1
|
Cohen Z, Williams RM. Single-Walled Carbon Nanotubes as Optical Transducers for Nanobiosensors In Vivo. ACS NANO 2024; 18:35164-35181. [PMID: 39696968 PMCID: PMC11697343 DOI: 10.1021/acsnano.4c13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Semiconducting single-walled carbon nanotubes (SWCNTs) may serve as signal transducers for nanobiosensors. Recent studies have developed innovative methods of engineering molecularly specific sensors, while others have devised methods of deploying such sensors within live animals and plants. These advances may potentiate the use of implantable, noninvasive biosensors for continuous drug, disease, and contaminant monitoring based on the optical properties of single-walled carbon nanotubes (SWCNTs). Such tools have substantial potential to improve disease diagnostics, prognosis, drug safety, therapeutic response, and patient compliance. Outside of clinical applications, such sensors also have substantial potential in environmental monitoring or as research tools in the lab. However, substantial work remains to be done to realize these goals through further advances in materials science and engineering. Here, we review the current landscape of quantitative SWCNT-based optical biosensors that have been deployed in living plants and animals. Specifically, we focused this review on methods that have been developed to deploy SWCNT-based sensors in vivo as well as analytes that have been detected by SWCNTs in vivo. Finally, we evaluated potential future directions to take advantage of the promise outlined here toward field-deployable or implantable use in patients.
Collapse
Affiliation(s)
- Zachary Cohen
- Department
of Biomedical Engineering, The City College
of New York, New York, New York 10031, United States
| | - Ryan M. Williams
- Department
of Biomedical Engineering, The City College
of New York, New York, New York 10031, United States
- PhD
Program in Chemistry, The Graduate Center
of The City University of New York, New York, New York 10016, United States
| |
Collapse
|
2
|
Vasylaki A, Ghosh P, Jaimes EA, Williams RM. Targeting the Kidneys at the Nanoscale: Nanotechnology in Nephrology. KIDNEY360 2024; 5:618-630. [PMID: 38414130 PMCID: PMC11093552 DOI: 10.34067/kid.0000000000000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Kidney diseases, both acute and chronic, are a substantial burden on individual and public health, and they continue to increase in frequency. Despite this and an intense focus on the study of disease mechanisms, few new therapeutic approaches have extended to the clinic. This is in part due to poor pharmacology of many, if not most, therapeutics with respect to the sites of kidney disease within the glomerulus or nephron. Considering this, within the past decade, and more pointedly over the past 2 years, there have been substantial developments in nanoparticle systems to deliver therapeutics to the sites of kidney disease. Here, we provide a broad overview of the various classes of nanomaterials that have been developed to improve therapeutic development for kidney diseases, the strategy used to provide kidney accumulation, and briefly the disease models they focused on, if any. We then focus on one specific system, polymeric mesoscale nanoparticles, which has broadly been used over 13 publications, demonstrating targeting of the tubular epithelium with 26-fold specificity compared with other organs. While there have been several nanomedicines that have advanced to the clinic in the past several decades, including mRNA-based coronavirus disease vaccines and others, none have focused on kidney diseases specifically. In total, we are confident that the rapid advancement of nanoscale-based kidney targeting and a concerted focus by clinicians, scientists, engineers, and other stakeholders will push one or more of these technologies into clinical trials over the next decade.
