, Shanmugam V, Subramaniam S, Velusamy T. Delineating Notch1 and Notch2: Receptor-Specific Significance and Therapeutic Importance of Pinpoint Targeting Strategies for Hematological Malignancies. Eur J Haematol 2025; 114:213-230. [PMID: 39530322 DOI: 10.1111/ejh.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Notch1 and Notch2, transmembrane receptors belonging to the Notch family, are pivotal mediators of intercellular communication and have profound implications including cell fate determination, embryonic development, and tissue homeostasis in various cellular processes. Despite their structural homology, Notch1 and Notch2 exhibit discrete phenotypic characteristics and functional nuances that necessitate their individualized targeting in specific medical scenarios. Aberrant Notch signaling, often driven by the dysregulated activity of one receptor over the other, is implicated under various pathological conditions. Notch1 dysregulation is frequently associated with T-cell acute lymphoblastic leukemia, whereas Notch2 perturbations are linked to B-cell malignancies and solid tumors, including breast cancer. Hence, tailored therapeutic interventions that selectively inhibit the relevant Notch receptor need to be devised to disrupt the signaling pathways driving the specific disease phenotype. In this review, we emphasize the importance of distinct tissue-specific expression patterns, functional divergence, disease-specific considerations, and the necessity to minimize off-target effects that collectively underscore the significance of "individualized" targeting for Notch1 and Notch2. This comprehensive review sheds light on the receptor-specific characteristics of Notch1 and Notch2, providing insights into their roles in cellular processes and offering opportunities for developing tailored therapeutic interventions in the fields of biomedical research and clinical practice.
Collapse
Affiliation(s)
- Priyadharshini Tamizhmani
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Banumathi Balamurugan
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Kishore Thirunavukarasu
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Velayuthaprabhu Shanmugam
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Selvakumar Subramaniam
- Department of Biochemistry, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Thirunavukkarasu Velusamy
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| |
Collapse
|
2
|
Cavalcante BRR, Freitas RD, Siquara da Rocha LO, Santos RSB, Souza BSDF, Ramos PIP, Rocha GV, Gurgel Rocha CA. In silico approaches for drug repurposing in oncology: a scoping review. Front Pharmacol 2024; 15:1400029. [PMID: 38919258 PMCID: PMC11196849 DOI: 10.3389/fphar.2024.1400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction: Cancer refers to a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body. Due to its complexity, it has been hard to find an ideal medicine to treat all cancer types, although there is an urgent need for it. However, the cost of developing a new drug is high and time-consuming. In this sense, drug repurposing (DR) can hasten drug discovery by giving existing drugs new disease indications. Many computational methods have been applied to achieve DR, but just a few have succeeded. Therefore, this review aims to show in silico DR approaches and the gap between these strategies and their ultimate application in oncology. Methods: The scoping review was conducted according to the Arksey and O'Malley framework and the Joanna Briggs Institute recommendations. Relevant studies were identified through electronic searching of PubMed/MEDLINE, Embase, Scopus, and Web of Science databases, as well as the grey literature. We included peer-reviewed research articles involving in silico strategies applied to drug repurposing in oncology, published between 1 January 2003, and 31 December 2021. Results: We identified 238 studies for inclusion in the review. Most studies revealed that the United States, India, China, South Korea, and Italy are top publishers. Regarding cancer types, breast cancer, lymphomas and leukemias, lung, colorectal, and prostate cancer are the top investigated. Additionally, most studies solely used computational methods, and just a few assessed more complex scientific models. Lastly, molecular modeling, which includes molecular docking and molecular dynamics simulations, was the most frequently used method, followed by signature-, Machine Learning-, and network-based strategies. Discussion: DR is a trending opportunity but still demands extensive testing to ensure its safety and efficacy for the new indications. Finally, implementing DR can be challenging due to various factors, including lack of quality data, patient populations, cost, intellectual property issues, market considerations, and regulatory requirements. Despite all the hurdles, DR remains an exciting strategy for identifying new treatments for numerous diseases, including cancer types, and giving patients faster access to new medications.
