1
|
Costa MM, Corbel V, Ben Hamouda R, Almeras L. MALDI-TOF MS Profiling and Its Contribution to Mosquito-Borne Diseases: A Systematic Review. INSECTS 2024; 15:651. [PMID: 39336619 PMCID: PMC11432722 DOI: 10.3390/insects15090651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Mosquito-borne diseases are responsible for hundreds of thousands of deaths per year. The identification and control of the vectors that transmit pathogens to humans are crucial for disease prevention and management. Currently, morphological classification and molecular analyses via DNA barcoding are the standard methods used for vector identification. However, these approaches have several limitations. In the last decade, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an innovative technology in biological sciences and is now considered as a relevant tool for the identification of pathogens and arthropods. Beyond species identification, this tool is also valuable for determining various life traits of arthropod vectors. The purpose of the present systematic review was to highlight the contribution of MALDI-TOF MS to the surveillance and control of mosquito-borne diseases. Published articles from January 2003 to August 2024 were retrieved, focusing on different aspects of mosquito life traits that could be determinants in disease transmission and vector management. The screening of the scientific literature resulted in the selection of 54 published articles that assessed MALDI-TOF MS profiling to study various mosquito biological factors, such species identification, life expectancy, gender, trophic preferences, microbiota, and insecticide resistance. Although a large majority of the selected articles focused on species identification, the present review shows that MALDI-TOF MS profiling is promising for rapidly identifying various mosquito life traits, with high-throughput capacity, reliability, and low cost. The strengths and weaknesses of this proteomic tool for vector control and surveillance are discussed.
Collapse
Affiliation(s)
- Monique Melo Costa
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 Av. Agropolis, 34394 Montpellier, France;
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Refka Ben Hamouda
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
2
|
Gueye A, Ngom EHM, Diagne A, Ndoye BB, Dione ML, Sambe BS, Sokhna C, Diallo M, Niang M, Dia I. Host feeding preferences of malaria vectors in an area of low malaria transmission. Sci Rep 2023; 13:16410. [PMID: 37775717 PMCID: PMC10542387 DOI: 10.1038/s41598-023-43761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
Studying the behaviour and trophic preferences of mosquitoes is an important step in understanding the exposure of vertebrate hosts to vector-borne diseases. In the case of human malaria, transmission increases when mosquitoes feed more on humans than on other animals. Therefore, understanding the spatio-temporal dynamics of vectors and their feeding preferences is essential for improving vector control measures. In this study, we investigated the feeding behaviour of Anopheles mosquitoes at two sites in the Sudanian areas of Senegal where transmission is low following the implementation of vector control measures. Blood-fed mosquitoes were collected monthly from July to November 2022 by pyrethrum spray catches in sleeping rooms of almost all houses in Dielmo and Ndiop villages, and blood meals were identified as from human, bovine, ovine, equine and chicken by ELISA. Species from the An. gambiae complex were identified by PCR. The types and numbers of potential domestic animal hosts were recorded in each village. The Human Blood Index (HBI) and the Manly Selection Ratio (MSR) were calculated to determine whether hosts were selected in proportion to their abundance. Spatio-temporal variation in HBI was examined using the Moran's index. A total of 1251 endophilic Anopheles females were collected in 115 bedrooms, including 864 blood fed females of 6 species. An. arabiensis and An. funestus were predominant in Dielmo and Ndiop, respectively. Of the 864 blood meals tested, 853 gave a single host positive result mainly on bovine, equine, human, ovine and chicken in decreasing order in both villages. Overall, these hosts were not selected in proportion to their abundance. The human host was under-selected, highlighting a marked zoophily for the vectors. Over time and space, the HBI were low with no obvious trend, with higher and lower values observed in each of the five months at different points in each village. These results highlight the zoophilic and exophagic behaviour of malaria vectors. This behaviour is likely to be a consequence of the distribution and use of LLINs in both villages and may increase risk of residual outdoor transmission. This underlines the need to study the feeding host profile of outdoor resting populations and how domestic animals may influence malaria epidemiology in order to tailor effective malaria vector control strategies in the two villages.
