1
|
Patton T, Comini G, Narasimhan K, Cairns AG, Ådén J, Almqvist F, Bemelmans A, Brouillet E, McKernan DP, Dowd E. Intra-striatal infusion of the small molecule alpha-synuclein aggregator, FN075, does not enhance parkinsonism in a subclinical AAV-alpha-synuclein rat model. Eur J Neurosci 2024; 60:5234-5248. [PMID: 39143728 DOI: 10.1111/ejn.16493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
Numerous challenges hinder the development of neuroprotective treatments for Parkinson's disease, with a regularly identified issue being the lack of clinically relevant animal models. Viral vector overexpression of α-synuclein is widely considered the most relevant model; however, this has been limited by high variability and inconsistency. One potential method of optimisation is pairing it with a secondary insult such as FN075, a synthetic molecule demonstrated to accelerate α-synucleinopathy. Thus, the aim of this study was to investigate if sequential infusion of adeno-associated virus (AAV)-α-synuclein and FN075 into the rat brain can replicate α-synucleinopathy, nigrostriatal pathology and motor dysfunction associated with Parkinson's disease. Rats received a unilateral injection of AAV-α-synuclein (or AAV-green fluorescent protein) into two sites in the substantia nigra, followed 4 weeks later by unilateral injection of FN075 (or vehicle) into the striatum. Animals underwent behavioural testing every 4 weeks until sacrifice at 20 weeks, followed by immunohistochemistry assessment post-mortem. As anticipated, AAV-α-synuclein led to extensive overexpression of human α-synuclein throughout the nigrostriatal pathway, as well as elevated levels of phosphorylated and aggregated forms of the protein. However, the sequential administration of FN075 into the striatum did not exacerbate any of the α-synuclein pathology. Furthermore, despite the extensive α-synuclein pathology, neither administration of AAV-α-synuclein nor FN075, alone or in combination, was sufficient to induce dopaminergic degeneration or motor deficits. In conclusion, this approach did not replicate the key characteristics of Parkinson's disease, and further studies are required to create more representational models for testing of novel compounds and treatments for Parkinson's disease.
Collapse
Affiliation(s)
- Tommy Patton
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Giulia Comini
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Kaushik Narasimhan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | | | - Jörgen Ådén
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Alexis Bemelmans
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Research Center (MIRCen), Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Research Center (MIRCen), Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Declan P McKernan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Rosado-Ramos R, Poças GM, Marques D, Foito A, M Sevillano D, Lopes-da-Silva M, Gonçalves LG, Menezes R, Ottens M, Stewart D, Ibáñez de Opakua A, Zweckstetter M, Seabra MC, Mendes CS, Outeiro TF, Domingos PM, Santos CN. Genipin prevents alpha-synuclein aggregation and toxicity by affecting endocytosis, metabolism and lipid storage. Nat Commun 2023; 14:1918. [PMID: 37024503 PMCID: PMC10079842 DOI: 10.1038/s41467-023-37561-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Parkinson's Disease (PD) is a common neurodegenerative disorder affecting millions of people worldwide for which there are only symptomatic therapies. Small molecules able to target key pathological processes in PD have emerged as interesting options for modifying disease progression. We have previously shown that a (poly)phenol-enriched fraction (PEF) of Corema album L. leaf extract modulates central events in PD pathogenesis, namely α-synuclein (αSyn) toxicity, aggregation and clearance. PEF was now subjected to a bio-guided fractionation with the aim of identifying the critical bioactive compound. We identified genipin, an iridoid, which relieves αSyn toxicity and aggregation. Furthermore, genipin promotes metabolic alterations and modulates lipid storage and endocytosis. Importantly, genipin was able to prevent the motor deficits caused by the overexpression of αSyn in a Drosophila melanogaster model of PD. These findings widens the possibility for the exploitation of genipin for PD therapeutics.
