1
|
Krishna NB, Roopa L, Pravin Kumar R, S GT. Computational studies on the catalytic potential of the double active site for enzyme engineering. Sci Rep 2024; 14:17892. [PMID: 39095391 PMCID: PMC11297320 DOI: 10.1038/s41598-024-60824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/27/2024] [Indexed: 08/04/2024] Open
Abstract
Proteins possessing double active sites have the potential to revolutionise enzyme design strategies. This study extensively explored an enzyme that contains both a natural active site (NAS) and an engineered active site (EAS), focusing on understanding its structural and functional properties. Metadynamics simulations were employed to investigate how substrates interacted with their respective active sites. The results revealed that both the NAS and EAS exhibited similar minimum energy states, indicating comparable binding affinities. However, it became apparent that the EAS had a weaker binding site for the substrate due to its smaller pocket and constrained conformation. Interestingly, the EAS also displayed dynamic behaviour, with the substrate observed to move outside the pocket, suggesting the possibility of substrate translocation. To gain further insights, steered molecular dynamics (SMD) simulations were conducted to study the conformational changes of the substrate and its interactions with catalytic residues. Notably, the substrate adopted distinct conformations, including near-attack conformations, in both the EAS and NAS. Nevertheless, the NAS demonstrated superior binding minima for the substrate compared to the EAS, reinforcing the observation that the engineered active site was less favourable for substrate binding due to its limitations. The QM/MM (Quantum mechanics and molecular mechanics) analyses highlight the energy disparity between NAS and EAS. Specifically, EAS exhibited elevated energy levels due to its engineered active site being located on the surface. This positioning exposes the substrate to solvents and water molecules, adding to the energy challenge. Consequently, the engineered enzyme did not provide a significant advantage in substrate binding over the single active site protein. Further, the investigation of internal channels and tunnels within the protein shed light on the pathways facilitating transport between the two active sites. By unravelling the complex dynamics and functional characteristics of this double-active site protein, this study offers valuable insights into novel strategies of enzyme engineering. These findings establish a solid foundation for future research endeavours aimed at harnessing the potential of double-active site proteins in diverse biotechnological applications.
Collapse
Affiliation(s)
- Naveen Banchallihundi Krishna
- Department of Computational Biology and AI, Kcat Enzymatic Private Limited, #16, Ramakrishnappa Road, Cox Town, Bangalore, 560005, India
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Lalitha Roopa
- Department of Computational Biology and AI, Kcat Enzymatic Private Limited, #16, Ramakrishnappa Road, Cox Town, Bangalore, 560005, India
| | - R Pravin Kumar
- Department of Computational Biology and AI, Kcat Enzymatic Private Limited, #16, Ramakrishnappa Road, Cox Town, Bangalore, 560005, India.
| | - Gopenath T S
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| |
Collapse
|
2
|
Sharma B, Bhattacherjee D, Zyryanov GV, Purohit R. An insight from computational approach to explore novel, high-affinity phosphodiesterase 10A inhibitors for neurological disorders. J Biomol Struct Dyn 2023; 41:9424-9436. [PMID: 36336960 DOI: 10.1080/07391102.2022.2141895] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
The enzyme Phosphodiesterase 10A (PDE10A) plays a regulatory role in the cAMP/protein kinase A (PKA) signaling pathway by means of hydrolyzing cAMP and cGMP. PDE10A emerges as a relevant pharmacological drug target for neurological conditions such as psychosis, schizophrenia, Parkinson's, Huntington's disease, and other memory-related disorders. In the current study, we subjected a set of 1,2,3-triazoles to be explored as PDE10A inhibitors using diverse computational approaches, including molecular docking, classical molecular dynamics (MD) simulations, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations, steered MD, and umbrella sampling simulations. Molecular docking of cocrystallized ligands papaverine and PFJ, along with a set of in-house synthesized molecules, suggested that molecule 3i haded the highest binding affinity, followed by 3h and 3j. Furthermore, the structural stability studies using MD and MM-PBSA indicated that the 3h and 3j formed stable complexes with PDE10A. The binding free energy of -240.642 kJ/mol and -201.406 kJ/mol was observed for 3h and 3j, respectively. However, the cocrystallized ligands papaverine and PFJ exhibited comparitively higher binding free energy values of -202.030 kJ/mol and -138.764 kJ/mol, respectively. Additionally, steered MD and umbrella sampling simulations provided conclusive evidence that the molecules 3h and 3j could be exploited as promising candidates to target PDE10A.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhanu Sharma
