1
|
Gao WY, Boonyarat C, Samar N, Sethabouppha B, Waiwut P. Multiomics Analysis of Molecules Associated with Cancer in Mesenchymal-Stem-Cell-(MSC)-Derived Exosome-Treated Hepatocellular Carcinoma Cells. Curr Issues Mol Biol 2024; 46:13296-13310. [PMID: 39727921 PMCID: PMC11726723 DOI: 10.3390/cimb46120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer in humans, with an increasing incidence worldwide. The current study aimed to explore the molecular mechanisms that inhibit the proliferation of HepG2 cells, a hepatoblastoma-derived cell line. MSC-derived exosomes (UC-MSCs) were prepared with a median particle size (N50) of 135.8 nm. Concentrations of UC-MSCs ranging from 10 μg/mL to 1000 μg/mL were applied to HepG2 cell cultures and compared to untreated and anticancer drug-treated HepG2 cells. A combined approach was employed, integrating a proteomic analysis of UC-MSCs, metabolomic analysis of HepG2 cells, and transcriptomic profiling of HepG2 cells to decipher the inhibitory mechanisms of UC-MSC exosomes on HepG2 cell growth. Treatment with a high concentration of UC-MSCs led to a notable reduction in HepG2 cell viability, with survival decreasing by 65%. A proteomic analysis of UC-MSCs revealed enriched degranulation processes in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, in addition to the known exosomal pathways. Transcriptomic profiling showed distinct changes in the expression of genes related to hepatocellular diseases in UC-MSC-treated HepG2 cells, contrasting with changes observed in HepG2 cells treated with the chemotherapeutic agent doxorubicin (DOX). Combined with a metabolomic analysis, the detailed GO and KEGG pathway analyses indicated that pathways associated with neutrophil extracellular trap formation played a critical role in mediating protein degradation and suppressing central carbon metabolism in cancer cells. Our results revealed that the UC-MSC treatment mimicked molecular mechanisms similar to those involved in neutrophil extracellular trap formation, exhibiting effects on HepG2 cell growth suppression that differed from those of chemical cancer drugs. Notably, the UC-MSC treatment demonstrated that protein degradation in HepG2 cells was regulated through canonical signaling pathways activated by bacterial peptides in neutrophils. This research has provided valuable insights into the potential of MSC-derived exosomes as a therapeutic approach for cancer treatment in the future.
Collapse
Affiliation(s)
- Wen-Yong Gao
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; (W.-Y.G.); (N.S.); (B.S.)
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nutjakorn Samar
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; (W.-Y.G.); (N.S.); (B.S.)
| | - Benjabhorn Sethabouppha
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; (W.-Y.G.); (N.S.); (B.S.)
| | - Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; (W.-Y.G.); (N.S.); (B.S.)
| |
Collapse
|
2
|
Thummarati P, Laiwattanapaisal W, Nitta R, Fukuda M, Hassametto A, Kino-oka M. Recent Advances in Cell Sheet Engineering: From Fabrication to Clinical Translation. Bioengineering (Basel) 2023; 10:211. [PMID: 36829705 PMCID: PMC9952256 DOI: 10.3390/bioengineering10020211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Cell sheet engineering, a scaffold-free tissue fabrication technique, has proven to be an important breakthrough technology in regenerative medicine. Over the past two decades, the field has developed rapidly in terms of investigating fabrication techniques and multipurpose applications in regenerative medicine and biological research. This review highlights the most important achievements in cell sheet engineering to date. We first discuss cell sheet harvesting systems, which have been introduced in temperature-responsive surfaces and other systems to overcome the limitations of conventional cell harvesting methods. In addition, we describe several techniques of cell sheet transfer for preclinical (in vitro and in vivo) and clinical trials. This review also covers cell sheet cryopreservation, which allows short- and long-term storage of cells. Subsequently, we discuss the cell sheet properties of angiogenic cytokines and vasculogenesis. Finally, we discuss updates to various applications, from biological research to clinical translation. We believe that the present review, which shows and compares fundamental technologies and recent advances in cell engineering, can potentially be helpful for new and experienced researchers to promote the further development of tissue engineering in different applications.