Collapse
Affiliation(s)
- Anastasiia Vasylaki
- Department of Biomedical Engineering, The City College of New York, New York, New York
| | - Pratyusha Ghosh
- Department of Biomedical Engineering, The City College of New York, New York, New York
| | - Edgar A. Jaimes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Ryan M. Williams
- Department of Biomedical Engineering, The City College of New York, New York, New York
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, New York
| |
Collapse
|
3
|
Settele S, Schrage CA, Jung S, Michel E, Li H, Flavel BS, Hashmi ASK, Kruss S, Zaumseil J. Ratiometric fluorescent sensing of pyrophosphate with sp³-functionalized single-walled carbon nanotubes. Nat Commun 2024; 15:706. [PMID: 38267487 PMCID: PMC10808354 DOI: 10.1038/s41467-024-45052-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
Inorganic pyrophosphate is a key molecule in many biological processes from DNA synthesis to cell metabolism. Here we introduce sp3-functionalized (6,5) single-walled carbon nanotubes (SWNTs) with red-shifted defect emission as near-infrared luminescent probes for the optical detection and quantification of inorganic pyrophosphate. The sensing scheme is based on the immobilization of Cu2+ ions on the SWNT surface promoted by coordination to covalently attached aryl alkyne groups and a triazole complex. The presence of Cu2+ ions on the SWNT surface causes fluorescence quenching via photoinduced electron transfer, which is reversed by copper-complexing analytes such as pyrophosphate. The differences in the fluorescence response of sp3-defect to pristine nanotube emission enables reproducible ratiometric measurements in a wide concentration window. Biocompatible, phospholipid-polyethylene glycol-coated SWNTs with such sp3 defects are employed for the detection of pyrophosphate in cell lysate and for monitoring the progress of DNA synthesis in a polymerase chain reaction. This robust ratiometric and near-infrared luminescent probe for pyrophosphate may serve as a starting point for the rational design of nanotube-based biosensors.
Collapse
Affiliation(s)
- Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
| | - C Alexander Schrage
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany
| | - Sebastian Jung
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany
| | - Elena Michel
- Institute for Organic Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstrasse 12, Karlsruhe, D-76131, Germany
- Department of Mechanical and Materials Engineering, University of Turku, Turku, FI-20014, Finland
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstrasse 12, Karlsruhe, D-76131, Germany
| | - A Stephen K Hashmi
- Institute for Organic Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sebastian Kruss
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany.
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, D-47057, Germany.
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany.
| |
Collapse
|
4
|
Isabel Lucío M, Giacalone F, La Parola V, Gámez-Valenzuela S, Muñoz-Alba F, Ruiz Delgado MC, Herrero MA, Vázquez E. A Prato Tour on Carbon Nanotubes: Raman Insights. Chemistry 2023; 29:e202302476. [PMID: 37788975 DOI: 10.1002/chem.202302476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
The functionalisation of carbon nanotubes has been instrumental in broadening its application field, allowing especially its use in biological studies. Although numerous covalent and non-covalent functionalisation methods have been described, the characterisation of the final materials has always been an added challenge. Among the various techniques available, Raman spectroscopy is one of the most widely used to determine the covalent functionalisation of these species. However, Raman spectroscopy is not a quantitative technique, and no studies are reported comparing its performance when the same number of functional groups are added but using completely different reactions. In this work, we have experimentally and theoretically studied the functionalisation of carbon nanotubes using two of the most commonly used reactions: 1,3-dipolar cycloaddition of azomethylene ylides and diazonium-based radical addition. The number of groups introduced onto the tubes by these reactions has been determined by different characterisation techniques. The results of this study support the idea that data obtained by Raman spectra are only helpful for comparing functionalisations produced using the same type of reaction. However, they should be carefully analysed when comparing functionalisations produced using different reaction types.
