1
|
Lau DTY, Kim ES, Wang Z, King WC, Kleiner DE, Ghany MG, Hinerman AS, Liu Y, Chung RT, Sterling RK, Cloherty G, Lin SY, Liu HN, Su YH, Guo H. Differential Intrahepatic Integrated HBV DNA Patterns Between HBeAg-Positive and HBeAg-Negative Chronic Hepatitis B. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.28.25322668. [PMID: 40093236 PMCID: PMC11908316 DOI: 10.1101/2025.02.28.25322668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background HBsAg can be derived from intrahepatic cccDNA and integrated HBV DNA (iDNA). We examined the iDNA from liver tissues of 24 HBeAg(+) and 32 HBeAg(-) treatment-naive CHB participants. Methods Liver tissues were obtained from the North American Hepatitis B Research Network (HBRN). For cccDNA analysis, DNA was heat-denatured and digested by plasmid-safe ATP-dependent DNase to remove rcDNA and iDNA prior to qPCR. For iDNA detection, total DNA was subjected to HBV hybridization-targeted next generation sequencing (HBV-NGS) assay. The HBV-host junction sequences were identified by ChimericSeq. Comparison of HBV cccDNA and iDNA with serum and intrahepatic virological parameters were assessed. Results Intrahepatic cccDNA, serum HBV DNA, HBV RNA, HBcrAg and qHBsAg were higher among the HBeAg(+) participants. Among the HBeAg(+) samples, 87% had positive intrahepatic HBcAg staining compared to 13% of HBeAg(-) samples (p<0.0001). HBsAg staining, in contrast, was present in over 85% of both HBeAg(+) and (-) livers. 23 (95.8%) HBeAg(+) participants had ≤50% iDNA of total HBV DNA whereas 25 (78.1%) HBeAg(-) participants had >50% iDNA in their livers. The iDNA junction-breakpoint distributions for the HBeAg(+) group were random with 15.9% localized to the DR2-DR1 region. In contrast, 52.4% of the iDNA were clustered at DR2-DR1 region among the HBeAg(-) participants. Microhomology-mediated end joining (MMEJ) patterns of dslDNA HBV integration was more frequent in HBeAg (+) livers. Conclusion Serum RNA and HBcrAg reflect the intrahepatic cccDNA concentrations. HBeAg(-) CHB participants had high levels of intrahepatic iDNA and HBsAg despite lower cccDNA levels suggesting that iDNA is the primary source of HBsAg in HBeAg(-) CHB.
Collapse
|
2
|
Liu HN, Lin SY, Ramirez R, Chen SE, Heimer Z, Kubas R, Shieh FS, Kim ES, Liu Y, Lau DT, Chang TT, Guo H, Wang Z, Su YH. Development of an NGS-Based Estimation of Integrated HBV DNA in Liver Biopsies and Detection in Liquid Biopsies. J Med Virol 2025; 97:e70290. [PMID: 40062878 PMCID: PMC11995388 DOI: 10.1002/jmv.70290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
This study characterized a hepatitis B virus (HBV) hybridization-capture next-generation sequencing (HBV-NGS) assay and applied it to develop a model for estimating the integrated HBV DNA (iDNA) quantity and for HBV genetics liquid biopsy. Using HBV monomers and reconstituted cell line DNA (SNU398, Hep3B, and PLC/PRF/5), the HBV-NGS assay demonstrated high coverage uniformity, reproducibility across HBV genotypes A-D, and 0.1% sensitivity for detecting iDNA. The iDNA sequence and structures from SNU398 and Hep3B are reported. An iDNA estimation model was developed using tissue biopsies from patients with serum viral load < 4 log IU/mL and validated using SNU398 and Hep3B cell line DNA. The assay's utility for HBV genetic liquid biopsy was evaluated using matched plasma-urine samples with HBV DNA levels ranging from high to undetectable. In this pilot study, HBV-JS was detected in all body fluids, regardless of viral load. These findings indicate that the iDNA from patients with negligible or undetectable viral replication can be assessed for iDNA elimination efficacy in drug development. Moreover, a sensitive HBV genetics liquid biopsy can be feasible even for patients with undetectable serum viral load. This study underscores the potential of NGS-based methods to advance HBV management.