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, India
- Biotechnology Division, CSIR-IHBT, Palampur, HP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Dhananjay Bhattacherjee
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russian Federation
| | - Grigory V Zyryanov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russian Federation
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, India
- Biotechnology Division, CSIR-IHBT, Palampur, HP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Ramirez-Acosta K, Rosales-Fuerte IA, Perez-Sanchez JE, Nuñez-Rivera A, Juarez J, Cadena-Nava RD. Design and selection of peptides to block the SARS-CoV-2 receptor binding domain by molecular docking. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:699-711. [PMID: 35957673 PMCID: PMC9344557 DOI: 10.3762/bjnano.13.62] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/12/2022] [Indexed: 05/05/2023]
Abstract
The novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is currently one of the most contagious viruses in existence and the cause of the worst pandemic in this century, COVID-19. SARS-CoV-2 infection begins with the recognition of the cellular receptor angiotensin converting enzyme-2 by its spike glycoprotein receptor-binding domain (RBD). Thus, the use of small peptides to neutralize the infective mechanism of SARS-CoV-2 through the RBD is an interesting strategy. The binding ability of 104 peptides (University of Nebraska Medical Center's Antimicrobial Peptide Database) to the RBD was assessed using molecular docking. Based on the molecular docking results, peptides with great affinity to the RBD were selected. The most common amino acids involved in the recognition of the RBD were identified to design novel peptides based on the number of hydrogen bonds that were formed. At physiological pH, these peptides are almost neutral and soluble in aqueous media. Interestingly, several peptides showed the capability to bind to the active surface area of the RBD of the Wuhan strain, as well as to the RBD of the Delta variant and other SARS-Cov-2 variants. Therefore, these peptides have promising potential in the treatment of the COVID-19 disease caused by different variants of SARS-CoV-2. This research work will be focused on the molecular docking of peptides by molecular dynamics, in addition to an analysis of the possible interaction of these peptides with physiological proteins. This methodology could be extended to design peptides that are active against other viruses.
Collapse
Affiliation(s)
- Kendra Ramirez-Acosta
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México
| | - Ivan A Rosales-Fuerte
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México
| | - J Eduardo Perez-Sanchez
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México
| | - Alfredo Nuñez-Rivera
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México
| | - Josue Juarez
- Departamento de Física, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora, México
| | - Ruben D Cadena-Nava
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
| |
Collapse
|
4
|
Evaluation of xanthene-appended quinoline hybrids as potential leads against antimalarial drug targets. Mol Divers 2022; 27:709-727. [PMID: 35583686 DOI: 10.1007/s11030-022-10450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
A series of fused heterocycle xanthene-appended quinoline 6a-n was successfully synthesized with regioselectivity and characterized using IR, 1H NMR, 13C NMR, and mass spectral data. Molecular docking was performed to find the binding efficacy of all these newly synthesized compounds towards thirteen antimalarial drug targets. Molecular dynamics simulation was carried out to predict the stability of the ligand-bound complex in a solvent medium. Blind and site-directed docking with compounds 6a-n against 13 drug targets revealed most of the ligands to have a good binding affinity with the targets. Analysis on the basis of binding energy, binding modalities of the ligands, intermolecular interactions, and pharmacophore, we identified only one of the ligand-receptor complexes to provide better results. Molecular dynamic simulation of the selected receptor-ligand complex revealed that the synthesized compound had a better binding affinity with the receptor than the native ligand complex. Further analysis of the synthesized ligand in the laboratory may prove promising results in the search for potential antimalarial drugs.