Collapse
Affiliation(s)
- Bruno Raphael Ribeiro Cavalcante
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Raíza Dias Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Social and Pediatric Dentistry of the School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | | | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Center of Data and Knowledge Integration for Health (CIDACS), Salvador, Brazil
| | - Gisele Vieira Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
3
|
Platonova N, Lazzari E, Colombo M, Falleni M, Tosi D, Giannandrea D, Citro V, Casati L, Ronchetti D, Bolli N, Neri A, Torricelli F, Crews LA, Jamieson CHM, Chiaramonte R. The Potential of JAG Ligands as Therapeutic Targets and Predictive Biomarkers in Multiple Myeloma. Int J Mol Sci 2023; 24:14558. [PMID: 37834003 PMCID: PMC10572399 DOI: 10.3390/ijms241914558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The NOTCH ligands JAG1 and JAG2 have been correlated in vitro with multiple myeloma (MM) cell proliferation, drug resistance, self-renewal and a pathological crosstalk with the tumor microenvironment resulting in angiogenesis and osteoclastogenesis. These findings suggest that a therapeutic approach targeting JAG ligands might be helpful for the care of MM patients and lead us to explore the role of JAG1 and JAG2 in a MM in vivo model and primary patient samples. JAG1 and JAG2 protein expression represents a common feature in MM cell lines; therefore, we assessed their function through JAG1/2 conditional silencing in a MM xenograft model. We observed that JAG1 and JAG2 showed potential as therapeutic targets in MM, as their silencing resulted in a reduction in the tumor burden. Moreover, JAG1 and JAG2 protein expression in MM patients was positively correlated with the presence of MM cells in patients' bone marrow biopsies. Finally, taking advantage of the Multiple Myeloma Research Foundation (MMRF) CoMMpass global dataset, we showed that JAG2 gene expression level was a predictive biomarker associated with patients' overall survival and progression-free survival, independently from other main molecular or clinical features. Overall, these results strengthened the rationale for the development of a JAG1/2-tailored approach and the use of JAG2 as a predictive biomarker in MM.
Collapse
Affiliation(s)
- Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
| | - Elisa Lazzari
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, La Jolla, CA 92093, USA; (L.A.C.); (C.H.M.J.)
- UC San Diego Sanford, Stem Cell Institute, La Jolla, CA 92037, USA
| | - Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
| | - Monica Falleni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
- Unit of Pathology A.O. San Paolo, Via A. Di Rudinì 8, 20142 Milan, Italy
| | - Delfina Tosi
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
- Unit of Pathology A.O. San Paolo, Via A. Di Rudinì 8, 20142 Milan, Italy
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
| | - Valentina Citro
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
| | - Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy; (D.R.); (N.B.)
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy; (D.R.); (N.B.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Leslie A. Crews
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, La Jolla, CA 92093, USA; (L.A.C.); (C.H.M.J.)
| | - Catriona H. M. Jamieson
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, La Jolla, CA 92093, USA; (L.A.C.); (C.H.M.J.)
- UC San Diego Sanford, Stem Cell Institute, La Jolla, CA 92037, USA
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
| |
Collapse
|
4
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
5
|
Vargas‐Franco D, Kalra R, Draper I, Pacak CA, Asakura A, Kang PB. The Notch signaling pathway in skeletal muscle health and disease. Muscle Nerve 2022; 66:530-544. [PMID: 35968817 PMCID: PMC9804383 DOI: 10.1002/mus.27684] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023]
Abstract
The Notch signaling pathway is a key regulator of skeletal muscle development and regeneration. Over the past decade, the discoveries of three new muscle disease genes have added a new dimension to the relationship between the Notch signaling pathway and skeletal muscle: MEGF10, POGLUT1, and JAG2. We review the clinical syndromes associated with pathogenic variants in each of these genes, known molecular and cellular functions of their protein products with a particular focus on the Notch signaling pathway, and potential novel therapeutic targets that may emerge from further investigations of these diseases. The phenotypes associated with two of these genes, POGLUT1 and JAG2, clearly fall within the realm of muscular dystrophy, whereas the third, MEGF10, is associated with a congenital myopathy/muscular dystrophy overlap syndrome classically known as early-onset myopathy, areflexia, respiratory distress, and dysphagia. JAG2 is a canonical Notch ligand, POGLUT1 glycosylates the extracellular domain of Notch receptors, and MEGF10 interacts with the intracellular domain of NOTCH1. Additional genes and their encoded proteins relevant to muscle function and disease with links to the Notch signaling pathway include TRIM32, ATP2A1 (SERCA1), JAG1, PAX7, and NOTCH2NLC. There is enormous potential to identify convergent mechanisms of skeletal muscle disease and new therapeutic targets through further investigations of the Notch signaling pathway in the context of skeletal muscle development, maintenance, and disease.