Collapse
Affiliation(s)
- Hsin-Ni Liu
- The Baruch S. Blumberg Research Institute, Doylestown, PA, 18902, USA
| | | | | | | | - Zach Heimer
- JBS Science, Inc., Doylestown, PA,18902, USA
| | - Roman Kubas
- JBS Science, Inc., Doylestown, PA,18902, USA
| | | | - Elena S. Kim
- Department of Microbiology and Immunology; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Yuanjie Liu
- Department of Microbiology and Immunology; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Daryl T.Y. Lau
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Medical College, Center of infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Haitao Guo
- Department of Microbiology and Immunology; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Zhili Wang
- JBS Science, Inc., Doylestown, PA,18902, USA
| | - Ying-Hsiu Su
- The Baruch S. Blumberg Research Institute, Doylestown, PA, 18902, USA
| |
Collapse
|
3
|
Taddese M, Grudda T, Belluccini G, Anderson M, Cloherty G, Hwang HS, Mani M, Lo CM, Esrig N, Sulkowski MS, Sterling RK, Zhang Y, Ribeiro RM, Thomas DL, Thio CL, Balagopal A. Transcription of hepatitis B surface antigen shifts from cccDNA to integrated HBV DNA during treatment. J Clin Invest 2025; 135:e184243. [PMID: 39898797 PMCID: PMC11910228 DOI: 10.1172/jci184243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
The cornerstone of functional cure for chronic hepatitis B (CHB) is hepatitis B surface antigen (HBsAg) loss from blood. HBsAg is encoded by covalently closed circular DNA (cccDNA) and HBV DNA integrated into the host genome (iDNA). Nucleos(t)ide analogs (NUCs), the mainstay of CHB treatment, rarely lead to HBsAg loss, which we hypothesized was due to continued iDNA transcription despite decreased cccDNA transcription. To test this, we applied a multiplex droplet digital PCR that identifies the dominant source of HBsAg mRNAs to 3,436 single cells from paired liver biopsies obtained from 10 people with CHB and HIV receiving NUCs. With increased NUC duration, cells producing HBsAg mRNAs shifted their transcription from chiefly cccDNA to chiefly iDNA. This shift was due to both a reduction in the number of cccDNA-containing cells and diminished cccDNA-derived transcription per cell; furthermore, it correlated with reduced detection of proteins deriving from cccDNA but not iDNA. Despite this shift in the primary source of HBsAg, rare cells remained with detectable cccDNA-derived transcription, suggesting a source for maintaining the replication cycle. Functional cure must address both iDNA and residual cccDNA transcription. Further research is required to understand the significance of HBsAg when chiefly derived from iDNA.
Collapse
Affiliation(s)
- Maraake Taddese
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tanner Grudda
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | - Hyon S. Hwang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Monika Mani
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Che-Min Lo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Naomi Esrig
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark S. Sulkowski
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard K. Sterling
- Divison of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yang Zhang
- Division of Gastrointestinal and Hepatic Pathology, Joint Pathology Center, Silver Spring, Maryland, USA
| | - Ruy M. Ribeiro
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - David L. Thomas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chloe L. Thio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ashwin Balagopal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Havill J, Strasburg O, Udoh T, Crawford JE, Gloria-Soria A. EVE-X: Software to Identify Novel Viral Insertions in Wild-Caught Arthropod Hosts From Next-Generation Short Read Data. Mol Ecol Resour 2025; 25:e14026. [PMID: 39382329 DOI: 10.1111/1755-0998.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Eukaryotic genomes harbour sequences derived from non-retroviral RNA viruses, known as endogenous viral elements (EVEs) or non-retroviral integrated RNA virus sequences (NIRVS). These sequences represent a record of past infections and have been implicated in host anti-viral response. We have created a program to identify viral sequences integrated in a host genome. It begins with a specimen BAM file and outputs candidate NIRVS, along with putative host insertion sites and overlapping genomic features of the host genome in XML and visual formats, with minimal intermediary intervention. We ran through this software short-read data derived from the genomes of 222 wild-caught A. aegypti mosquitoes, from a dozen geographical regions, and located putative NIRVS from seven virus families. This program is as accurate as currently available software for NIRVS detection, and represents a significant improvement in adaptability and user-friendliness. Furthermore, the flexibility of this pipeline allows the user to search for sequence integrations across the genome of any organism, as long as a query sequence database and a reference genome is provided. Potential extended applications include identification of integrated transgenic sequences used for research or vector control strategies.