Collapse
Affiliation(s)
- María Isabel Lucío
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Current affiliation: Instituto Interuniversitario de Investigación de Reconocimiento Molecular y, Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022, Valencia, Spain
| | - Francesco Giacalone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo and INSTM UdR - Palermo, Viale delle Scienze, Ed.17, 90128, Palermo, Italy
| | - Valeria La Parola
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Sergio Gámez-Valenzuela
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Fernando Muñoz-Alba
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - M Carmen Ruiz Delgado
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - M Antonia Herrero
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ester Vázquez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| |
Collapse
|
5
|
Nascimento L, Fernandes C, Silva RM, Semitela Â, de Sousa BM, Marques PAAP, Vieira SI, Silva RF, Barroca N, Gonçalves G. Customizing 3D Structures of Vertically Aligned Carbon Nanotubes to Direct Neural Stem Cell Differentiation. Adv Healthc Mater 2023; 12:e2300828. [PMID: 37312636 DOI: 10.1002/adhm.202300828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/19/2023] [Indexed: 06/15/2023]
Abstract
Neural tissue-related illnesses have a high incidence and prevalence in society. Despite intensive research efforts to enhance the regeneration of neural cells into functional tissue, effective treatments are still unavailable. Here, a novel therapeutic approach based on vertically aligned carbon nanotube forests (VA-CNT forests) and periodic VA-CNT micropillars produced by thermal chemical vapor deposition is explored. In addition, honeycomb-like and flower-like morphologies are created. Initial viability testing reveals that NE-4C neural stem cells seeded on all morphologies survive and proliferate. In addition, free-standing VA-CNT forests and capillary-driven VA-CNT forests are created, with the latter demonstrating enhanced capacity to stimulate neuritogenesis and network formation under minimal differentiation medium conditions. This is attributed to the interaction between surface roughness and 3D-like morphology that mimics the native extracellular matrix, thus enhancing cellular attachment and communication. These findings provide a new avenue for the construction of electroresponsive scaffolds based on CNTs for neural tissue engineering.
Collapse
Affiliation(s)
- Luís Nascimento
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Aveiro, 3810-193, Portugal
| | - Cristiana Fernandes
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Aveiro, 3810-193, Portugal
| | - Ricardo M Silva
- CICECO Aveiro Insititute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ângela Semitela
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Aveiro, 3810-193, Portugal
| | - Bárbara M de Sousa
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Paula A A P Marques
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Aveiro, 3810-193, Portugal
| | - Sandra I Vieira
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Rui F Silva
- CICECO Aveiro Insititute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Nathalie Barroca
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Aveiro, 3810-193, Portugal
| | - Gil Gonçalves
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Aveiro, 3810-193, Portugal
| |
Collapse
|
6
|
Wang T, Wu C, Hu Y, Zhang Y, Ma J. Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review. RSC Adv 2023; 13:16488-16511. [PMID: 37274408 PMCID: PMC10233443 DOI: 10.1039/d3ra00866e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Platinum-based anticancer drugs play a crucial role in the clinical treatment of various cancers. However, the application of platinum-based drugs is heavily restricted by their severe toxicity and drug resistance/cross resistance. Various drug delivery systems have been developed to overcome these limitations of platinum-based chemotherapy. Stimuli-responsive nanocarrier drug delivery systems as one of the most promising strategies attract more attention. And huge progress in stimuli-responsive nanocarrier delivery systems of platinum-based drugs has been made. In these systems, a variety of triggers including endogenous and extracorporeal stimuli have been employed. Endogenous stimuli mainly include pH-, thermo-, enzyme- and redox-responsive nanocarriers. Extracorporeal stimuli include light-, magnetic field- and ultrasound responsive nanocarriers. In this review, we present the recent advances in stimuli-responsive drug delivery systems with different nanocarriers for improving the efficacy and reducing the side effects of platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Tianshuai Wang
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Chen Wu
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yanggen Hu
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yan Zhang
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Junkai Ma
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| |
Collapse
|
7
|
Ho NT, Siggel M, Camacho KV, Bhaskara RM, Hicks JM, Yao YC, Zhang Y, Köfinger J, Hummer G, Noy A. Membrane fusion and drug delivery with carbon nanotube porins. Proc Natl Acad Sci U S A 2021; 118:e2016974118. [PMID: 33941689 PMCID: PMC8126853 DOI: 10.1073/pnas.2016974118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug delivery mitigates toxic side effects and poor pharmacokinetics of life-saving therapeutics and enhances treatment efficacy. However, direct cytoplasmic delivery of drugs and vaccines into cells has remained out of reach. We find that liposomes studded with 0.8-nm-wide carbon nanotube porins (CNTPs) function as efficient vehicles for direct cytoplasmic drug delivery by facilitating fusion of lipid membranes and complete mixing of the membrane material and vesicle interior content. Fusion kinetics data and coarse-grained molecular dynamics simulations reveal an unusual mechanism where CNTP dimers tether the vesicles, pull the membranes into proximity, and then fuse their outer and inner leaflets. Liposomes containing CNTPs in their membranes and loaded with an anticancer drug, doxorubicin, were effective in delivering the drug to cancer cells, killing up to 90% of them. Our results open an avenue for designing efficient drug delivery carriers compatible with a wide range of therapeutics.