Collapse
Affiliation(s)
| | - Raghav Kalra
- Division of Pediatric NeurologyUniversity of Florida College of MedicineGainesvilleFlorida
| | - Isabelle Draper
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusetts
| | - Christina A. Pacak
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Atsushi Asakura
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Peter B. Kang
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Institute for Translational NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| |
Collapse
|
6
|
Veríssimo GC, Serafim MSM, Kronenberger T, Ferreira RS, Honorio KM, Maltarollo VG. Designing drugs when there is low data availability: one-shot learning and other approaches to face the issues of a long-term concern. Expert Opin Drug Discov 2022; 17:929-947. [PMID: 35983695 DOI: 10.1080/17460441.2022.2114451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Modern drug discovery generally is accessed by useful information from previous large databases or uncovering novel data. The lack of biological and/or chemical data tends to slow the development of scientific research and innovation. Here, approaches that may help provide solutions to generate or obtain enough relevant data or improve/accelerate existing methods within the last five years were reviewed. AREAS COVERED One-shot learning (OSL) approaches, structural modeling, molecular docking, scoring function space (SFS), molecular dynamics (MD), and quantum mechanics (QM) may be used to amplify the amount of available data to drug design and discovery campaigns, presenting methods, their perspectives, and discussions to be employed in the near future. EXPERT OPINION Recent works have successfully used these techniques to solve a range of issues in the face of data scarcity, including complex problems such as the challenging scenario of drug design aimed at intrinsically disordered proteins and the evaluation of potential adverse effects in a clinical scenario. These examples show that it is possible to improve and kickstart research from scarce available data to design and discover new potential drugs.
Collapse
Affiliation(s)
- Gabriel C Veríssimo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mateus Sá M Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thales Kronenberger
- Department of Medical Oncology and Pneumology, Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rafaela S Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Kathia M Honorio
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP), São Paulo, Brazil.,Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
7
|
Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L. Targeting Notch in oncology: the path forward. Nat Rev Drug Discov 2021; 20:125-144. [PMID: 33293690 DOI: 10.1038/s41573-020-00091-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Notch signalling is involved in many aspects of cancer biology, including angiogenesis, tumour immunity and the maintenance of cancer stem-like cells. In addition, Notch can function as an oncogene and a tumour suppressor in different cancers and in different cell populations within the same tumour. Despite promising preclinical results and early-phase clinical trials, the goal of developing safe, effective, tumour-selective Notch-targeting agents for clinical use remains elusive. However, our continually improving understanding of Notch signalling in specific cancers, individual cancer cases and different cell populations, as well as crosstalk between pathways, is aiding the discovery and development of novel investigational Notch-targeted therapeutics.