Collapse
Affiliation(s)
- Jessen Havill
- Department of Computer Science, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Olivia Strasburg
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Tessy Udoh
- Department of Computer Science, Denison University, Granville, Ohio, USA
| | | | - Andrea Gloria-Soria
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Liu HN, Lin SY, Ramirez R, Chen SE, Heimer Z, Kubas R, Shieh FS, Kim ES, Liu Y, Lau DT, Chang TT, Guo H, Wang Z, Su YH. Integrated DNA estimation in tissue biopsy and detection in liquid biopsy by HBV-targeted NGS assay. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.04.24318256. [PMID: 39677449 PMCID: PMC11643158 DOI: 10.1101/2024.12.04.24318256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background & Aims Integrated HBV DNA (iDNA) plays a critical role in HBV pathogenesis, particularly in predicting treatment response and HCC. This study aimed to use an HBV hybridization-capture next-generation sequencing (HBV-NGS) assay to detect HBV-host junction sequences (HBV-JS) in a sensitive nonbiased manner to detect and estimate the iDNA fraction in tissue biopsies and HBV genetics by liquid biopsy. Methods HBV DNA from plasmid monomers, HBV-HCC cell line (SNU398, Hep3B, and PLC/PRF/5), tissue biopsies of patients with serum HBV DNA <4 log IU/ml, and matched urine and plasma of HBV patients were assessed by HBV-NGS. Junction-specific qPCR (JS-qPCR) assays were developed to quantify abundant HBV-JS. Results We demonstrated high coverage uniformity, reproducibility across all HBV genotypes A-D, and 0.1% sensitivity for detecting iDNA by the HBV-NGS assay. The sequence and structures of iDNA molecules from SNU398 and Hep3B are reported. An iDNA estimation model was developed using six abundant HBV-JS sequences identified from tissue biopsies by HBV-NGS assay and validated using total DNA of SNU398 and Hep3B cells. Furthermore, the utility of the HBV-NGS assay for HBV genetic analysis in liquid biopsies was explored using matched plasma-urine samples from three patients with serum HBV DNA levels ranging from high to undetectable. HBV-JS was detected in all body fluids tested, regardless of viral load. Conclusion These findings suggest that the iDNA fraction in tissue biopsies from patients with limited or undetectable serum HBV DNA can be estimated using a robust HBV-NGS assay, and a sensitive HBV genetics liquid biopsy can be obtained. This study highlights the potential of NGS-based methods to advance HBV management.
Collapse
Affiliation(s)
- Hsin-Ni Liu
- The Baruch S. Blumberg Research Institute, Doylestown, PA, 18902, USA
| | | | | | | | - Zach Heimer
- JBS Science, Inc., Doylestown, PA,18902, USA
| | - Roman Kubas
- JBS Science, Inc., Doylestown, PA,18902, USA
| | | | - Elena S. Kim
- Department of Microbiology and Immunology; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Yuanjie Liu
- Department of Microbiology and Immunology; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Daryl T.Y. Lau
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Medical College, Center of infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Haitao Guo
- Department of Microbiology and Immunology; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Zhili Wang
- JBS Science, Inc., Doylestown, PA,18902, USA
| | - Ying-Hsiu Su
- The Baruch S. Blumberg Research Institute, Doylestown, PA, 18902, USA
| |
Collapse
|
6
|
Adamek K, Jones AMP, Torkamaneh D. Somatic Mutation Accumulations in Micropropagated Cannabis Are Proportional to the Number of Subcultures. PLANTS (BASEL, SWITZERLAND) 2024; 13:1910. [PMID: 39065436 PMCID: PMC11279941 DOI: 10.3390/plants13141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Advancements in micropropagation techniques have made it easier to produce large numbers of cannabis clones, but these methods may also introduce genetic instability over successive generations. This instability often manifests as somaclonal variation, characterized by the progressive accumulation of genetic mutations or epigenetic alterations with each subculture. In this study, we examined how mutations accumulate in cannabis clones subjected to 6-11 subcultures. Using genotyping-by-sequencing, we identified 9405 polymorphic variants across 70 clones. The analysis revealed a correlation between the number of subcultures and the frequency of these mutations, revealing that genetic changes accumulate over successive subcultures despite clones sharing the same chronological age. Furthermore, we evaluated the functional impacts of accumulated mutations, with particular attention to implications on gene function and overall plant health. While rare, 14 high-impact variants were identified in genes that are important for plant development. Notably, six variants were also found in genes related to cannabinoid and terpene synthesis pathways, potentially affecting the plant's biochemical composition. These findings highlight the need for genetic assessments in micropropagation protocols, impacting plant breeding and conservation. Understanding genetic variations in clonally propagated plants optimizes practices for stability. Crucial for cannabis and horticultural plants, it emphasizes techniques to prevent genetic decay and ensure viability.