Collapse
Affiliation(s)
- Rita Rosado-Ramos
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Gonçalo M Poças
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Daniela Marques
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alexandre Foito
- Environmental and Biochemical Sciences, The James Hutton Institute, DD2 5DA, Dundee, Scotland
| | - David M Sevillano
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Mafalda Lopes-da-Silva
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Regina Menezes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- CBIOS - Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Derek Stewart
- Environmental and Biochemical Sciences, The James Hutton Institute, DD2 5DA, Dundee, Scotland
| | | | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Department of NMR-based Structural Biology, Am Fassberg 11, 37077, Göttingen, Germany
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - César S Mendes
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Tiago Fleming Outeiro
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
- Scientific employee with an honorary contract at German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Cláudia N Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal.
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
3
|
Hall D. A simple method for modeling amyloid kinetics featuring position biased fiber breakage. Biophys Physicobiol 2020; 17:30-35. [PMID: 33110736 PMCID: PMC7550252 DOI: 10.2142/biophysico.bsj-2020003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/12/2020] [Indexed: 12/01/2022] Open
Abstract
A mathematical model of amyloid fiber formation is described that is able to simply specify different rates of fiber breakage at internal versus end regions. This Note presents the derivation of the relevant equations and provides results showing the dramatic effects of position biased fiber breakage on the kinetics of amyloid growth.
Collapse
Affiliation(s)
- Damien Hall
- Laboratory of Biochemistry and Genetics, NIDDK, NIH, Bethesda, MD 20892-0830, USA.,Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Present address: International Center, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
4
|
Townsend DJ, Mala B, Hughes E, Hussain R, Siligardi G, Fullwood NJ, Middleton DA. Circular Dichroism Spectroscopy Identifies the β-Adrenoceptor Agonist Salbutamol As a Direct Inhibitor of Tau Filament Formation in Vitro. ACS Chem Neurosci 2020; 11:2104-2116. [PMID: 32520518 DOI: 10.1021/acschemneuro.0c00154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Potential drug treatments for Alzheimer's disease (AD) may be found by identifying compounds that block the assembly of the microtubule-associated protein tau into neurofibrillar tangles associated with neuron destabilization and cell death. Here, a small library of structurally diverse compounds was screened in vitro for the ability to inhibit tau aggregation, using high-throughput synchrotron radiation circular dichroism as a novel tool to monitor the structural changes in the protein as it assembles into filaments. The catecholamine epinephrine was found to be the most effective tau aggregation inhibitor of all 88 screened compounds. Subsequently, we tested chemically similar phenolamine drugs from the β-adrenergic receptor agonist class, using conventional circular dichroism spectroscopy, thioflavin T fluorescence, and transmission electron microscopy. Two compounds, salbutamol and dobutamine, used widely in the treatment of respiratory and cardiovascular disease, impede the aggregation of tau in vitro. Dobutamine reduces both the rate and yield of tau filament formation over 24 h; however, it has little effect on the structural transition of tau into β-sheet structures over 24 h. Salbutamol also reduces the yield and rate of filament formation and additionally inhibits tau's structural change into β-sheet-rich aggregates. Salbutamol has a good safety profile and a half-life that facilitates permeation through the blood-brain barrier and could represent an expediated approach to developing AD therapeutics. These results provide the motivation for the in vivo evaluation of pre-existing β-adrenergic receptor agonists as a potential therapy for AD through the reduction of tau deposition.