Collapse
Affiliation(s)
- Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
8
|
Marchisio M, Simeone P, Bologna G, Ercolino E, Pierdomenico L, Pieragostino D, Ventrella A, Antonini F, Del Zotto G, Vergara D, Celia C, Di Marzio L, Del Boccio P, Fontana A, Bosco D, Miscia S, Lanuti P. Flow Cytometry Analysis of Circulating Extracellular Vesicle Subtypes from Fresh Peripheral Blood Samples. Int J Mol Sci 2020; 22:ijms22010048. [PMID: 33374539 PMCID: PMC7793062 DOI: 10.3390/ijms22010048] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 01/04/2023] Open
Abstract
Extracellular vesicles (EVs) are released by shedding during different physiological processes and are increasingly thought to be new potential biomarkers. However, the impact of pre-analytical processing phases on the final measurement is not predictable and for this reason, the translation of basic research into clinical practice has been precluded. Here we have optimized a simple procedure in combination with polychromatic flow cytometry (PFC), to identify, classify, enumerate, and separate circulating EVs from different cell origins. This protocol takes advantage of a lipophilic cationic dye (LCD) able to probe EVs. Moreover, the application of the newly optimized PFC protocol here described allowed the obtainment of repeatable EVs counts. The translation of this PFC protocol to fluorescence-activated cell sorting allowed us to separate EVs from fresh peripheral blood samples. Sorted EVs preparations resulted particularly suitable for proteomic analyses, which we applied to study their protein cargo. Here we show that LCD staining allowed PFC detection and sorting of EVs from fresh body fluids, avoiding pre-analytical steps of enrichment that could impact final results. Therefore, LCD staining is an essential step towards the assessment of EVs clinical significance.
Collapse
Affiliation(s)
- Marco Marchisio
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (P.S.); (G.B.); (E.E.); (L.P.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (D.P.); (P.D.B.)
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (P.S.); (G.B.); (E.E.); (L.P.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (D.P.); (P.D.B.)
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (P.S.); (G.B.); (E.E.); (L.P.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (D.P.); (P.D.B.)
| | - Eva Ercolino
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (P.S.); (G.B.); (E.E.); (L.P.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (D.P.); (P.D.B.)
| | - Laura Pierdomenico
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (P.S.); (G.B.); (E.E.); (L.P.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (D.P.); (P.D.B.)
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (D.P.); (P.D.B.)
- Department of Innovative Technologies in Medicine & Dentistry, University G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Alessia Ventrella
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (A.V.); (C.C.); (L.D.M.); (A.F.)
| | - Francesca Antonini
- Department of Research and Diagnostics, IRCCS Giannina Gaslini, 16147 Genova, Italy; (F.A.); (G.D.Z.)
| | - Genny Del Zotto
- Department of Research and Diagnostics, IRCCS Giannina Gaslini, 16147 Genova, Italy; (F.A.); (G.D.Z.)
| | - Daniele Vergara
- Laboratory of Clinical Proteomics, “Giovanni Paolo II” Hospital, 73100 ASL-Lecce, Italy;
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Christian Celia
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (A.V.); (C.C.); (L.D.M.); (A.F.)
| | - Luisa Di Marzio
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (A.V.); (C.C.); (L.D.M.); (A.F.)
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (D.P.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (A.V.); (C.C.); (L.D.M.); (A.F.)
| | - Antonella Fontana
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (A.V.); (C.C.); (L.D.M.); (A.F.)
| | - Domenico Bosco
- Department of Biomorphological Science, Molecular Genetic Institute, Italian National Research Council, 66100 Chieti, Italy;
| | - Sebastiano Miscia
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (P.S.); (G.B.); (E.E.); (L.P.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (D.P.); (P.D.B.)
- Correspondence: ; Tel.: +39-0871541391
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (P.S.); (G.B.); (E.E.); (L.P.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (D.P.); (P.D.B.)