Collapse
Affiliation(s)
- Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.A.); (A.M.P.J.)
| | | | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Yu X, Gong Q, Yu D, Chen Y, Jing Y, Zoulim F, Zhang X. Spatial transcriptomics reveals a low extent of transcriptionally active hepatitis B virus integration in patients with HBsAg loss. Gut 2024; 73:797-809. [PMID: 37968095 PMCID: PMC11041573 DOI: 10.1136/gutjnl-2023-330577] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Hepatitis B virus (HBV) can integrate into the chromosomes of infected hepatocytes, contributing to the production of hepatitis B surface antigen (HBsAg) and to hepatocarcinogenesis. In this study, we aimed to explore whether transcriptionally active HBV integration events spread throughout the liver tissue in different phases of chronic HBV infection, especially in patients with HBsAg loss. DESIGN We constructed high-resolution spatial transcriptomes of liver biopsies containing 13 059 tissue spots from 18 patients with chronic HBV infection to analyse the occurrence and relative distribution of transcriptionally active viral integration events. Immunohistochemistry was performed to evaluate the expression of HBsAg and HBV core antigen. Intrahepatic covalently closed circular DNA (cccDNA) levels were quantified by real-time qPCR. RESULTS Spatial transcriptome sequencing identified the presence of 13 154 virus-host chimeric reads in 7.86% (1026 of 13 059) of liver tissue spots in all patients, including three patients with HBsAg loss. These HBV integration sites were randomly distributed on chromosomes and can localise in host genes involved in hepatocarcinogenesis, such as ALB, CLU and APOB. Patients who were receiving or had received antiviral treatment had a significantly lower percentage of viral integration-containing spots and significantly fewer chimeric reads than treatment-naïve patients. Intrahepatic cccDNA levels correlated well with viral integration events. CONCLUSION Transcriptionally active HBV integration occurred in chronically HBV-infected patients at different phases, including in patients with HBsAg loss. Antiviral treatment was associated with a decreased number and extent of transcriptionally active viral integrations, implying that early treatment intervention may further reduce the number of viral integration events.
Collapse
Affiliation(s)
- Xiaoqi Yu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Qiming Gong
- Department of Infectious Diseases, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Demin Yu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Yongyan Chen
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Ying Jing
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, China
| | - Fabien Zoulim
- INSERM U1052- Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|
8
|
Su YP, Lin SY, Su IJ, Kao YL, Shen SC, Earl JP, Ehrlich GD, Chen CY, Huang W, Su YH, Tsai HW. Characterization of integrated hepatitis B virus DNA harboring pre-S mutations in hepatocellular carcinoma patients with ground glass hepatocytes. J Med Virol 2024; 96:e29348. [PMID: 38180275 PMCID: PMC10802935 DOI: 10.1002/jmv.29348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
Ground glass hepatocytes (GGHs) have been associated with hepatocellular carcinoma (HCC) recurrence and poor prognosis. We previously demonstrated that pre-S expression in some GGHs is resistant to current hepatitis B virus (HBV) antiviral therapies. This study aimed to investigate whether integrated HBV DNA (iDNA) is the primary HBV DNA species responsible for sustained pre-S expression in GGH after effective antiviral therapy. We characterized 10 sets of micro-dissected, formalin-fixed-paraffin-embedded, and frozen GGH, HCC, and adjacent hepatitis B surface antigen-negative stained tissues for iDNA, pre-S deletions, and the quantity of covalently closed circular DNA. Eight patients had detectable pre-S deletions, and nine had detectable iDNA. Interestingly, eight patients had integrations within the TERT and CCNE1 genes, which are known recurrent integration sites associated with HCC. Furthermore, we observed a recurrent integration in the ABCC13 gene. Additionally, we identified variations in the type and quantity of pre-S deletions within individual sets of tissues by junction-specific PacBio long-read sequencing. The data from long-read sequencing indicate that some pre-S deletions were acquired following the integration events. Our findings demonstrate that iDNA exists in GGH and can be responsible for sustained pre-S expression in GGH after effective antiviral therapy.
