1
|
Zifkos K, Bochenek ML, Gogiraju R, Robert S, Pedrosa D, Kiouptsi K, Moiko K, Wagner M, Mahfoud F, Poncelet P, Münzel T, Ruf W, Reinhardt C, Panicot-Dubois L, Dubois C, Schäfer K. Endothelial PTP1B Deletion Promotes VWF Exocytosis and Venous Thromboinflammation. Circ Res 2024; 134:e93-e111. [PMID: 38563147 DOI: 10.1161/circresaha.124.324214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Endothelial activation promotes the release of procoagulant extracellular vesicles and inflammatory mediators from specialized storage granules. Endothelial membrane exocytosis is controlled by phosphorylation. We hypothesized that the absence of PTP1B (protein tyrosine phosphatase 1B) in endothelial cells promotes venous thromboinflammation by triggering endothelial membrane fusion and exocytosis. METHODS Mice with inducible endothelial deletion of PTP1B (End.PTP1B-KO) underwent inferior vena cava ligation to induce stenosis and venous thrombosis. Primary endothelial cells from transgenic mice and human umbilical vein endothelial cells were used for mechanistic studies. RESULTS Vascular ultrasound and histology showed significantly larger venous thrombi containing higher numbers of Ly6G (lymphocyte antigen 6 family member G)-positive neutrophils in mice with endothelial PTP1B deletion, and intravital microscopy confirmed the more pronounced neutrophil recruitment following inferior vena cava ligation. RT2 PCR profiler array and immunocytochemistry analysis revealed increased endothelial activation and adhesion molecule expression in primary End.PTP1B-KO endothelial cells, including CD62P (P-selectin) and VWF (von Willebrand factor). Pretreatment with the NF-κB (nuclear factor kappa B) kinase inhibitor BAY11-7082, antibodies neutralizing CD162 (P-selectin glycoprotein ligand-1) or VWF, or arginylglycylaspartic acid integrin-blocking peptides abolished the neutrophil adhesion to End.PTP1B-KO endothelial cells in vitro. Circulating levels of annexin V+ procoagulant endothelial CD62E+ (E-selectin) and neutrophil (Ly6G+) extracellular vesicles were also elevated in End.PTP1B-KO mice after inferior vena cava ligation. Higher plasma MPO (myeloperoxidase) and Cit-H3 (citrullinated histone-3) levels and neutrophil elastase activity indicated neutrophil activation and extracellular trap formation. Infusion of End.PTP1B-KO extracellular vesicles into C57BL/6J wild-type mice most prominently enhanced the recruitment of endogenous neutrophils, and this response was blunted in VWF-deficient mice or by VWF-blocking antibodies. Reduced PTP1B binding and tyrosine dephosphorylation of SNAP23 (synaptosome-associated protein 23) resulting in increased VWF exocytosis and neutrophil adhesion were identified as mechanisms, all of which could be restored by NF-κB kinase inhibition using BAY11-7082. CONCLUSIONS Our findings show that endothelial PTP1B deletion promotes venous thromboinflammation by enhancing SNAP23 phosphorylation, endothelial VWF exocytosis, and neutrophil recruitment.
Collapse
Affiliation(s)
- Konstantinos Zifkos
- Center for Thrombosis and Hemostasis (K.Z., M.L.B., D.P., K.K., W.R., C.R.), University Medical Center Mainz, Germany
| | - Magdalena L Bochenek
- Center for Thrombosis and Hemostasis (K.Z., M.L.B., D.P., K.K., W.R., C.R.), University Medical Center Mainz, Germany
- Department of Cardiology, Cardiology I (M.L.B., R.G., K.M., T.M., K.S.), University Medical Center Mainz, Germany
| | - Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I (M.L.B., R.G., K.M., T.M., K.S.), University Medical Center Mainz, Germany
| | - Stéphane Robert
- Aix Marseille University, National Institute of Health and Medical Research (INSERM) 1263, National Research Institute for Agriculture, Food and Environment (INRAE), Cardiovascular and Nutrition Research Center (C2VN), France (S.R., L.P.-D., C.D.)
| | - Denise Pedrosa
- Center for Thrombosis and Hemostasis (K.Z., M.L.B., D.P., K.K., W.R., C.R.), University Medical Center Mainz, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (K.Z., M.L.B., D.P., K.K., W.R., C.R.), University Medical Center Mainz, Germany
| | - Kateryna Moiko
- Department of Cardiology, Cardiology I (M.L.B., R.G., K.M., T.M., K.S.), University Medical Center Mainz, Germany
| | - Mathias Wagner
- Institute of Pathology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany (M.W.)