Collapse
Affiliation(s)
- Assiyatou Gueye
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - El Hadji Malick Ngom
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Aissatou Diagne
- Pole Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Baye Bado Ndoye
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Mamadou Lamine Dione
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Babacar Souleymane Sambe
- Pole Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Cheikh Sokhna
- UMR Vecteurs Infections Tropicales et Mediterraneennes (VITROME), Campus International UCAD-IRD, Route des Peres Maristes, BP 1386, Dakar, Senegal
| | - Mawlouth Diallo
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Makhtar Niang
- Pole Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Ibrahima Dia
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| |
Collapse
|
3
|
Samsonova JV, Saushkin NY, Osipov AP. Dried Blood Spots technology for veterinary applications and biological investigations: technical aspects, retrospective analysis, ongoing status and future perspectives. Vet Res Commun 2022; 46:655-698. [PMID: 35771305 PMCID: PMC9244892 DOI: 10.1007/s11259-022-09957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Dried Blood Spots (DBS) technology has become a valuable tool in medical studies, however, in veterinary and biological research DBS technology applications are still limited. Up-to-date no review has comprehensively integrated all the evidence existing across the fields, technologies and animal species. In this paper we summarize the current applications of DBS technology in the mentioned areas, and provide a scope of different types of dried sample carriers (cellulose and non-cellulose), sampling devices, applicable methods for analyte extraction and detection. Mammals, birds, insects and other species are represented as the study objects. Besides the blood, the review considers a variety of specimens, such as milk, saliva, tissue samples and others. The main applications of dried samples highlighted in the review include epidemiological surveys and monitoring for infections agents or specific antibodies for disease/vaccination control in households and wildlife. Besides the genetic investigations, the paper describes detection of environmental contaminants, pregnancy diagnosis and many other useful applications of animal dried samples. The paper also analyses dried sample stability and storage conditions for antibodies, viruses and other substances. Finally, recent developments and future research for DBS technology in veterinary medicine and biological sciences are discussed.
Collapse
Affiliation(s)
- Jeanne V Samsonova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
| | | | | |
Collapse
|
4
|
Sevestre J, Diarra AZ, Laroche M, Almeras L, Parola P. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: an emerging tool for studying the vectors of human infectious diseases. Future Microbiol 2021; 16:323-340. [PMID: 33733821 DOI: 10.2217/fmb-2020-0145] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arthropod vectors have historically been identified morphologically, and more recently using molecular biology methods. However, both of these methods are time-consuming and require specific expertise and equipment. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, which has revolutionized the routine identification of microorganisms in clinical microbiology laboratories, was recently successfully applied to the identification of arthropod vectors. Since then, the robustness of this identification technique has been confirmed, extended to a large panel of arthropod vectors, and assessed for detecting blood feeding behavior and identifying the infection status in regard to certain pathogenic agents. In this study, we summarize the state-of-the-art of matrix-assisted laser desorption ionization time-of-flight mass spectrometry applied to the identification of arthropod vectors (ticks, mosquitoes, phlebotomine sand-flies, fleas, triatomines, lice and Culicoides), their trophic preferences and their ability to discriminate between infection statuses.
