1
|
Gollihue JL, Aung KZ, Rogers CB, Sompol P, Katsumata Y, Weekman EM, Wilcock DM, Morganti JM, Norris CM. Inhibition of astrocyte signaling leads to sex-specific changes in microglia phenotypes in a diet-based model of small cerebral vessel disease. RESEARCH SQUARE 2025:rs.3.rs-6198453. [PMID: 40166012 PMCID: PMC11957200 DOI: 10.21203/rs.3.rs-6198453/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Hyperhomocysteinemia (HHcy)-inducing diets recapitulate small cerebral vessel disease phenotypes in mice including cerebrovascular pathology/dysfunction, neuroinflammation, synaptic deficits, and cognitive decline. We recently showed that astrocyte signaling through calcineurin(CN)/nuclear factor of activated T cells (NFATs) plays a causative role in these phenotypes. Here, we assessed the impact of astrocytic signaling on microglia, which set inflammatory tone in brain. Seven-to-eight-week-old male and female C57BL/6J mice received intrahippocampal injections of AAV2/5-Gfa2-EGFP (control) or adeno-associated virus (AAV) expressing the NFAT inhibitor VIVIT (i.e., AAV2/5-Gfa2-VIVIT-EGFP). Mice were then fed with control chow (CT) or B-vitamin-deficient chow for 12 weeks to induce HHcy. Immunohistochemistry was used to assess the expression of the pan-microglial marker Iba1 and the homeostatic microglial marker P2ry12. Iba1 showed little sensitivity to diet, AAV treatment, or sex. Conversely, P2ry12 expression was reduced with HHcy diet in males, but not females. Treatment of males with AAV-Gfa2-VIVIT prevented the loss of P2ry12. We next conducted single-cell RNA sequencing (scRNAseq) to determine if microglial genes and/or microglial clustering patterns were sensitive to astrocyte signaling in a sex-dependent manner. In males, disease-associated microglial genes and subclusters were overrepresented in HHcy-treated mice, while VIVIT promoted the appearance of homeostatic microglial genes and clusters. In contrast, microglial genes in females were less sensitive to diet and AAV treatments, though disease-like patterns in gene expression were also observed in the HHcy condition. However, very few of the HHcy-sensitive microglial genes in females were affected by VIVIT. The results suggest a sexually dimorphic influence of astrocyte signaling on microglial phenotypes in the context of HHcy and small cerebral vessel disease.
Collapse
|
2
|
Boonha K, Kuo WW, Tsai BCK, Hsieh DJY, Lin KH, Lu SY, Kuo CH, Yang LY, Huang CY. Enhanced IGF-IIRα Expression Exacerbates Lipopolysaccharide-Induced Cardiac Inflammation, Hypertrophy, and Apoptosis Through Calcineurin Activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:5173-5186. [PMID: 39109785 DOI: 10.1002/tox.24385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 10/17/2024]
Abstract
Cardiovascular disease is one of the leading causes of death worldwide and has a high prevalence. Insulin-like growth factor-II receptor α (IGF-IIRα) acts as a stress-inducible negative regulator. This study focused on the substantial impact of heightened expression of IGF-IIRα in cardiac myoblasts and its association with the exacerbation of cardiac dysfunction. Using lipopolysaccharide (LPS)-induced H9c2 cardiac myoblasts as a model for sepsis, we aimed to elucidate the molecular interactions between IGF-IIRα and LPS in exacerbating cardiac injury. Our findings demonstrated a synergistic induction of cardiac inflammation and hypertrophy by LPS stimulation and IGF-IIRα overexpression, leading to decreased cell survival. Excessive calcineurin activity, triggered by this combined condition, was identified as a key factor exacerbating the negative effects on cell survival. Cellular changes such as cell enlargement, disrupted actin filaments, and upregulation of hypertrophy-related and inflammation-related proteins contributed to the overall hypertrophic and inflammatory responses. Overexpression of IGF-IIRα also exacerbated apoptosis induced by LPS in H9c2 cardiac myoblasts. Inhibiting calcineurin in LPS-treated H9c2 cardiac myoblasts with IGF-IIRα overexpression effectively reversed the detrimental effects, reducing cell damage and mitigating apoptosis-related cardiac mechanisms. Our study suggests that under sepsis-like conditions in the heart with IGF-IIRα overexpression, hyperactivation of calcineurin worsens cardiac damage. Suppressing IGF-IIRα and calcineurin expression could be a potential intervention to alleviate the impact of the illness and improve cardiac function.