Collapse
Affiliation(s)
- Parichut Thummarati
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanida Laiwattanapaisal
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rikiya Nitta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Megumi Fukuda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Artchaya Hassametto
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Asadi M, Khalili M, Lotfi H, Vaghefi Moghaddam S, Zarghami N, André H, Alizadeh E. Liver bioengineering: Recent trends/advances in decellularization and cell sheet technologies towards translation into the clinic. Life Sci 2021; 276:119373. [PMID: 33744324 DOI: 10.1016/j.lfs.2021.119373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Development of novel technologies provides the best tissue constructs engineering and maximizes their therapeutic effects in regenerative therapy, especially for liver dysfunctions. Among the currently investigated approaches of tissue engineering, scaffold-based and scaffold-free tissues are widely suggested for liver regeneration. Analogs of liver acellular extracellular matrix (ECM) are utilized in native scaffolds to increase the self-repair and healing ability of organs. Native ECM analog could improve liver repairing through providing the supportive framework for cells and signaling molecules, exerting normal biomechanical, biochemical, and physiological signal complexes. Recently, innovative cell sheet technology is introduced as an alternative for conventional tissue engineering with the advantage of fewer scaffold restrictions and cell culture on a Thermo-Responsive Polymer Surface. These sheets release the layered cells through a temperature-controlled procedure without enzymatic digestion, while preserving the cell-ECM contacts and adhesive molecules on cell-cell junctions. In addition, several novelties have been introduced into the cell sheet and decellularization technologies to aid cell growth, instruct differentiation/angiogenesis, and promote cell migration. In this review, recent trends, advancements, and issues linked to translation into clinical practice are dissected and compared regarding the decellularization and cell sheet technologies for liver tissue engineering.
Collapse
Affiliation(s)
- Maryam Asadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institute, 11282 Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Inselman A, Liu F, Wang C, Shi Q, Pang L, Mattes W, White M, Lyn-Cook B, Rosas-Hernandez H, Cuevas E, Lantz S, Imam S, Ali S, Petibone DM, Shemansky JM, Xiong R, Wang Y, Tripathi P, Cao X, Heflich RH, Slikker W. Dr. Daniel Acosta and In Vitro toxicology at the U.S. Food and Drug Administration's National Center for Toxicological Research. Toxicol In Vitro 2020; 64:104471. [PMID: 31628011 DOI: 10.1016/j.tiv.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 10/25/2022]
Abstract
For the past five years, Dr. Daniel Acosta has served as the Deputy Director of Research at the National Center for Toxicological Research (NCTR), a principle research laboratory of the U.S. Food and Drug Administration (FDA). Over his career at NCTR, Dr. Acosta has had a major impact on developing and promoting the use of in vitro assays in regulatory toxicity and product safety assessments. As Dr. Acosta nears his retirement we have dedicated this paper to his many accomplishments at the NCTR. Described within this paper are some of the in vitro studies that have been conducted under Dr. Acosta's leadership. These studies include toxicological assessments involving developmental effects, and the development and application of in vitro reproductive, heart, liver, neurological and airway cell and tissue models.