Collapse
Affiliation(s)
- David J Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Barbora Mala
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Eleri Hughes
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Rohanah Hussain
- Diamond House, Harwell Science & Innovation Campus, Diamond Light Source Ltd., Didcot OX11 ODE, United Kingdom
| | - Giuliano Siligardi
- Diamond House, Harwell Science & Innovation Campus, Diamond Light Source Ltd., Didcot OX11 ODE, United Kingdom
| | - Nigel J. Fullwood
- Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - David A. Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
5
|
González N, Gentile I, Garro HA, Delgado-Ocaña S, Ramunno CF, Buratti FA, Griesinger C, Fernández CO. Metal coordination and peripheral substitution modulate the activity of cyclic tetrapyrroles on αS aggregation: a structural and cell-based study. J Biol Inorg Chem 2019; 24:1269-1278. [PMID: 31486955 DOI: 10.1007/s00775-019-01711-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022]
Abstract
The discovery of aggregation inhibitors and the elucidation of their mechanism of action are key in the quest to mitigate the toxic consequences of amyloid formation. We have previously characterized the antiamyloidogenic mechanism of action of sodium phtalocyanine tetrasulfonate ([Na4(H2PcTS)]) on α-Synuclein (αS), demonstrating that specific aromatic interactions are fundamental for the inhibition of amyloid assembly. Here we studied the influence that metal preferential affinity and peripheral substituents may have on the activity of tetrapyrrolic compounds on αS aggregation. For the first time, our laboratory has extended the studies in the field of the bioinorganic chemistry and biophysics to cellular biology, using a well-established cell-based model to study αS aggregation. The interaction scenario described in our work revealed that both N- and C-terminal regions of αS represent binding interfaces for the studied compounds, a behavior that is mainly driven by the presence of negatively or positively charged substituents located at the periphery of the macrocycle. Binding modes of the tetrapyrrole ligands to αS are determined by the planarity and hydrophobicity of the aromatic ring system in the tetrapyrrolic molecule and/or the preferential affinity of the metal ion conjugated at the center of the macrocyclic ring. The different capability of phthalocyanines and meso-tetra (N-methyl-4-pyridyl) porphine tetrachloride ([H2PrTPCl4]) to modulate αS aggregation in vitro was reproduced in cell-based models of αS aggregation, demonstrating unequivocally that the modulation exerted by these compounds on amyloid assembly is a direct consequence of their interaction with the target protein.
Collapse
Affiliation(s)
- Nazareno González
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - Iñaki Gentile
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - Hugo A Garro
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina.,Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, CP 5700, San Luis, Argentina
| | - Susana Delgado-Ocaña
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - Carla F Ramunno
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - Fiamma A Buratti
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Claudio O Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina. .,Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
6
|
Olsen LK, Cairns AG, Ådén J, Moriarty N, Cabre S, Alamilla VR, Almqvist F, Dowd E, McKernan DP. Viral mimetic priming enhances α-synuclein-induced degeneration: Implications for Parkinson's disease. Brain Behav Immun 2019; 80:525-535. [PMID: 31029796 DOI: 10.1016/j.bbi.2019.04.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 11/19/2022] Open
Abstract
Evidence is accumulating to suggest that viral infections and consequent viral-mediated neuroinflammation may contribute to the etiology of idiopathic Parkinson's disease. Moreover, viruses have been shown to influence α-synuclein oligomerization as well as the autophagic clearance of abnormal intra-cellular proteins aggregations, both of which are key neuropathological events in Parkinson's disease pathogenesis. To further investigate the interaction between viral-mediated neuroinflammation and α-synuclein aggregation in the context of Parkinson's disease, this study sought to determine the impact of viral neuroinflammatory priming on α-synuclein aggregate-induced neuroinflammation and neurotoxicity in the rat nigrostriatal pathway. To do so, male Sprague-Dawley rats were intra-nigrally injected with a synthetic mimetic of viral dsRNA (poly I:C) followed two weeks later by a peptidomimetic small molecule which accelerates α-synuclein fibril formation (FN075). The impact of the viral priming on α-synuclein aggregation-induced neuroinflammation, neurodegeneration and motor dysfunction was assessed. We found that prior administration of the viral mimetic poly I:C significantly exacerbated or precipitated the α-synuclein aggregate induced neuropathological and behavioral effects. Specifically, sequential exposure to the two challenges caused a significant increase in nigral microgliosis (p < 0.001) and astrocytosis (p < 0.01); precipitated a significant degeneration of the nigrostriatal cell bodies (p < 0.05); and precipitated a significant impairment in forelimb kinesis (p < 0.01) and sensorimotor integration (p < 0.01). The enhanced sensitivity of the nigrostriatal neurons to pathological α-synuclein aggregation after viral neuroinflammatory priming further suggests that viral infections may contribute to the etiology and pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Laura K Olsen
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland
| | | | - Jörgen Ådén
- Department of Chemistry, Umeå University, Sweden
| | - Niamh Moriarty
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland
| | - Silvia Cabre
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland
| | - Veronica R Alamilla
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland
| | | | - Eilís Dowd
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland
| | - Declan P McKernan
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland.