| |
Collapse
|
9
|
Palano MT, Giannandrea D, Platonova N, Gaudenzi G, Falleni M, Tosi D, Lesma E, Citro V, Colombo M, Saltarella I, Ria R, Amodio N, Taiana E, Neri A, Vitale G, Chiaramonte R. Jagged Ligands Enhance the Pro-Angiogenic Activity of Multiple Myeloma Cells. Cancers (Basel) 2020; 12:cancers12092600. [PMID: 32932949 PMCID: PMC7565520 DOI: 10.3390/cancers12092600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The Jagged family of ligands are aberrantly expressed during multiple myeloma progression and contributes to activate Notch signaling both in myeloma cells and in the nearby bone marrow cell populations activating several pro-tumor effects. This work elucidates, in vitro, in vivo as well as in patients’ bone marrow biopsies, different mechanisms by which tumor cell-derived Jagged1 and 2 contribute to myeloma-associated angiogenesis. These include the ability to induce myeloma and bone marrow stromal cell secretion of VEGF along with a direct activation of the pro-angiogenic Notch signaling pathway in endothelial cells. This research provides a rational for a Jagged-directed therapy in multiple myeloma. Abstract Multiple myeloma (MM) is an incurable plasma cell malignancy arising primarily within the bone marrow (BM). During MM progression, different modifications occur in the tumor cells and BM microenvironment, including the angiogenic shift characterized by the increased capability of endothelial cells to organize a network, migrate and express angiogenic factors, including vascular endothelial growth factor (VEGF). Here, we studied the functional outcome of the dysregulation of Notch ligands, Jagged1 and Jagged2, occurring during disease progression, on the angiogenic potential of MM cells and BM stromal cells (BMSCs). Jagged1–2 expression was modulated by RNA interference or soluble peptide administration, and the effects on the MM cell lines’ ability to induce human pulmonary artery cells (HPAECs) angiogenesis or to indirectly increase the BMSC angiogenic potential was analyzed in vitro; in vivo validation was performed on a zebrafish model and MM patients’ BM biopsies. Overall, our results indicate that the MM-derived Jagged ligands (1) increase the tumor cell angiogenic potential by directly triggering Notch activation in the HPAECs or stimulating the release of angiogenic factors, i.e., VEGF; and (2) stimulate the BMSCs to promote angiogenesis through VEGF secretion. The observed pro-angiogenic effect of Notch activation in the BM during MM progression provides further evidence of the potential of a therapy targeting the Jagged ligands.
Collapse
Affiliation(s)
- Maria Teresa Palano
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Germano Gaudenzi
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, 20095 Cusano Milanino, Italy; (G.G.); (G.V.)
| | - Monica Falleni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Delfina Tosi
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Valentina Citro
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Medical School, 70124 Bari, Italy; (I.S.); (R.R.)
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Medical School, 70124 Bari, Italy; (I.S.); (R.R.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, University of Milano. Hematology, Fondazione Ca’ Granda IRCCS Policlinico, 20122 Milano, Italy; (E.T.); (A.N.)
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milano. Hematology, Fondazione Ca’ Granda IRCCS Policlinico, 20122 Milano, Italy; (E.T.); (A.N.)
| | - Giovanni Vitale
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, 20095 Cusano Milanino, Italy; (G.G.); (G.V.)
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, 20122 Milan, Italy
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
- Correspondence: ; Tel.: +39-02-50323249
| |
Collapse
|
10
|
Capelli D, Parravicini C, Pochetti G, Montanari R, Temporini C, Rabuffetti M, Trincavelli ML, Daniele S, Fumagalli M, Saporiti S, Bonfanti E, Abbracchio MP, Eberini I, Ceruti S, Calleri E, Capaldi S. Surface Plasmon Resonance as a Tool for Ligand Binding Investigation of Engineered GPR17 Receptor, a G Protein Coupled Receptor Involved in Myelination. Front Chem 2020; 7:910. [PMID: 31998697 PMCID: PMC6966494 DOI: 10.3389/fchem.2019.00910] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to investigate the potential of surface plasmon resonance (SPR) spectroscopy for the measurement of real-time ligand-binding affinities and kinetic parameters for GPR17, a G protein-coupled receptor (GPCR) of major interest in medicinal chemistry as potential target in demyelinating diseases. The receptor was directly captured, in a single-step, from solubilized membrane extracts on the sensor chip through a covalently bound anti-6x-His-antibody and retained its ligand binding activity for over 24 h. Furthermore, our experimental setup made possible, after a mild regeneration step, to remove the bound receptor without damaging the antibody, and thus to reuse many times the same chip. Two engineered variants of GPR17, designed for crystallographic studies, were expressed in insect cells, extracted from crude membranes and analyzed for their binding with two high affinity ligands: the antagonist Cangrelor and the agonist Asinex 1. The calculated kinetic parameters and binding constants of ligands were in good agreement with those reported from activity assays and highlighted a possible functional role of the N-terminal residues of the receptor in ligand recognition and binding. Validation of SPR results was obtained by docking and molecular dynamics of GPR17-ligands interactions and by functional in vitro studies. The latter allowed us to confirm that Asinex 1 behaves as GPR17 receptor agonist, inhibits forskolin-stimulated adenylyl cyclase pathway and promotes oligodendrocyte precursor cell maturation and myelinating ability.