Collapse
Affiliation(s)
- Amy Inselman
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Fang Liu
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Cheng Wang
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Qiang Shi
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Li Pang
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - William Mattes
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Matthew White
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | | | - Elvis Cuevas
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Susan Lantz
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Syed Imam
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Syed Ali
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Dayton M Petibone
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Jennifer M Shemansky
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Rui Xiong
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Priya Tripathi
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | | |
Collapse
|
5
|
Agarwal T, Biswas P, Pal S, Maiti TK, Chakraborty S, Ghosh SK, Dhar R. Inexpensive and Versatile Paper-Based Platform for 3D Culture of Liver Cells and Related Bioassays. ACS APPLIED BIO MATERIALS 2020; 3:2522-2533. [PMID: 35025303 DOI: 10.1021/acsabm.0c00237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Pratik Biswas
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sampriti Pal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Riddhiman Dhar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
6
|
Zheng W, Yang Y, Sequeira RC, Bishop CE, Atala A, Gu Z, Zhao W. Effects of Extracellular Vesicles Derived from Mesenchymal Stem/Stromal Cells on Liver Diseases. Curr Stem Cell Res Ther 2019; 14:442-452. [PMID: 30854976 DOI: 10.2174/1574888x14666190308123714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
Abstract
Therapeutic effects of Mesenchymal Stem/Stromal Cells (MSCs) transplantation have been observed in various disease models. However, it is thought that MSCs-mediated effects largely depend on the paracrine manner of secreting cytokines, growth factors, and Extracellular Vesicles (EVs). Similarly, MSCs-derived EVs also showed therapeutic benefits in various liver diseases through alleviating fibrosis, improving regeneration of hepatocytes, and regulating immune activity. This review provides an overview of the MSCs, their EVs, and their therapeutic potential in treating various liver diseases including liver fibrosis, acute and chronic liver injury, and Hepatocellular Carcinoma (HCC). More specifically, the mechanisms by which MSC-EVs induce therapeutic benefits in liver diseases will be covered. In addition, comparisons between MSCs and their EVs were also evaluated as regenerative medicine against liver diseases. While the mechanisms of action and clinical efficacy must continue to be evaluated and verified, MSCs-derived EVs currently show tremendous potential and promise as a regenerative medicine treatment for liver disease in the future.
Collapse
Affiliation(s)
- Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Yumin Yang
- Co-Innovation Center of Neuro-regeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Russel Clive Sequeira
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| |
Collapse
|
7
|
Alghuwainem A, Alshareeda AT, Alsowayan B. Scaffold-Free 3-D Cell Sheet Technique Bridges the Gap between 2-D Cell Culture and Animal Models. Int J Mol Sci 2019; 20:E4926. [PMID: 31590325 PMCID: PMC6801996 DOI: 10.3390/ijms20194926] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
Various tissue engineering techniques have been created in research spanning two centuries, resulting in new opportunities for growing cells in culture and the creation of 3-D tissue-like constructs. These techniques are classified as scaffold-based and scaffold-free techniques. Cell sheet, as a scaffold-free technique, has attracted research interest in the context of drug discovery and tissue repair, because it provides more predictive data for in vivo testing. It is one of the most promising techniques and has the potential to treat degenerative tissues such as heart, kidneys, and liver. In this paper, we argue the advantages of cell sheets as a scaffold-free approach, compared to other techniques, including scaffold-based and scaffold-free techniques such as the classic systemic injection of cell suspension.
Collapse
Affiliation(s)
- Ayidah Alghuwainem
- Stem Cell & Regenerative Medicine Unit, Cellular Therapy and Cancer Research Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia.
| | - Alaa T Alshareeda
- Stem Cell & Regenerative Medicine Unit, Cellular Therapy and Cancer Research Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia.
| | - Batla Alsowayan
- Stem Cell & Regenerative Medicine Unit, Cellular Therapy and Cancer Research Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia.