Collapse
|
5
|
Ma S, Li H, Yang J, Yu K. Molecular simulation studies of the interactions between the human/pangolin/cat/bat ACE2 and the receptor binding domain of the SARS-CoV-2 spike protein. Biochimie 2021; 187:1-13. [PMID: 33984400 PMCID: PMC8110333 DOI: 10.1016/j.biochi.2021.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 11/15/2022]
Abstract
The recent outbreak of SARS-CoV-2 has had a profound effect on the world. Similar to that in SARS-CoV, the entry receptor of SARS-CoV-2 is ACE2. The binding of SARS-CoV-2 spike protein to ACE2 is the critical to the virus infection. Recently multiple species (human, Chinese chrysanthemum, Malay pangolin and cat) have been reported to be susceptible to the virus infection. However, the binding capacity and the detailed binding mechanism of SARS-CoV-2 spike protein to ACE2 of these species remains unexplored. Herein free energy calculations with MM-GBSA and Potential of Mean Forces together reveal that the Human-SARS-CoV-2 has a higher stability tendency than Human-SARS-CoV. Meanwhile, we uncover that SARS-CoV-2 has an enhanced ability to bind with the ACE2 in humans, pangolins and cats compared to that in bats. Analysis of key residues with energy decomposition and residue contact maps reveal several important consensus sites in ACE2s among the studied species, and determined the more favorable specified residues among the different types of amino acids. These results provide important implications for understanding SARS-CoV-2 host range which will make it possible to control the spread of the virus and use of animal models, targeted drug screening and vaccine candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Shaojie Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, PR China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Hui Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Shanghai Institute for Advanced Immunochemical Studies, And School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, PR China; National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Kunqian Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Shanghai Institute for Advanced Immunochemical Studies, And School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
6
|
Marimuthu P, Razzokov J, Eshonqulov G. Disruption of conserved polar interactions causes a sequential release of Bim mutants from the canonical binding groove of Mcl1. Int J Biol Macromol 2020; 158:364-374. [PMID: 32376253 DOI: 10.1016/j.ijbiomac.2020.04.243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Mcl1 is an important anti-apoptotic member of the Bcl2 family proteins that are upregulated in several cancer malignancies. The canonical binding groove (CBG) located at the surface of Mcl1 exhibits a critical role in binding partners selectively via the BH3-domain of pro-apoptotic Bcl2 family members that trigger the downregulation of Mcl1 function. There are several crystal structures of point-mutated pro-apoptotic Bim peptides in complex with Mcl1. However, the mechanistic effects of such point-mutations towards peptide binding and complex stability still remain unexplored. Here, the effects of the reported point mutations in Bim peptides and their binding mechanisms to Mcl1 were computationally evaluated using atomistic-level steered molecular dynamics (SMD) simulations. A range of external-forces and constant-velocities were applied to the Bim peptides to uncover the mechanistic basis of peptide dissociation from the CBG of Mcl1. Although the peptides showed similarities in their dissociation pathways, the peak rupture forces varied significantly. According to simulations results, the disruption of the conserved polar contacts at the complex interface causes a sequential release of the peptides from the CBG of Mcl1. Overall, the results obtained from the current study may provide valuable insights for the development of novel anti-cancer peptide-inhibitors that can downregulate Mcl1's function.
Collapse
Affiliation(s)
- Parthiban Marimuthu
- Structural Bioinformatics Laboratory (SBL), Biochemistry and Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.