Collapse
Affiliation(s)
- Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Chiara Parravicini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | - Marco Rabuffetti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Simona Saporiti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Bonfanti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, Data Science Research Center, Università degli Studi di Milano, Milan, Italy
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Stefano Capaldi
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Colombo M, Garavelli S, Mazzola M, Platonova N, Giannandrea D, Colella R, Apicella L, Lancellotti M, Lesma E, Ancona S, Palano MT, Barbieri M, Taiana E, Lazzari E, Basile A, Turrini M, Pistocchi A, Neri A, Chiaramonte R. Multiple myeloma exploits Jagged1 and Jagged2 to promote intrinsic and bone marrow-dependent drug resistance. Haematologica 2019; 105:1925-1936. [PMID: 31582544 PMCID: PMC7327642 DOI: 10.3324/haematol.2019.221077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma is still incurable due to an intrinsic aggressiveness or, more frequently, to the interactions of malignant plasma cells with the bone marrow (BM) microenvironment. Myeloma cells educate BM cells to support neoplastic cell growth, survival, acquisition of drug resistance resulting in disease relapse. Myeloma microenvironment is characterized by Notch signaling hyperactivation due to the increased expression of Notch1 and 2 and the ligands Jagged1 and 2 in tumor cells. Notch activation influences myeloma cell biology and promotes the reprogramming of BM stromal cells. In this work we demonstrate, in vitro, ex vivo and by using a zebrafish multiple myeloma model, that Jagged inhibition causes a decrease in both myeloma-intrinsic and stromal cell-induced resistance to currently used drugs, i.e. bortezomib, lenalidomide and melphalan. The molecular mechanism of drug resistance involves the chemokine system CXCR4/SDF1α. Myeloma cell-derived Jagged ligands trigger Notch activity in BM stromal cells. These, in turn, secrete higher levels of SDF1α in the BM microenvironment increasing CXCR4 activation in myeloma cells, which is further potentiated by the concomitant increased expression of this receptor induced by Notch activation. Consistently with the augmented pharmacological resistance, SDF1α boosts the expression of BCL2, Survivin and ABCC1. These results indicate that a Jagged-tailored approach may contribute to disrupting the pharmacological resistance due to intrinsic myeloma cell features or to the pathological interplay with BM stromal cells and, conceivably, improve patients' response to standard-of-care therapies.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Silvia Garavelli
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Mara Mazzola
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano
| | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | | | - Raffaella Colella
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Luana Apicella
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | | | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Silvia Ancona
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | | | - Marzia Barbieri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano.,Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano.,Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano
| | - Elisa Lazzari
- Department of Health Sciences, Università degli Studi di Milano, Milano
| | - Andrea Basile
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano
| | - Mauro Turrini
- Department of Hematology, Division of Medicine, Valduce Hospital, Como, Italy
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano.,Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano
| | | |
Collapse
|
12
|
Xiu MX, Liu YM. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. Am J Cancer Res 2019; 9:837-854. [PMID: 31218097 PMCID: PMC6556604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023] Open
Abstract
Deregulated Notch signaling is a key factor thought to facilitate the stem-like proliferation of cancer cells, thereby facilitating disease progression. Four subtypes of Notch receptor have been described to date, with each playing a distinct role in cancer development and progression, therefore warranting a careful and comprehensive examination of the targeting of each receptor subtype in the context of oncogenesis. Clinical efforts to translate the DAPT, which blocks Notch signaling, have been unsuccessful due to a combination of serious gastrointestinal side effects and a lack of complete blocking efficacy. There is therefore a clear need to identify better therapeutic strategies for targeting and manipulating Notch signaling. Notch2 is a Notch receptor that is commonly overexpressed in a range of cancers, and which is linked to a unique oncogenic mechanism. Successful efforts to block Notch2 signaling will depend upon doing so both efficiently and specifically in patients. As such, in the present review we will explore the role of Notch2 signaling in the development and progression of cancer, and we will assess agents and strategies with the potential to effectively disrupt Notch2 signaling and thereby yield novel cancer treatment regimens.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University Nanchang, Jiangxi, China