Collapse
Affiliation(s)
- Nga T Ho
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
- School of Natural Sciences, University of California, Merced, CA 93434
| | - Marc Siggel
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Karen V Camacho
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Ramachandra M Bhaskara
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Jacqueline M Hicks
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
- Department of Regenerative Medicine and Cellular Therapies, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
- School of Natural Sciences, University of California, Merced, CA 93434
| | - Yuliang Zhang
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Jürgen Köfinger
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
- Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550;
- School of Natural Sciences, University of California, Merced, CA 93434
| |
Collapse
|
8
|
Abstract
Cellulose nanocrystals (CNC) are linear organic nanomaterials derived from an abundant naturally occurring biopolymer resource. Strategic modification of the primary and secondary hydroxyl groups on the CNC introduces amine and iodine group substitution, respectively. The amine groups (0.285 mmol of amine per gram of functionalized CNC (fCNC)) are further reacted with radiometal loaded-chelates or fluorescent dyes as tracers to evaluate the pharmacokinetic profile of the fCNC in vivo. In this way, these nanoscale macromolecules can be covalently functionalized and yield water-soluble and biocompatible fibrillar nanoplatforms for gene, drug and radionuclide delivery in vivo. Transmission electron microscopy of fCNC reveals a length of 162.4 ± 16.3 nm, diameter of 11.2 ± 1.52 nm and aspect ratio of 16.4 ± 1.94 per particle (mean ± SEM) and is confirmed using atomic force microscopy. Size exclusion chromatography of macromolecular fCNC describes a fibrillar molecular behavior as evidenced by retention times typical of late eluting small molecules and functionalized carbon nanotubes. In vivo, greater than 50% of intravenously injected radiolabeled fCNC is excreted in the urine within 1 h post administration and is consistent with the pharmacological profile observed for other rigid, high aspect ratio macromolecules. Tissue distribution of fCNC shows accumulation in kidneys, liver, and spleen (14.6 ± 6.0; 6.1 ± 2.6; and 7.7 ± 1.4% of the injected activity per gram of tissue, respectively) at 72 h post-administration. Confocal fluorescence microscopy reveals cell-specific accumulation in these target tissue sinks. In summary, our findings suggest that functionalized nanocellulose can be used as a potential drug delivery platform for the kidneys.
Collapse
|
9
|
Majkowska-Pilip A, Gawęda W, Żelechowska-Matysiak K, Wawrowicz K, Bilewicz A. Nanoparticles in Targeted Alpha Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1366. [PMID: 32668687 PMCID: PMC7408031 DOI: 10.3390/nano10071366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 02/01/2023]
Abstract
Recent advances in the field of nanotechnology application in nuclear medicine offer the promise of better therapeutic options. In recent years, increasing efforts have been made on developing nanoconstructs that can be used as carriers for immobilising alpha (α)-emitters in targeted drug delivery. In this publication, we provide a comprehensive overview of available information on functional nanomaterials for targeted alpha therapy. The first section describes why nanoconstructs are used for the synthesis of α-emitting radiopharmaceuticals. Next, we present the synthesis and summarise the recent studies demonstrating therapeutic applications of α-emitting labelled radiobioconjugates in targeted therapy. Finally, future prospects and the emerging possibility of therapeutic application of radiolabelled nanomaterials are discussed.