Collapse
Affiliation(s)
- Yih-Ping Su
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, PA, U.S.A
| | | | - Ih-Jen Su
- Department of Biotechnology, Southern Taiwan University of Science Technology, Tainan, Taiwan
| | - Yu-Lan Kao
- The Baruch S. Blumberg Institute, Doylestown, PA, U.S.A
| | | | - Joshua P. Earl
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, PA, U.S.A
| | - Garth D. Ehrlich
- Department of Microbiology and Immunology, Department of Otolaryngology – Head and Neck Surgery, Drexel University, College of Medicine, Philadelphia, PA, U.S.A
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Hsiu Su
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, PA, U.S.A. and The Baruch S. Blumberg Institute, Doylestown, PA, U.S.A
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Meier MA, Calabrese D, Suslov A, Terracciano LM, Heim MH, Wieland S. Ubiquitous expression of HBsAg from integrated HBV DNA in patients with low viral load. J Hepatol 2021; 75:840-847. [PMID: 34004216 DOI: 10.1016/j.jhep.2021.04.051] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Loss of serum HBsAg is a hallmark of spontaneous and therapy induced resolution of HBV infection, since it generally reflects a profound decrease in viral replication. However, integrated HBV DNA can contribute to HBsAg expression independent of viral replication. The relative contributions of these sources of HBsAg are not well understood. Specifically, it is not known whether actively transcribed HBV integration could spread throughout the entire liver. METHODS The relative distribution of HBsAg and HBV RNA in liver biopsy tissue from HBeAg-negative (HBe-) patients was analyzed by immunohistochemistry and in situ hybridization (ISH), respectively. Frozen biopsy tissue was used for molecular analysis of intrahepatic viral RNA, virus-host chimeric transcripts and viral DNA. RESULTS Immunohistochemistry and ISH analysis revealed HBsAg and HBV RNA positivity in virtually all hepatocytes in the liver of some HBe- patients despite very low viremia. Reverse transcription quantitative PCR and RNA-sequencing analysis confirmed high expression levels of HBV envelope-encoding RNAs. However, the amount of viral transcriptional template (covalently closed circular (ccc)DNA) was too low to support this ubiquitous HBV RNA expression. In contrast, levels of total cellular HBV DNA were consistent with ubiquitous HBV integration. Finally, RNA-sequencing revealed the presence of many HBV-host chimeric transcripts with the potential for HBsAg expression. CONCLUSIONS Transcriptionally active HBV integration can extend to the entire liver in some HBe- patients. This can lead to ubiquitous HBsAg expression independent of HBV replication. In such patients, HBsAg is probably not a clinically useful surrogate marker for viral resolution or functional cure. LAY SUMMARY Loss of serum hepatitis B surface antigen (HBsAg) indicates resolution of HBV infection. However, integrated HBV DNA can contribute to HBsAg production independently of viral replication. We investigated the extent of HBsAg-producing viral integration in the livers of patients with low serum viral loads. Our findings suggest that transcriptionally active HBV integration can extend to the entire liver in some patients, questioning the clinical utility of HBsAg as a surrogate marker for viral replication.
Collapse
Affiliation(s)
- Marie-Anne Meier
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland; Institute of Pathology, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Diego Calabrese
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Aleksei Suslov
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Luigi M Terracciano
- Division of Gastroenterology and Hepatology, University Hospital Basel, Basel CH-4031, Switzerland
| | - Markus H Heim
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland; Institute of Pathology, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland.
| | - Stefan Wieland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland.