| | - Felix Mahfoud
- Department of Internal Medicine III, Cardiology, Angiology and Internal Intensive Care Medicine, Saarland University Hospital and Saarland University, Homburg, Germany (F.M.)
| | | | - Thomas Münzel
- Department of Cardiology, Cardiology I (M.L.B., R.G., K.M., T.M., K.S.), University Medical Center Mainz, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (K.Z., M.L.B., D.P., K.K., W.R., C.R.), University Medical Center Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (K.Z., M.L.B., D.P., K.K., W.R., C.R.), University Medical Center Mainz, Germany
| | - Laurence Panicot-Dubois
- Aix Marseille University, National Institute of Health and Medical Research (INSERM) 1263, National Research Institute for Agriculture, Food and Environment (INRAE), Cardiovascular and Nutrition Research Center (C2VN), France (S.R., L.P.-D., C.D.)
| | - Christophe Dubois
- Aix Marseille University, National Institute of Health and Medical Research (INSERM) 1263, National Research Institute for Agriculture, Food and Environment (INRAE), Cardiovascular and Nutrition Research Center (C2VN), France (S.R., L.P.-D., C.D.)
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I (M.L.B., R.G., K.M., T.M., K.S.), University Medical Center Mainz, Germany
| |
Collapse
|
2
|
Azumaguchi R, Tokinaga Y, Kazuma S, Kimizuka M, Hamada K, Sato T, Yamakage M. Validation of the relationship between coagulopathy and localization of hydroxyethyl starch on the vascular endothelium in a rat hemodilution model. Sci Rep 2021; 11:10694. [PMID: 34021192 PMCID: PMC8140106 DOI: 10.1038/s41598-021-89889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
Various anticoagulant properties have been associated with hydroxyethyl starch (HES). However, the mechanism remains unclear and it has not been fully considered whether these properties are beyond the dilutional effect itself. The aim of this study was to reproduce the coagulopathy induced by HES and to test the hypothesis that the coagulopathy is caused by endothelial or glycocalyx damage due to localization of HES on the endothelium, which is caused by the high shear viscosity of dilutional blood. Using a rat model, we compared blood coagulability measured by Sonoclot, levels of endothelial and glycocalyx damage markers and coagulation factors, and blood shear viscosity when hemodilution was performed with physiological saline (PS), 6% HES 130/0.4 in PS, and 10% HES 200/0.5 in PS. We also evaluated the localization rates of fluorescently labeled HES on endothelium in the isolated aorta. HES decreased the fibrin gel formation rate more than did PS. HES was shown to cover the endothelium, possibly due to its high shear viscosity, and this mechanism potentially acted to protect, rather than damage, the endothelium and glycocalyx. However, this covering effect may be the cause of coagulopathy due to inhibition of von Willebrand factor secretion from the endothelium.
Collapse
Affiliation(s)
- Ryu Azumaguchi
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yasuyuki Tokinaga
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Satoshi Kazuma
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Motonobu Kimizuka
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Kosuke Hamada
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomoe Sato
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Michiaki Yamakage
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
3
|
Lelas A, Greinix HT, Wolff D, Eissner G, Pavletic SZ, Pulanic D. Von Willebrand Factor, Factor VIII, and Other Acute Phase Reactants as Biomarkers of Inflammation and Endothelial Dysfunction in Chronic Graft-Versus-Host Disease. Front Immunol 2021; 12:676756. [PMID: 33995421 PMCID: PMC8119744 DOI: 10.3389/fimmu.2021.676756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is an immune mediated late complication of allogeneic hematopoietic stem cell transplantation (alloHSCT). Discovery of adequate biomarkers could identify high-risk patients and provide an effective pre-emptive intervention or early modification of therapeutic strategy, thus reducing prevalence and severity of the disease among long-term survivors of alloHSCT. Inflammation, endothelial injury, and endothelial dysfunction are involved in cGvHD development. Altered levels of acute phase reactants have shown a strong correlation with the activity of several immune mediated disorders and are routinely used in clinical practice. Since elevated von Willebrand factor (VWF) and factor VIII (FVIII) levels have been described as acute phase reactants that may indicate endothelial dysfunction and inflammation in different settings, including chronic autoimmune diseases, they could serve as potential candidate biomarkers of cGvHD. In this review we focused on reported data regarding VWF and FVIII as well as other markers of inflammation and endothelial dysfunction, evaluating their potential role in cGvHD.