Collapse
Affiliation(s)
- Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (W.G.); (K.Ż.-M.); (K.W.); (A.B.)
| | | | | | | | | |
Collapse
|
10
|
Far-reaching advances in the role of carbon nanotubes in cancer therapy. Life Sci 2020; 257:118059. [PMID: 32659368 DOI: 10.1016/j.lfs.2020.118059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Cancer includes a group of diseases involving unregulated cell growth with the potential to invade or expand to other parts of the body, resulting in an estimate of 9.6 million deaths worldwide in 2018. Manifold studies have been conducted to design more efficacious techniques for cancer therapy due to the inadequacy of conventional treatments including chemotherapy, surgery, and radiation therapy. With the advances in the biomedical applications of nanotechnology-based systems, nanomaterials have gained increasing attention as promising vehicles for targeted cancer therapy and optimizing treatment outcomes. Owing to their outstanding thermal, electrical, optical and chemical properties, carbon nanotubes (CNTs) have been profoundly studied to explore the various perspectives of their application in cancer treatment. The current study aims to review the role of CNTs whether as a carrier or mediator in cancer treatment for enhancing the efficacy as well as the specificity of therapy and reducing adverse side effects. This comprehensive review indicates that CNTs have the capability to be the next generation nanomaterials to actualize noninvasive targeted eradication of tumors. However, further studies are needed to evaluate the consequences of their biomedical application before the transition into clinical trials, since possible adverse effects of CNTs on biological systems have not been clearly understood.
Collapse
|
11
|
Heller DA, Jena PV, Pasquali M, Kostarelos K, Delogu LG, Meidl RE, Rotkin SV, Scheinberg DA, Schwartz RE, Terrones M, Wang Y, Bianco A, Boghossian AA, Cambré S, Cognet L, Corrie SR, Demokritou P, Giordani S, Hertel T, Ignatova T, Islam MF, Iverson NM, Jagota A, Janas D, Kono J, Kruss S, Landry MP, Li Y, Martel R, Maruyama S, Naumov AV, Prato M, Quinn SJ, Roxbury D, Strano MS, Tour JM, Weisman RB, Wenseleers W, Yudasaka M. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. NATURE NANOTECHNOLOGY 2020; 15:164-166. [PMID: 32157238 PMCID: PMC10461884 DOI: 10.1038/s41565-020-0656-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Prakrit V Jena
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matteo Pasquali
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| | - Kostas Kostarelos
- Nanomedicine Lab, The University of Manchester, Manchester, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, Spain
| | - Lucia G Delogu
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Rachel E Meidl
- Baker Institute for Public Policy, Rice University, Houston, TX, USA
| | - Slava V Rotkin
- Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, PA, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, PA, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Alberto Bianco
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France
| | - Ardemis A Boghossian
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sofie Cambré
- Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Laurent Cognet
- Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Talence, France
| | - Simon R Corrie
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| | - Tobias Hertel
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians University Würzburg, Würzburg, Germany
| | - Tetyana Ignatova
- Nanoscience Department, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Mohammad F Islam
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Nicole M Iverson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anand Jagota
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Junichiro Kono
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Sebastian Kruss
- Department of Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Yan Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Richard Martel
- Département de chimie, Université de Montréal, Montréal, Quebec, Canada
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Trieste, Italy
- Carbon Bionanotechnology Lab, CIC biomaGUNE, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin, Ireland
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| | | | - Wim Wenseleers
- Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Masako Yudasaka
- Nanomaterials Research Institute, Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
12
|
Xiang C, Zhang Y, Guo W, Liang XJ. Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication. Acta Pharm Sin B 2020; 10:239-248. [PMID: 32082970 PMCID: PMC7016289 DOI: 10.1016/j.apsb.2019.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 01/01/2023] Open
Abstract