| | - Jamoliddin Razzokov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Gofur Eshonqulov
- Department of Physics, National University of Uzbekistan, 100174 Tashkent, Uzbekistan
| |
Collapse
|
7
|
Świątek M, Gudowska-Nowak E. Delineating elastic properties of kinesin linker and their sensitivity to point mutations. Sci Rep 2020; 10:4832. [PMID: 32179821 PMCID: PMC7075872 DOI: 10.1038/s41598-020-61399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/24/2020] [Indexed: 12/03/2022] Open
Abstract
We analyze free energy estimators from simulation trials mimicking single-molecule pulling experiments on a neck linker of a kinesin motor. For that purpose, we have performed a version of steered molecular dynamics (SMD) calculations. The sample trajectories have been analyzed to derive distribution of work done on the system. In order to induce stretching of the linker, we have applied a constant pulling force to the molecule and allowed for a subsequent relaxation of its structure. The use of fluctuation relations (FR) relevant to non-equilibrium systems subject to thermal fluctuations allows us to assess the difference in free energy between stretched and relaxed conformations. To further understand effects of potential mutations on elastic properties of the linker, we have performed similar in silico studies on a structure formed of a polyalanine sequence (Ala-only) and on three other structures, created by substituting selected types of amino acid residues in the linker’s sequence with alanine (Ala) ones. The results of SMD simulations indicate a crucial role played by the Asparagine (Asn) and Lysine (Lys) residues in controlling stretching and relaxation properties of the linker domain of the motor.
Collapse
Affiliation(s)
- Michał Świątek
- Department of Pharmaceutical Biophysics, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland. .,Jagiellonian University, Marian Smoluchowski Institute of Physics, ul. Prof. S.Łojasiewicza 11, Kraków, 30-348, Poland.
| | - Ewa Gudowska-Nowak
- Jagiellonian University, Marian Smoluchowski Institute of Physics and Mark Kac Center for Complex Systems Research, ul. Prof. S.Łojasiewicza 11, Kraków, 30-348, Poland
| |
Collapse
|
8
|
Mamidi AS, Ray A, Surolia N. Structural Analysis of PfSec62-Autophagy Interacting Motifs (AIM) and PfAtg8 Interactions for Its Implications in RecovER-phagy in Plasmodium falciparum. Front Bioeng Biotechnol 2019; 7:240. [PMID: 31608276 PMCID: PMC6773812 DOI: 10.3389/fbioe.2019.00240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/11/2019] [Indexed: 11/27/2022] Open
Abstract
Autophagy is a degradative pathway associated with many pathological and physiological processes crucial for cell survival. During ER stress, while selective autophagy occurs via ER-phagy, the re-establishment of physiologic ER homeostasis upon resolution of a transient ER stress is mediated by recovER-phagy. Recent studies demonstrated that recovER-phagy is governed via association of Sec62 as an ER-resident autophagy receptor through its autophagy interacting motifs (AIM)/LC3-interacting region (LIR) toAtg8/LC3. Atg8 is an autophagy protein, which is central to autophagosome formation and maturation. Plasmodium falciparum Atg8 (PfAtg8) has both autophagic and non-autophagic functions critical for parasite survival. Since Plasmodium also has Sec62 in the ER membrane and is prone to ER stress due to drastic transformation during their complex intraerythrocytic cycle; hence, we initiated the studies to check whether recovER-phagy occurs in the parasite. To achieve this, a comprehensive study based on the computational approaches was carried out. This study embarks upon identification of AIM sequences in PfSec62 by carrying out peptide-protein docking simulations and comparing the interactions of these AIMs with PfAtg8, based on the molecular dynamic simulations. Detailed analysis is based on electrostatic surface complementarity, peptide-protein interaction strength, mapping of non-covalent bond interactions and rupture force calculated from steered MD simulations. Potential mean forces and unbinding free energies (ΔGdissociation) using Jarzynski's equality were also computed for the AIM/LIR motif complexes with PfAtg8/HsLC3 autophagy proteins to understand their dissociation free energy profiles and thereby their binding affinities and stability of the peptide-protein complexes. Through this study, we predict Sec62 mediated recovER-phagy in Plasmodium falciparum, which might open new avenues to explore novel drug targets for antimalarial drug discovery.
Collapse
Affiliation(s)
- Ashalatha Sreshty Mamidi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.,Division of Biological Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, India
| | - Ananya Ray
- Molecular Biology and Genetics Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Namita Surolia
- Molecular Biology and Genetics Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|