| |
Collapse
|
7
|
Olsen AL, Feany MB. Glial α-synuclein promotes neurodegeneration characterized by a distinct transcriptional program in vivo. Glia 2019; 67:1933-1957. [PMID: 31267577 DOI: 10.1002/glia.23671] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
α-Synucleinopathies are neurodegenerative diseases that are characterized pathologically by α-synuclein inclusions in neurons and glia. The pathologic contribution of glial α-synuclein in these diseases is not well understood. Glial α-synuclein may be of particular importance in multiple system atrophy (MSA), which is defined pathologically by glial cytoplasmic α-synuclein inclusions. We have previously described Drosophila models of neuronal α-synucleinopathy, which recapitulate key features of the human disorders. We have now expanded our model to express human α-synuclein in glia. We demonstrate that expression of α-synuclein in glia alone results in α-synuclein aggregation, death of dopaminergic neurons, impaired locomotor function, and autonomic dysfunction. Furthermore, co-expression of α-synuclein in both neurons and glia worsens these phenotypes as compared to expression of α-synuclein in neurons alone. We identify unique transcriptomic signatures induced by glial as opposed to neuronal α-synuclein. These results suggest that glial α-synuclein may contribute to the burden of pathology in the α-synucleinopathies through a cell type-specific transcriptional program. This new Drosophila model system enables further mechanistic studies dissecting the contribution of glial and neuronal α-synuclein in vivo, potentially shedding light on mechanisms of disease that are especially relevant in MSA but also the α-synucleinopathies more broadly.
Collapse
Affiliation(s)
- Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Cairns AG, Vazquez-Romero A, Mahdi Moein M, Ådén J, Elmore CS, Takano A, Arakawa R, Varrone A, Almqvist F, Schou M. Increased Brain Exposure of an Alpha-Synuclein Fibrillization Modulator by Utilization of an Activated Ester Prodrug Strategy. ACS Chem Neurosci 2018; 9:2542-2547. [PMID: 29901990 DOI: 10.1021/acschemneuro.8b00236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previous work in our laboratories has identified a series of peptidomimetic 2-pyridone molecules as modulators of alpha-synuclein (α-syn) fibrillization in vitro. As a first step toward developing molecules from this scaffold as positron emission tomography imaging agents, we were interested in evaluating their blood-brain barrier permeability in nonhuman primates (NHP) in vivo. For this purpose, 2-pyridone 12 was prepared and found to accelerate α-syn fibrillization in vitro. Acid 12, and its acetoxymethyl ester analogue 14, were then radiolabeled with 11C ( t1/2 = 20.4 min) at high radiochemical purity (>99%) and high specific radioactivity (>37 GBq/μmol). Following intravenous injection of each compound in NHP, a 4-fold higher radioactivity in brain was observed for [11C]14 compared to [11C]12 (0.8 vs 0.2 SUV, respectively). [11C]14 was rapidly eliminated from plasma, with [11C]12 as the major metabolic product observed by radio-HPLC. The presented prodrug approach paves the way for future development of 2-pyridones as imaging biomarkers for in vivo imaging of α-synuclein deposits in brain.
Collapse
Affiliation(s)
| | - Ana Vazquez-Romero
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Mohammad Mahdi Moein
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Charles S. Elmore
- Isotope Chemistry, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | | | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, S-171 76 Stockholm, Sweden
| |
Collapse
|
9
|
Assessment of the effects of transthyretin peptide inhibitors in Drosophila models of neuropathic ATTR. Neurobiol Dis 2018; 120:118-125. [PMID: 30213731 DOI: 10.1016/j.nbd.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022] Open
|
10
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|