| | - Yuan-Meng Liu
- Medical School of Nanchang University Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Colombo M, Platonova N, Giannandrea D, Palano MT, Basile A, Chiaramonte R. Re-establishing Apoptosis Competence in Bone Associated Cancers via Communicative Reprogramming Induced Through Notch Signaling Inhibition. Front Pharmacol 2019; 10:145. [PMID: 30873026 PMCID: PMC6400837 DOI: 10.3389/fphar.2019.00145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/06/2019] [Indexed: 12/12/2022] Open
Abstract
Notch and its ligands on adjacent cells are key mediators of cellular communication during developmental choice in embryonic and adult tissues. This communication is frequently altered in the pathological interaction between cancer cells and healthy cells of the microenvironment due to the aberrant expression of tumor derived Notch receptors or ligands, that results in homotypic or heterotypic Notch signaling activation in tumor cells or surrounding stromal cells. A deadly consequence of this pathological communication is pharmacological resistance that results in patient's relapse. We will provide a survey of the role of Notch signaling in the bone marrow (BM), a microenvironment with a very high capacity to support several types of cancer, including primary cancers such as osteosarcoma or multiple myeloma and bone metastases from carcinomas. Moreover, in the BM niche several hematological malignancies maintain a reservoir of cancer stem cells, characterized by higher intrinsic drug resistance. Cell-cell communication in BM-tumor interaction triggers signaling pathways by direct contact and paracrine communication through soluble growth factors or extracellular vesicles, which can deliver specific molecules such as mRNAs, miRNAs, proteins, metabolites, etc. enabling tumor cells to reprogram the healthy cells of the microenvironment inducing them to support tumor growth. In this review we will explore how the dysregulated Notch activity contributes to tumor-mediated reprogramming of the BM niche and drug resistance, strengthening the rationale of a Notch-directed therapy to re-establish apoptosis competence in cancer.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | | | | | - Andrea Basile
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | |
Collapse
|
14
|
Palazzolo L, Parravicini C, Laurenzi T, Guerrini U, Indiveri C, Gianazza E, Eberini I. In silico Description of LAT1 Transport Mechanism at an Atomistic Level. Front Chem 2018; 6:350. [PMID: 30197880 PMCID: PMC6117385 DOI: 10.3389/fchem.2018.00350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022] Open
Abstract
The molecular mechanism of transport mediated by LAT1, a sodium-independent antiporter of large neutral amino acids, was investigated through in silico procedures, specifically making reference to two transported substrates, tyrosine (Tyr) and leucine methyl ester (LME), and to 3,5-diiodo-L-tyrosine (DIT), a well-known LAT1 inhibitor. Two models of the transporter were built by comparative modeling, with LAT1 either in an outward-facing (OF) or in an inward-facing (IF) conformation, based, respectively, on the crystal structure of AdiC and of GadC. As frequently classic Molecular Dynamics (MD) fails to monitor large-scale conformational transitions within a reasonable simulated time, the OF structure was equilibrated for 150 ns then processed through targeted MD (tMD). During this procedure, an elastic force pulled the OF structure to the IF structure and induced, at the same time, substrates/inhibitor to move through the transport channel. This elastic force was modulated by a spring constant (k) value; by decreasing its value from 100 to 70, it was possible to comparatively account for the propensity for transport of the three tested molecules. In line with our expectations, during the tMD simulations, Tyr and LME behaved as substrates, moving down the transport channel, or most of it, for all k values. On the contrary, DIT behaved as an inhibitor, being (almost) transported across the channel only at the highest k value (100). During their transit through the channel, Tyr and LME interacted with specific amino acids (first with Phe252 then with Thr345, Arg348, Tyr259, and Phe262); this suggests that a primary as well as a putative secondary gate may contribute to the transport of substrates. Quite on the opposite, DIT appeared to establish only transient interactions with side chains lining the external part of the transport channel. Our tMD simulations could thus efficiently discriminate between two transported substrates and one inhibitor, and therefore can be proposed as a benchmark for developing novel LAT1 inhibitors of pharmacological interest.