Collapse
Affiliation(s)
- Antonela Lelas
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Steven Zivko Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Drazen Pulanic
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
Effects of resveratrol on coagulative, fibrinolytic, and inflammatory marker expression and secretion by endothelial cells (human umbilical vein endothelial cells). Blood Coagul Fibrinolysis 2020; 31:207-212. [PMID: 32108678 DOI: 10.1097/mbc.0000000000000900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
: Increasing the prevalence of cardiovascular disease (CVD) has led to an investigation into components that might influence CVD. Accordingly, many recent studies have reported the benefits of resveratrol (RSV). Therefore, this study aimed to scrutinize the direct effect of RSV on human umbilical vein endothelial cells (HUVECs) by detecting coagulative, fibrinolytic, and inflammatory markers. HUVECs were cultured and treated with different concentrations of RSV. The effects of RSV were identified by representative markers of coagulation, fibrinolysis pathway, and inflammation, including von Willebrand factor (VWF), factor VIII, tissue plasminogen activator-1 (t-PA-1), and interleukin-8 (IL-8). The detection process was carried out using real-time PCR (qPCR), flow cytometry, ELISA, and immunocytochemistry (ICC) methods. The present findings demonstrated a significant decrease in VWF, t-PA-1, and IL-8 secretion levels. Furthermore, RSV diminished the activity of factor VIII and mRNA expression levels of VWF and t-PA-1. The ICC results also showed a decrease in the level of intracellular t-PA. Our data revealed the anti-inflammatory, anticoagulation, and antifibrinolytic effect of RSV in cell culture.
Collapse
|
5
|
Nongenotoxic antibody-drug conjugate conditioning enables safe and effective platelet gene therapy of hemophilia A mice. Blood Adv 2020; 3:2700-2711. [PMID: 31515232 DOI: 10.1182/bloodadvances.2019000516] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
Gene therapy offers the potential to cure hemophilia A (HA). We have shown that hematopoietic stem cell (HSC)-based platelet-specific factor VIII (FVIII) (2bF8) gene therapy can produce therapeutic protein and induce antigen-specific immune tolerance in HA mice, even in the presence of inhibitory antibodies. For HSC-based gene therapy, traditional preconditioning using cytotoxic chemotherapy or total body irradiation (TBI) has been required. The potential toxicity associated with TBI or chemotherapy is a deterrent that may prevent patients with HA, a nonmalignant disease, from agreeing to such a protocol. Here, we describe targeted nongenotoxic preconditioning for 2bF8 gene therapy utilizing a hematopoietic cell-specific antibody-drug conjugate (ADC), which consists of saporin conjugated to CD45.2- and CD117-targeting antibodies. We found that a combination of CD45.2- and CD117-targeting ADC preconditioning was effective for engrafting 2bF8-transduced HSCs and was favorable for platelet lineage reconstitution. Two thirds of HA mice that received 2bF8 lentivirus-transduced HSCs under (CD45.2+CD117)-targeting ADC conditioning maintained sustained therapeutic levels of platelet FVIII expression. When CD8-targeting ADC was supplemented, chimerism and platelet FVIII expression were significantly increased, with long-term sustained platelet FVIII expression in all primary and secondary recipients. Importantly, immune tolerance was induced and hemostasis was restored in a tail-bleeding test, and joint bleeding also was effectively prevented in a needle-induced knee joint injury model in HA mice after 2bF8 gene therapy. In summary, we show for the first time efficient engraftment of gene-modified HSCs without genotoxic conditioning. The combined cocktail ADC-mediated hematopoietic cell-targeted nongenotoxic preconditioning that we developed is highly effective and favorable for platelet-specific gene therapy in HA mice.