Collapse
Affiliation(s)
- Jacques Sevestre
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Z Diarra
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Maureen Laroche
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Lionel Almeras
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,Département Microbiologie et Maladies Infectieuses, Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Philippe Parola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
5
|
Jayathirtha M, Dupree EJ, Manzoor Z, Larose B, Sechrist Z, Neagu AN, Petre BA, Darie CC. Mass Spectrometric (MS) Analysis of Proteins and Peptides. Curr Protein Pept Sci 2020; 22:92-120. [PMID: 32713333 DOI: 10.2174/1389203721666200726223336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
The human genome is sequenced and comprised of ~30,000 genes, making humans just a little bit more complicated than worms or flies. However, complexity of humans is given by proteins that these genes code for because one gene can produce many proteins mostly through alternative splicing and tissue-dependent expression of particular proteins. In addition, post-translational modifications (PTMs) in proteins greatly increase the number of gene products or protein isoforms. Furthermore, stable and transient interactions between proteins, protein isoforms/proteoforms and PTM-ed proteins (protein-protein interactions, PPI) add yet another level of complexity in humans and other organisms. In the past, all of these proteins were analyzed one at the time. Currently, they are analyzed by a less tedious method: mass spectrometry (MS) for two reasons: 1) because of the complexity of proteins, protein PTMs and PPIs and 2) because MS is the only method that can keep up with such a complex array of features. Here, we discuss the applications of mass spectrometry in protein analysis.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Emmalyn J Dupree
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zaen Manzoor
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Brianna Larose
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zach Sechrist
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| | - Brindusa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, Al. I. Cuza University of Iasi, Iasi, Romania, Center for Fundamental Research and Experimental Development in Translation Medicine - TRANSCEND, Regional Institute of Oncology, Iasi, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| |
Collapse
|
6
|
Tedrow RE, Ratovonjato J, Walker ED, Ratsimbasoa AC, Zimmerman PA. A Novel Assay for Simultaneous Assessment of Mammalian Host Blood, Mosquito Species, and Plasmodium spp. in the Medically Important Anopheles Mosquitoes of Madagascar. Am J Trop Med Hyg 2020; 100:544-551. [PMID: 30675844 DOI: 10.4269/ajtmh.18-0782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Anopheles mosquitoes vary in habitat preference, feeding pattern, and susceptibility to various measures of vector control. Consequently, it is important that we identify reservoirs of disease, identify vectors, and characterize feeding patterns to effectively implement targeted control measures. Using 467 anopheline mosquito abdomen squashes captured in Madagascar, we designed a novel ligase detection reaction and fluorescent microsphere assay, dubbed Bloodmeal Detection Assay for Regional Transmission (BLOODART), to query the bloodmeal content, identify five Anopheles mosquito species, and detect Plasmodium infection. Validation of mammalian bloodspots was achieved by preparation and analysis of known hosts (singular and mixed), sensitivity to degradation and storage method were assessed through mosquito feeding experiments, and quantification was explored by altering ratios of two mammal hosts. BLOODART identifications were validated by comparison with mosquito samples identified by sequenced portions of the internal transcribed spacer 2. BLOODART identification of control mammal bloodspots was 100% concordant for singular and mixed mammalian blood. BLOODART was able to detect hosts up to 42 hours after digestion when mosquito samples were stored in ethanol. A mammalian host was identified in every field-collected, blood-fed female Anopheles mosquito by BLOODART. The predominant mosquito host was cow (n = 451), followed by pig (n = 26) and human (n = 25). Mixed species bloodmeals were commonly observed (n = 33). A BLOODART molecular identification was successful for 318/467 mosquitoes, with an overall concordance of 60% with all field-captured, morphologically identified Anopheles specimens. BLOODART enables characterization of large samples and simultaneous pathogen detection to monitor and incriminate disease vectors in Madagascar.
Collapse
Affiliation(s)
- Riley E Tedrow
- Department of Biology, Case Western Reserve University, Cleveland, Ohio.,The Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Jocelyn Ratovonjato
- Direction de Lutte contre le Paludisme/National Malaria Control Program Madagascar, Antananarivo, Madagascar
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Arsene C Ratsimbasoa
- Faculty of Medicine and Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar.,Direction de Lutte contre le Paludisme/National Malaria Control Program Madagascar, Antananarivo, Madagascar
| | - Peter A Zimmerman
- The Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio.,Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
Identification of mixed and successive blood meals of mosquitoes using MALDI-TOF MS protein profiling. Parasitology 2019; 147:329-339. [PMID: 31840617 DOI: 10.1017/s003118201900163x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The accurate and rapid identification of mosquito blood meals is critical to study the interactions between vectors and vertebrate hosts and, subsequently, to develop vector control strategies. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has been shown to be a reliable and effective tool for identifying single blood meals from mosquitoes. METHODS In this study, we developed MALDI-TOF MS profiling protocols to identify Anopheles gambiae Giles, Anopheles coluzzii and Aedes albopictus mosquitoes' mixed blood meals and the last of successive blood meals. The mosquitoes were either successively artificially fed with distinct host bloods or engorged with mixed bloods from distinct vertebrate hosts, such as humans, sheep and dogs. RESULTS Blind test analyses revealed a correct identification of mixed blood meals from mosquitoes using MALDI-TOF MS profiling. The 353 MS spectra from mixed blood meals were identified using log score values >1.8. All MS spectra (n = 244) obtained from mosquitoes' successive blood meals were reproducible and specific to the last blood meal, suggesting that the previous blood meals do not have an impact on the identification of the last one. CONCLUSION MALDI-TOF MS profiling approach appears to be an effective and robust technique to identify the last and mixed blood meals during medical entomological surveys.