| |
Collapse
|
8
|
Alshareeda AT, Rakha E, Alghwainem A, Alrfaei B, Alsowayan B, Albugami A, Alsubayyil AM, Abomraee M, Mohd Zin NK. The effect of human placental chorionic villi derived mesenchymal stem cell on triple-negative breast cancer hallmarks. PLoS One 2018; 13:e0207593. [PMID: 30458011 PMCID: PMC6245746 DOI: 10.1371/journal.pone.0207593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/03/2018] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can influence the tumour microenvironment (TEM) and play a major role in tumourigenesis. Triple-negative [Ostrogen receptor (ER-), Progesterone receptor (PgR-), and HER2/neu receptor (HER2-)] breast cancer (TNBC) is an aggressive class of BC characterized by poor prognosis and lacks the benefit of routinely available targeted therapies. This study aims to investigate the effect of human placental chorionic villi derived MSCs (CVMSCs) on the behavior of TNBC in vitro. This was done by assaying different cancer hallmarks including proliferation, migration and angiogenesis. Cell proliferation rate of TNBC cell line (MDA-MB231) was monitored in real time using the xCELLigence system. Whereas, Boyden chamber migration assay was used to measure MDA-MB231 motility and invasiveness toward CVMSCs. Finally, a three-dimensional (3D) model using a co-culture system of CVMSCs with MDA-MB231 with or without the addition of human umbilical vein endothelial cells (HUVECs) was created to assess tumour angiogenesis in vitro. CVMSCs were able to significantly reduce the proliferative and migratory capacity of MDA-MB231 cells. Co-culturing of MDA-MB231 with CVMSCs, not only inhibited the tube formation ability of HUVECs but also reduced the expression of the BC characteristic cytokines; IL-10, IL-12, CXCL9 and CXCL10 of CVMSCs. These results support the hypothesis that CVMSCs can influence the behavior of TNBC cells and provides a basic for a potential therapeutic approach in a pre-clinical settings. The data from this study also highlight the complexity of the in vitro cancer angiogenesis model settings and regulations.
Collapse
Affiliation(s)
- Alaa T Alshareeda
- Stem Cell and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Saudi Arabia
| | - Emad Rakha
- University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital, Department of Cellular Pathology, UK, Nottingham, United Kingdom
| | - Ayidah Alghwainem
- Stem Cell and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Saudi Arabia
| | - Bahauddeen Alrfaei
- Stem Cell and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Saudi Arabia
| | - Batla Alsowayan
- Stem Cell and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Saudi Arabia
| | - Abdullah Albugami
- Stem Cell and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Saudi Arabia
| | - Abdullah M Alsubayyil
- Stem Cell and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Saudi Arabia
| | - Mohmed Abomraee
- Stem Cell and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Saudi Arabia
| | | |
Collapse
|
9
|
Alshareeda AT, Alsowayan B, Almubarak A, Alghuwainem A, Alshawakir Y, Alahmed M. Exploring the Potential of Mesenchymal Stem Cell Sheet on The Development of Hepatocellular Carcinoma In Vivo. J Vis Exp 2018. [PMID: 30272642 DOI: 10.3791/57805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An in vivo animal model that mimics human cancer could have various applications that deliver significant clinical information. The currently used techniques for the development of in vivo cancer models have considerable limitations. Therefore, in this study, we aim to implement cell sheet technology to develop an in vivo cancer model. Hepatocellular carcinoma (HCC) is successfully developed in nude rats using cell sheets created from HCC cell line cells. The cancer cell sheets are generated through intracellular adhesion and the formation of a stratified structure, controlled by the extracellular matrix. This allows for the HCC sheet transplantation into the liver and the creation of a tumor-bearing animal model within a month. In addition, the role of mesenchymal stem cells (MSC) in the development of this cancer model is investigated. In addition to the HCC cell line sheet, another two cell sheets are created: a sheet of HCC cells and bone marrow MSCs (BMMSCs) and a sheet of HCC cells and umbilical cord MSCs (UCMSCs). Sheets that have a combination of both HCC cells and MSCs are also capable of producing a tumor-bearing animal. However, the addition of MSCs reduces the size of the formed tumor, and this adverse effect on tumor development varies depending on the used MSCs' source. This indicates that a cell sheet made of certain MSC subtypes could be utilized in tumor management and control.
Collapse
Affiliation(s)
- Alaa T Alshareeda
- Stem Cell and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs;
| | - Batla Alsowayan
- Stem Cell and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs
| | - Abdullah Almubarak
- College of Medicine, Experimental Surgery and Animal Laboratory, King Saud University
| | - Ayidah Alghuwainem
- Stem Cell and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs
| | - Yasser Alshawakir
- College of Medicine, Experimental Surgery and Animal Laboratory, King Saud University
| | - Mohammed Alahmed
- College of Medicine, Experimental Surgery and Animal Laboratory, King Saud University
| |
Collapse
|