Collapse
|
6
|
Abstract
Von Willebrand factor (VWF) and coagulation factor VIII (FVIII) circulate as a complex in plasma and have a major role in the hemostatic system. VWF has a dual role in hemostasis. It promotes platelet adhesion by anchoring the platelets to the subendothelial matrix of damaged vessels and it protects FVIII from proteolytic degradation. Moreover, VWF is an acute phase protein that has multiple roles in vascular inflammation and is massively secreted from Weibel-Palade bodies upon endothelial cell activation. Activated FVIII on the other hand, together with coagulation factor IX forms the tenase complex, an essential feature of the propagation phase of coagulation on the surface of activated platelets. VWF deficiency, either quantitative or qualitative, results in von Willebrand disease (VWD), the most common bleeding disorder. The deficiency of FVIII is responsible for Hemophilia A, an X-linked bleeding disorder. Here, we provide an overview on the role of the VWF-FVIII interaction in vascular physiology.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany.
| |
Collapse
|
7
|
Grill A, Kiouptsi K, Karwot C, Jurk K, Reinhardt C. Evaluation of blood collection methods and anticoagulants for platelet function analyses on C57BL/6J laboratory mice. Platelets 2019; 31:981-988. [PMID: 31814487 DOI: 10.1080/09537104.2019.1701185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The exploration of thrombotic mechanisms relies on the application of blood collection methods from laboratory mice with a minimal pre-activation of platelets and the clotting system. So far, very little is known on how the blood collection method and the anticoagulant used influence pre-activation of mouse platelets and coagulation. To determine the most suitable blood collection method, we systematically compared blood collection by heart puncture, Vena cava puncture, and puncture of the retro-orbital vein plexus and the use of citrate, heparin, and EDTA as frequently used anticoagulants with regard to platelet activation and whole blood clotting parameters. The activation of platelet-rich plasma diluted in Tyrode's buffer was analyzed by flow cytometry, analyzing the exposure of P-selectin and activated integrin αIIbβ3. Clotting of whole blood was profiled by thrombelastometry. Puncture of the retro-orbital vein plexus by plastic capillaries is not superior in terms of blood volume and platelet pre-activation, whereas heart puncture and Vena cava puncture resulted in similarly high blood volumes. Cardiac puncture and Vena cava puncture did not result in pre-activated platelets with citrate as an anticoagulant, but the use of EDTA resulted in increased levels of integrin αIIbβ3 activation. Puncture of the retro-orbital vein plexus by plastic capillaries resulted in increased platelet integrin αIIbβ3 activation, which could be prevented by soaking with citrate or coating with heparin. Further, activation of coagulation in citrated whole blood by puncture of the retro-orbital vein plexus using a blunt plastic capillary was observed by thromboelastometry. The use of citrate is the optimal anticoagulant in mouse platelet assays. Blood collections from the heart or Vena cava represent reliable alternatives to retro-orbital puncture of the vein plexus to avoid pre-activation of platelets and coagulation.
Collapse
Affiliation(s)
- Alexandra Grill
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz , Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain , Mainz, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz , Mainz, Germany
| | - Cornelia Karwot
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz , Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz , Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain , Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz , Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain , Mainz, Germany
| |
Collapse
|
8
|
Mishra A, Arindkar S, Sahay P, Kumar JM, Upadhyay PK, Majumdar SS, Nagarajan P. Evaluation of high-fat high-fructose diet treatment in factor VIII (coagulation factor)-deficient mouse model. Int J Exp Pathol 2018; 99:46-53. [PMID: 29656466 DOI: 10.1111/iep.12264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/03/2018] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD)-like conditions enhance the production and action of clotting factors in humans. However, studies examining the effect of NAFLD due to high-fat high-fructose (HFHF) diet in factor VIII-deficient (haemophilia A) animals or patients have not been reported previously. In this study, we investigated the individual role of factor VIII in the progression of diet-induced NAFLD in the factor 8-/- (F8-/- ) mouse model system and its consequences on the haemophilic status of the mice. The F8-/- mice were fed with HFHF diet for 14 weeks. Physiological, biochemical, haematological, molecular, pathological, and immune histochemical analyses were performed to evaluate the effect of this diet. The F8-/- mice developed hepatic steatosis after 14 weeks HFHF diet and displayed lower energy metabolism, higher myeloid cell infiltration in the liver, decreased platelet count, upregulated de novo fatty acid synthesis, lipid accumulation, and collagen deposition. This study helps to understand the role of factor VIII in NAFLD pathogenesis and to analyse the severity and consequences of steatosis in haemophilic patients as compared to normal population. This study suggests that haemophilic animals (F8-/- mice) are highly prone to hepatic steatosis and thrombocytopenia.
Collapse
Affiliation(s)
| | | | - Preeti Sahay
- National Institute of Immunology, New Delhi, India
| | | | | | | | | |
Collapse
|