Collapse
|
8
|
Mwanga EP, Mapua SA, Siria DJ, Ngowo HS, Nangacha F, Mgando J, Baldini F, González Jiménez M, Ferguson HM, Wynne K, Selvaraj P, Babayan SA, Okumu FO. Using mid-infrared spectroscopy and supervised machine-learning to identify vertebrate blood meals in the malaria vector, Anopheles arabiensis. Malar J 2019; 18:187. [PMID: 31146762 PMCID: PMC6543689 DOI: 10.1186/s12936-019-2822-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/25/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The propensity of different Anopheles mosquitoes to bite humans instead of other vertebrates influences their capacity to transmit pathogens to humans. Unfortunately, determining proportions of mosquitoes that have fed on humans, i.e. Human Blood Index (HBI), currently requires expensive and time-consuming laboratory procedures involving enzyme-linked immunosorbent assays (ELISA) or polymerase chain reactions (PCR). Here, mid-infrared (MIR) spectroscopy and supervised machine learning are used to accurately distinguish between vertebrate blood meals in guts of malaria mosquitoes, without any molecular techniques. METHODS Laboratory-reared Anopheles arabiensis females were fed on humans, chickens, goats or bovines, then held for 6 to 8 h, after which they were killed and preserved in silica. The sample size was 2000 mosquitoes (500 per host species). Five individuals of each host species were enrolled to ensure genotype variability, and 100 mosquitoes fed on each. Dried mosquito abdomens were individually scanned using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectrometer to obtain high-resolution MIR spectra (4000 cm-1 to 400 cm-1). The spectral data were cleaned to compensate atmospheric water and CO2 interference bands using Bruker-OPUS software, then transferred to Python™ for supervised machine-learning to predict host species. Seven classification algorithms were trained using 90% of the spectra through several combinations of 75-25% data splits. The best performing model was used to predict identities of the remaining 10% validation spectra, which had not been used for model training or testing. RESULTS The logistic regression (LR) model achieved the highest accuracy, correctly predicting true vertebrate blood meal sources with overall accuracy of 98.4%. The model correctly identified 96% goat blood meals, 97% of bovine blood meals, 100% of chicken blood meals and 100% of human blood meals. Three percent of bovine blood meals were misclassified as goat, and 2% of goat blood meals misclassified as human. CONCLUSION Mid-infrared spectroscopy coupled with supervised machine learning can accurately identify multiple vertebrate blood meals in malaria vectors, thus potentially enabling rapid assessment of mosquito blood-feeding histories and vectorial capacities. The technique is cost-effective, fast, simple, and requires no reagents other than desiccants. However, scaling it up will require field validation of the findings and boosting relevant technical capacity in affected countries.
Collapse
Affiliation(s)
- Emmanuel P Mwanga
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania.
| | - Salum A Mapua
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
| | - Doreen J Siria
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
| | - Halfan S Ngowo
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francis Nangacha
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
| | - Joseph Mgando
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
| | - Francesco Baldini
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Simon A Babayan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Chabriere E, Bassène H, Drancourt M, Sokhna C. MALDI-TOF MS and point of care are disruptive diagnostic tools in Africa. New Microbes New Infect 2018; 26:S83-S88. [PMID: 30402248 PMCID: PMC6205576 DOI: 10.1016/j.nmni.2018.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
We review reviewing our experience of point-of-care and mass spectrometry in Senegal as two disruptive technologies promoting the rapid diagnosis of infection, permitting better medical management of patients.