| |
Collapse
|
10
|
Lin SY, Su Y, Trauger ER, Song BP, Thompson EG, Hoffman MC, Chang T, Lin Y, Kao Y, Cui Y, Hann H, Park G, Shieh F, Song W, Su Y. Detection of Hepatitis B Virus-Host Junction Sequences in Urine of Infected Patients. Hepatol Commun 2021; 5:1649-1659. [PMID: 34558837 PMCID: PMC8485884 DOI: 10.1002/hep4.1783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/24/2021] [Accepted: 06/20/2021] [Indexed: 01/25/2023] Open
Abstract
Integrated hepatitis B virus (HBV) DNA, found in more than 85% of HBV-associated hepatocellular carcinomas (HBV-HCCs), can play a significant role in HBV-related liver disease progression. HBV-host junction sequences (HBV-JSs), created through integration events, have been used to determine HBV-HCC clonality. Here, we investigate the feasibility of analyzing HBV integration in a noninvasive urine liquid biopsy. Using an HBV-targeted next-generation sequencing (NGS) assay, we first identified HBV-JSs in eight HBV-HCC tissues and designed short-amplicon junction-specific polymerase chain reaction assays to detect HBV-JSs in matched urine. We detected and validated tissue-derived junctions in five of eight matched urine samples. Next, we screened 32 urine samples collected from 25 patients infected with HBV (5 with hepatitis, 10 with cirrhosis, 4 with HCC, and 6 post-HCC). Encouragingly, all 32 urine samples contained HBV-JSs detectable by HBV-targeted NGS. Of the 712 total HBV-JSs detected in urine, 351 were in gene-coding regions, 11 of which, including TERT (telomerase reverse transcriptase), had previously been reported as recurrent integration sites in HCC tissue and were found only in the urine patients with cirrhosis or HCC. The integration breakpoints of HBV DNA detected in urine were found predominantly (~70%) at a previously identified integration hotspot, HBV DR1-2 (down-regulator of transcription 1-2). Conclusion: HBV viral-host junction DNA can be detected in urine of patients infected with HBV. This study demonstrates the potential for a noninvasive urine liquid biopsy of integrated HBV DNA to monitor patients infected with HBV for HBV-associated liver diseases and the efficacy of antiviral therapy.
Collapse
Affiliation(s)
| | - Yih‐Ping Su
- The Baruch S. Blumberg Research InstituteDoylestownPAUSA
| | | | | | | | | | - Ting‐Tsung Chang
- Department of Internal MedicineNational Cheng Kung University Hospital, College of MedicineTainanTaiwan, Republic of China
| | - Yih‐Jyh Lin
- Department of SurgeryNational Cheng Kung University Hospital, College of MedicineTainanTaiwan, Republic of China
| | - Yu‐Lan Kao
- The Baruch S. Blumberg Research InstituteDoylestownPAUSA
| | - Yixiao Cui
- The Baruch S. Blumberg Research InstituteDoylestownPAUSA
| | - Hie‐Won Hann
- Liver Disease Prevention CenterDivision of Gastroenterology and HepatologyThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Grace Park
- Liver Disease Prevention CenterDivision of Gastroenterology and HepatologyThomas Jefferson University HospitalPhiladelphiaPAUSA
| | | | - Wei Song
- JBS Science, Inc.DoylestownPAUSA
| | - Ying‐Hsiu Su
- The Baruch S. Blumberg Research InstituteDoylestownPAUSA
| |
Collapse
|
11
|
Lin SY, Zhang A, Lian J, Wang J, Chang TT, Lin YJ, Song W, Su YH. Recurrent HBV Integration Targets as Potential Drivers in Hepatocellular Carcinoma. Cells 2021; 10:cells10061294. [PMID: 34071075 PMCID: PMC8224658 DOI: 10.3390/cells10061294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is the major etiology of hepatocellular carcinoma (HCC), frequently with HBV integrating into the host genome. HBV integration, found in 85% of HBV-associated HCC (HBV–HCC) tissue samples, has been suggested to be oncogenic. Here, we investigated the potential of HBV–HCC driver identification via the characterization of recurrently targeted genes (RTGs). A total of 18,596 HBV integration sites from our in-house study and others were analyzed. RTGs were identified by applying three criteria: at least two HCC subjects, reported by at least two studies, and the number of reporting studies. A total of 396 RTGs were identified. Among the 28 most frequent RTGs, defined as affected in at least 10 HCC patients, 23 (82%) were associated with carcinogenesis and 5 (18%) had no known function. Available breakpoint positions from the three most frequent RTGs, TERT, MLL4/KMT2B, and PLEKHG4B, were analyzed. Mutual exclusivity of TERT promoter mutation and HBV integration into TERT was observed. We present an RTG consensus through comprehensive analysis to enable the potential identification and discovery of HCC drivers for drug development and disease management.
Collapse
Affiliation(s)
- Selena Y. Lin
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.W.); (W.S.)
| | - Adam Zhang
- The Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; (A.Z.); (J.L.)
| | - Jessica Lian
- The Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; (A.Z.); (J.L.)
| | - Jeremy Wang
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.W.); (W.S.)