Nowadays, nanotechnology is revolutionizing the approaches to different fields from manufacture to health. Carbon nanotubes (CNTs) as promising candidates in nanomedicine have great potentials in developing novel entities for central nervous system pathologies, due to their excellent physicochemical properties and ability to interface with neurons and neuronal circuits. However, most of the studies mainly focused on the drug delivery and bioimaging applications of CNTs, while neglect their application prospects as therapeutic drugs themselves. At present, the relevant reviews are not available yet. Herein we summarized the latest advances on the biomedical and therapeutic applications of CNTs in vitro and in vivo for neurological diseases treatments as inherent therapeutic drugs. The biological mechanisms of CNTs-mediated bio-medical effects and potential toxicity of CNTs were also intensely discussed. It is expected that CNTs will exploit further neurological applications on disease therapy in the near future.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- BBB, blood–brain barrier
- CNS, central nervous system
- CNT-N, nitrogen-doped carbon nanotubes
- CNTs, carbon nanotubes
- Carbon nanotubes
- CpG, oligodeoxynucleotides
- DTPA, diethylentriaminepentaacetic
- Drug delivery
- EBs, embryoid bodies
- EDC·HCl, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
- GO, graphene oxide
- HD, Huntington's disease
- Inherent medication
- MCAO, middle cerebral artery occlusion
- METH, methamphetamine
- MPO, myeloperoxidase
- MWCNTTs, multi-walled nanotube towers
- MWCNTs, multi-walled carbon nanotubes
- ND, nanodiamond
- NHS, N-hydroxysuccinimide
- NR, nanorod
- NSCs, neural stem cells
- Nervous system diseases
- PBEC, porcine brain endothelial cells
- PCL, polycaprolactone
- PD, Parkinson's disease
- PEG, polyethylene-glycol
- PET, position emission tomography
- PMo11V, tetrabutylammonium salt of phosphovanadomolybdate
- POCs, polycyclic organic compounds
- PPy/SWCNT, polypyrrole/single-walled carbon nanotube
- RES, reticuloendothelial system
- SWCNTP, single-walled nanotube paper
- SWCNTs, single-walled carbon nanotubes
- TLR9, the toll-like receptor-9
- TMZ, temozolomide
- Therapeutic drug
- Toxicity
- aSWCNTs, aggregated SWCNTs
- f-CNTs, functionalized carbon nanotubes
- hNSCs, human neural stem cells
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Chenyang Xiang
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yuxuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Weisheng Guo
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xing-Jie Liang
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
13
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
14
|
Sharma S, Naskar S, Kuotsu K. A review on carbon nanotubes: Influencing toxicity and emerging carrier for platinum based cytotoxic drug application. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Williams RM, Lee C, Galassi TV, Harvey JD, Leicher R, Sirenko M, Dorso MA, Shah J, Olvera N, Dao F, Levine DA, Heller DA. Noninvasive ovarian cancer biomarker detection via an optical nanosensor implant. SCIENCE ADVANCES 2018; 4:eaaq1090. [PMID: 29675469 PMCID: PMC5906074 DOI: 10.1126/sciadv.aaq1090] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/06/2018] [Indexed: 05/20/2023]
Abstract
Patients with high-grade serous ovarian carcinoma (HGSC) exhibit poor 5-year survival rates, which may be significantly improved by early-stage detection. The U.S. Food and Drug Administration-approved biomarkers for HGSC-CA-125 (cancer antigen 125) and HE4 (human epididymis protein 4)-do not generally appear at detectable levels in the serum until advanced stages of the disease. An implantable device placed proximal to disease sites, such as in or near the fallopian tube, ovary, uterine cavity, or peritoneal cavity, may constitute a feasible strategy to improve detection of HGSC. We engineered a prototype optical sensor composed of an antibody-functionalized carbon nanotube complex, which responds quantitatively to HE4 via modulation of the nanotube optical bandgap. The complexes measured HE4 with nanomolar sensitivity to differentiate disease from benign patient biofluids. The sensors were implanted into four models of ovarian cancer, within a semipermeable membrane, enabling the optical detection of HE4 within the live animals. We present the first in vivo optical nanosensor capable of noninvasive cancer biomarker detection in orthotopic models of disease.
Collapse
Affiliation(s)
| | - Christopher Lee
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas V. Galassi
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Jackson D. Harvey
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Rachel Leicher
- Tri-Institutional Program in Chemical Biology, New York, NY 10065, USA
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Maria Sirenko
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Madeline A. Dorso
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Janki Shah
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Narciso Olvera
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA
| | - Fanny Dao
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA
| | - Douglas A. Levine
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA
| | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
- Corresponding author.
| |
Collapse
|