Collapse
Affiliation(s)
- E. Chabriere
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - H. Bassène
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
- VITROME, Campus International IRD-UCAD de Hann, Dakar, Senegal
| | - M. Drancourt
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - C. Sokhna
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
- VITROME, Campus International IRD-UCAD de Hann, Dakar, Senegal
| |
Collapse
|
10
|
Reeve MA, Buddie AG. A simple and inexpensive method for practical storage of field-sample proteins for subsequent MALDI-TOF MS analysis. PLANT METHODS 2018; 14:90. [PMID: 30356946 PMCID: PMC6192001 DOI: 10.1186/s13007-018-0358-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Protein-containing samples can readily be characterised and/or identified using matrix-assisted laser-desorption and ionisation time-of-flight mass spectrometry (MALDI-TOF MS). This technique however requires relatively-fresh biological material that contains proteins that have not yet undergone significant degradation. For field-work collection of samples, problems are often encountered due to delays between collection and sample processing, sample storage (possibly at elevated temperature and/or humidity in some climates), quarantine/regulatory restrictions on the transfer of living biological materials across national borders, and the potential to transfer unwanted microorganisms via non-living biological materials. RESULTS In an attempt to overcome the above difficulties, we have developed a simple and inexpensive method for practical storage of field-sample proteins, for subsequent MALDI-TOF MS analysis, in which biological material is crushed onto filter paper and dried. The dried and protein-impregnated filter paper can then be soaked in an alcoholic solution suitable for the inactivation of microorganisms of concern and again dried for storage. After subsequent dry storage, the proteins may be eluted from the paper using a solution containing acetonitrile, trifluoroacetic acid, water, and MALDI-TOF MS matrix near to saturation. The extracted proteins are then pipetted onto the MALDI-TOF MS sample plate for subsequent analysis. Using this method, spectra of comparable quality to fresh-material controls have been obtained for acid-soluble proteins from Fallopia japonica and Impatiens glandulifera leaf material. Unlike untreated leaf material, high-quality spectra can be obtained with and without alcohol treatment even after storage for one month at up to 40 °C. CONCLUSIONS We have developed a simple and inexpensive method for practical storage of field-sample proteins for subsequent MALDI-TOF MS analysis. Key benefits of this approach are a reduction in sample degradation, and consequent conservation of taxon-discriminatory spectral profiles, whilst minimising the potential for carryover of viable microorganisms.
Collapse
|
11
|
Niare S, Tandina F, Davoust B, Doumbo O, Raoult D, Parola P, Almeras L. Accurate identification of Anopheles gambiae Giles trophic preferences by MALDI-TOF MS. INFECTION GENETICS AND EVOLUTION 2018; 63:410-419. [DOI: 10.1016/j.meegid.2017.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 01/25/2023]
|
12
|
Tandina F, Laroche M, Davoust B, K Doumbo O, Parola P. Blood meal identification in the cryptic species Anopheles gambiae and Anopheles coluzzii using MALDI-TOF MS. ACTA ACUST UNITED AC 2018; 25:40. [PMID: 30052501 PMCID: PMC6063721 DOI: 10.1051/parasite/2018041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/07/2018] [Indexed: 12/23/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has recently emerged in entomology as a technique to identify arthropods and their blood meal source. In this study, female Anopheles gambiae were fed on five host blood sources: ocelot (Leopardus pardalis), binturong (Arctictis binturong), springbok (Antidorcas marsupialis), jaguar (Panthera onca) and Hamadryas baboon (Papio hamadryas), while Anopheles coluzzii were fed on three hosts: dromedary (Camelus dromedarius), Barbary sheep (Ammotragus lervia) and pig (Sus scrofa). We obtained the MS spectra from 240 engorged mosquito abdomens and selected high quality ones from 72 mosquito abdomens to upgrade our home-made database. We excluded from the analysis any spectra of low quality (n = 80), and the remaining 88 specimens were subjected to a blind test analysis against the home-made database. We obtained 100% correct identification of the blood meal source for the specimens collected, 1, 12 and 24 h post-feeding, whereas for the specimens collected 36 h post-feeding, the correct identification rate decreased dramatically. We confirm here that MALDI-TOF MS can be used to identify the blood meal origin of freshly engorged mosquitoes, which opens new perspectives for further studies, including the impact of the mosquito species on blood meal identification.