Collapse
Affiliation(s)
- Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Cesare Indiveri
- Dipartimento di Biologia, Ecologia e Scienze della Terra, University of Calabria, Cosenza, Italy
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
15
|
Colombo M, Mirandola L, Chiriva-Internati M, Basile A, Locati M, Lesma E, Chiaramonte R, Platonova N. Cancer Cells Exploit Notch Signaling to Redefine a Supportive Cytokine Milieu. Front Immunol 2018; 9:1823. [PMID: 30154786 PMCID: PMC6102368 DOI: 10.3389/fimmu.2018.01823] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Notch signaling is a well-known key player in the communication between adjacent cells during organ development, when it controls several processes involved in cell differentiation. Notch-mediated communication may occur through the interaction of Notch receptors with ligands on adjacent cells or by a paracrine/endocrine fashion, through soluble molecules that can mediate the communication between cells at distant sites. Dysregulation of Notch pathway causes a number of disorders, including cancer. Notch hyperactivation may be caused by mutations of Notch-related genes, dysregulated upstream pathways, or microenvironment signals. Cancer cells may exploit this aberrant signaling to "educate" the surrounding microenvironment cells toward a pro-tumoral behavior. This may occur because of key cytokines secreted by tumor cells or it may involve the microenvironment through the activation of Notch signaling in stromal cells, an event mediated by a direct cell-to-cell contact and resulting in the increased secretion of several pro-tumorigenic cytokines. Up to now, review articles were mainly focused on Notch contribution in a specific tumor context or immune cell populations. Here, we provide a comprehensive overview on the outcomes of Notch-mediated pathological interactions in different tumor settings and on the molecular and cellular mediators involved in this process. We describe how Notch dysregulation in cancer may alter the cytokine network and its outcomes on tumor progression and antitumor immune response.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Maurizio Chiriva-Internati
- Kiromic Biopharma Inc., Houston, TX, United States.,Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrea Basile
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
16
|
Kozakiewicz P, Grzybowska-Szatkowska L. Application of molecular targeted therapies in the treatment of head and neck squamous cell carcinoma. Oncol Lett 2018; 15:7497-7505. [PMID: 29725456 DOI: 10.3892/ol.2018.8300] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Despite the development of standard therapies, including surgery, radiotherapy and chemotherapy, survival rates for head and neck squamous cell carcinoma (HNSCC) have not changed significantly over the past three decades. Complete recovery is achieved in <50% of patients. The treatment of advanced HNSCC frequently requires multimodality therapy and involves significant toxicity. The promising, novel treatment option for patients with HNSCC is molecular-targeted therapies. The best known targeted therapies include: Epidermal growth factor receptor (EGFR) monoclonal antibodies (cetuximab, panitumumab, zalutumumab and nimotuzumab), EGFR tyrosine kinase inhibitors (gefitinib, erlotinib, lapatinib, afatinib and dacomitinib), vascular endothelial growth factor (VEGF) inhibitor (bevacizumab) or vascular endothelial growth factor receptor (VEGFR) inhibitors (sorafenib, sunitinib and vandetanib) and inhibitors of phosphatidylinositol 3-kinase/serine/threonine-specific protein kinase/mammalian target of rapamycin. There are also various inhibitors of other pathways and targets, which are promising and require evaluation in further studies.
Collapse
|