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Medical College, Tainan 704, Taiwan;
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Medical College, Tainan 704, Taiwan;
| | - Wei Song
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.W.); (W.S.)
| | - Ying-Hsiu Su
- The Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; (A.Z.); (J.L.)
- Correspondence: ; Tel.: +215-489-4907
| |
Collapse
|
12
|
Afzal S, Fronza R, Schmidt M. VSeq-Toolkit: Comprehensive Computational Analysis of Viral Vectors in Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:752-757. [PMID: 32346552 PMCID: PMC7177155 DOI: 10.1016/j.omtm.2020.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
Viral vector characterization and analysis are important components for the development of safe gene therapeutic products, elucidating the potential genotoxic and immunogenic effects of vectors and establishing their safety profiles. Here, we present VSeq-Toolkit, which offers varying analysis modes for viral gene therapy data. The first mode determines the undesirable known contaminants and their frequency in viral preparations or other sequencing data. The second mode is designed for the analysis of intra-vector fusion breakpoints and the third mode for unraveling the viral-host fusion events distribution. Analysis modes of our toolkit can be executed independently or together and allow the analysis of multiple viral vectors concurrently. It has been designed and evaluated for the analysis of short read high-throughput sequencing data, including whole-genome or targeted sequencing. VSeq-Toolkit is developed in Perl and Bash programming languages and is available at https://github.com/CompMeth/VSeq-Toolkit.
Collapse
Affiliation(s)
- Saira Afzal
- Department of Translational Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Corresponding author: Saira Afzal, Department of Translational Oncology (G100), German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| | | | - Manfred Schmidt
- Department of Translational Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- GeneWerk GmbH, Heidelberg, Germany
| |
Collapse
|
13
|
Mapping the Heterogeneity of Histone Modifications on Hepatitis B Virus DNA Using Liver Needle Biopsies Obtained from Chronically Infected Patients. J Virol 2019; 93:JVI.02036-18. [PMID: 30787147 DOI: 10.1128/jvi.02036-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/01/2019] [Indexed: 12/20/2022] Open
Abstract
Covalently closed circular DNA (cccDNA) forms the basis for replication and persistence of hepatitis B virus (HBV) in the chronically infected liver. We have previously shown that viral transcription is subject to regulation by posttranslational modifications (PTMs) of histone proteins bound to cccDNA through analysis of de novo HBV-infected cell lines. We now report the successful adaptation of this chromatin immunoprecipitation sequencing (ChIPseq) approach for analysis of fine-needle patient liver biopsy specimens to investigate the role of histone PTMs in chronically HBV-infected patients. Using 18 specimens from patients in different stages of chronic HBV infection, our work shows that the profile of histone PTMs in chronic infection is more nuanced than previously observed in in vitro models of acute infection. In line with our previous findings, we find that the majority of HBV-derived sequences are associated with the activating histone PTM H3K4me3. However, we show a striking interpatient variability of its deposition in this patient cohort correlated with viral transcription and patient HBV early antigen (HBeAg) status. Unexpectedly, we detected deposition of the classical inhibitory histone PTM H3K9me3 on HBV-DNA in around half of the patient biopsy specimens, which could not be linked to reduced levels of viral transcripts. Our results show that current in vitro models are unable to fully recapitulate the complex epigenetic landscape of chronic HBV infection observed in vivo and demonstrate that fine-needle liver biopsy specimens can provide sufficient material to further investigate the interaction of viral and host proteins on HBV-DNA.IMPORTANCE Hepatitis B virus (HBV) is a major global health concern, chronically infecting millions of patients and contributing to a rising burden of liver disease. The viral genome forms the basis for chronic infection and has been shown to be subject to regulation by epigenetic mechanisms, such as posttranslational modification of histone proteins. Here, we confirm and expand on previous results by adapting a high-resolution technique for analysis of histone modifications for use with patient-derived fine-needle liver biopsy specimens. Our work highlights that the situation in vivo is more complex than predicted by current in vitro models, for example, by suggesting a novel, noncanonical role of the histone modification H3K9me3 in the HBV life cycle. Importantly, enabling the use of fine-needle liver biopsy specimens for such high-resolution analyses may facilitate further research into the epigenetic regulation of the HBV genome.
Collapse
|