Collapse
Affiliation(s)
- Fatalmoudou Tandina
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France - Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Bernard Davoust
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Ogobara K Doumbo
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
13
|
Malaria, tuberculosis and HIV: what's new? Contribution of the Institut Hospitalo-Universitaire Méditerranée Infection in updated data. New Microbes New Infect 2018; 26:S23-S30. [PMID: 30402240 PMCID: PMC6205578 DOI: 10.1016/j.nmni.2018.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 11/22/2022] Open
Abstract
The Institut Hospitalo-Universitaire Méditerranée Infection is positioned for the diagnosis, prevention and treatment of the ‘big three’ killer diseases: malaria, tuberculosis and HIV. We implemented the use of new diagnostic samples such as stools and new diagnostic tests such as mass spectrometry for the dual identification of vectors and pathogens. Furthermore, advances in the prevention and treatment of malaria and tuberculosis are reviewed, along with advances in the understanding of the role of microbiota in the resistance to HIV infection. These achievements represent a major step towards a better management of the ‘big three’ diseases worldwide.
Collapse
|
14
|
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been recently described as an innovative and effective tool for identifying arthropods and mosquito blood meal sources. To test this approach in the context of an entomological survey in the field, mosquitoes were collected from five ecologically distinct areas of Mali. We successfully analysed the blood meals from 651 mosquito abdomens crushed on Whatman filter paper (WFPs) in the field using MALDI-TOF MS. The legs of 826 mosquitoes were then submitted for MALDI-TOF MS analysis in order to identify the different mosquito species. Eight mosquito species were identified, including Anopheles gambiae Giles, Anopheles coluzzii, Anopheles arabiensis, Culex quinquefasciatus, Culex neavei, Culex perexiguus, Aedes aegypti and Aedes fowleri in Mali. The field mosquitoes for which MALDI-TOF MS did not provide successful identification were not previously available in our database. These specimens were subsequently molecularly identified. The WFP blood meal sources found in this study were matched against human blood (n = 619), chicken blood (n = 9), cow blood (n = 9), donkey blood (n = 6), dog blood (n = 5) and sheep blood (n = 3). This study reinforces the fact that MALDI-TOF MS is a promising tool for entomological surveys.
Collapse
|
15
|
Neglected vector-borne zoonoses in Europe: Into the wild. Vet Parasitol 2017; 251:17-26. [PMID: 29426471 DOI: 10.1016/j.vetpar.2017.12.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 11/22/2022]
Abstract
Wild vertebrates are involved in the transmission cycles of numerous pathogens. Additionally, they can affect the abundance of arthropod vectors. Urbanization, landscape and climate changes, and the adaptation of vectors and wildlife to human habitats represent complex and evolving scenarios, which affect the interface of vector, wildlife and human populations, frequently with a consequent increase in zoonotic risk. While considerable attention has focused on these interrelations with regard to certain major vector-borne pathogens such as Borrelia burgdorferi s.l. and tick-borne encephalitis virus, information regarding many other zoonotic pathogens is more dispersed. In this review, we discuss the possible role of wildlife in the maintenance and spread of some of these neglected zoonoses in Europe. We present case studies on the role of rodents in the cycles of Bartonella spp., of wild ungulates in the cycle of Babesia spp., and of various wildlife species in the life cycle of Leishmania infantum, Anaplasma phagocytophilum and Rickettsia spp. These examples highlight the usefulness of surveillance strategies focused on neglected zoonotic agents in wildlife as a source of valuable information for health professionals, nature managers and (local) decision-makers. These benefits could be further enhanced by increased collaboration between researchers and stakeholders across Europe and a more harmonised and coordinated approach for data collection.
Collapse
|