Collapse
Affiliation(s)
- Khwanchit Boonha
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of Excellence for Antibody Research (CEAR), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Shang-Yeh Lu
- College of Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, Virginia, USA
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
3
|
Yoon JJ, Tai AL, Kim HY, Han BH, Shin S, Lee HS, Kang DG. TongGuanWan Alleviates Doxorubicin- and Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis by Modulating Apoptotic and Fibrotic Pathways. Int J Mol Sci 2024; 25:10573. [PMID: 39408900 PMCID: PMC11476530 DOI: 10.3390/ijms251910573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Heart failure, a major public health issue, often stems from prolonged stress or damage to the heart muscle, leading to cardiac hypertrophy. This can progress to heart failure and other cardiovascular problems. Doxorubicin (DOX), a common chemotherapy drug, and isoproterenol (ISO), a β-adrenergic agonist, both induce cardiac hypertrophy through different mechanisms. This study investigates TongGuanWan (TGW,), a traditional herbal remedy, for its effects on cardiac hypertrophy and fibrosis in DOX-induced H9c2 cells and ISO-induced mouse models. TGW was found to counteract DOX-induced increases in H9c2 cell surface area (n = 8, p < 0.01) and improve biomarkers like ANP (n = 3, p < 0.01)) and BNP (n = 3, p < 0.01). It inhibited the MAPK pathway (n = 4, p < 0.01) and GATA-4/calcineurin/NFAT-3 signaling, reduced inflammation by decreasing NF-κB p65 translocation, and enhanced apoptosis-related factors such as caspase-3 (n = 3, p < 0.01), caspase-9 (n = 3, p < 0.01), Bax (n = 3, p < 0.01), and Bcl-2 (n = 3, p < 0.01). Flow cytometry showed TGW reduced apoptotic cell populations. In vivo, TGW reduced heart (n = 8~10, p < 0.01), and left ventricle weights (n = 6~7), cardiac hypertrophy markers (n = 3, p < 0.01), and perivascular fibrosis in ISO-induced mice, with Western blot analysis confirming decreased levels of fibrosis-related factors like fibronectin, α-SMA (n = 3, p < 0.05), and collagen type I (n = 3, p < 0.05). These findings suggest TGW has potential as a therapeutic option for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Jung-Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
| | - Ai-Lin Tai
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea
| | - Hye-Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
| | - Byung-Hyuk Han
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
| | - Sarah Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672, Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea;
| | - Ho-Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
| | - Dae-Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea
| |
Collapse
|
4
|
Burman P, Jaiswal R, Devi K, Moharana B. Aurintricarboxylic acid protects isoproterenol induced left ventricular hypertrophy by modulating TWEAK signaling. Cardiovasc Pathol 2022; 61:107468. [PMID: 35977688 DOI: 10.1016/j.carpath.2022.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cardiac hypertrophy is regarded as a compensation mechanism to overcome the increased workload. Aurintricarboxylic acid (ATA) is a derivative of quinomethanes and a selective inhibitor of TWEAK/Fn14 pathway. In this study, we investigated the effect of ATA on isoproterenol (ISO)-induced pathological cardiac hypertrophy. METHODS Cardiac hypertrophy in H9C2 cells was induced using ISO 20 μM dissolved in PBS. H9C2 cells were treated with ATA (5 µM, 10 µM, 20 µM) followed by ISO stimulation for 24 h. Male SD rats were injected ISO (5 mg/kg/day, s.c) for 21 days and followed by treatment with ATA (10 mg/kg, i.p.) for 14 days. Cardiac functions were assessed. After sacrifice, hearts were subjected to histopathological and western blot analysis. RESULTS In in-vitro results, upon ATA treatment, ICC results showed significant decrease in TWEAK and ANP expression. In in-vivo results, echocardiography showed significant restoration of cardiac function in ATA treated rats. Histopathological analysis showed a significant decrease in left ventricular wall thickness, cardiomyocytes width and reduced fibrosis in ATA treated rats. Western blotting showed decreased expression of the cardiac hypertrophy maker ANP, inflammatory markers including TWEAK and apoptotic markers after ATA treatment. CONCLUSION These findings suggested that the TWEAK/Fn14 pathway could be a potential target for therapeutic exploration in ISO induced cardiac hypertrophy. ATA, as an inhibitor of this pathway, exerted significant cardioprotective effect against ISO-induced cardiac hypertrophy in rats.
Collapse
Affiliation(s)
- Prabha Burman
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rahul Jaiswal
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kusum Devi
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, UP, 201002, India
| | - Baisakhi Moharana
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, UP, 201002, India.
| |
Collapse
|
5
|
Guajardo-Correa E, Silva-Agüero JF, Calle X, Chiong M, Henríquez M, García-Rivas G, Latorre M, Parra V. Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases. Front Cell Dev Biol 2022; 10:968373. [PMID: 36187489 PMCID: PMC9516331 DOI: 10.3389/fcell.2022.968373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Francisco Silva-Agüero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnológico de Monterrey, The Institute for Obesity Research, Hospital Zambrano Hellion, San Pedro Garza Garcia, Nuevo León, Mexico
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Ginsenoside Rg1 attenuates mechanical stress-induced cardiac injury via calcium sensing receptor-related pathway. J Ginseng Res 2021; 45:683-694. [PMID: 34764723 PMCID: PMC8569322 DOI: 10.1016/j.jgr.2021.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/02/2021] [Accepted: 03/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background Ginsenoside Rg1 (Rg1) has been well documented to be effective against various cardiovascular disease. The aim of this study is to evaluate the effect of Rg1 on mechanical stress-induced cardiac injury and its possible mechanism with a focus on the calcium sensing receptor (CaSR) signaling pathway. Methods Mechanical stress was implemented on rats through abdominal aortic constriction (AAC) procedure and on cardiomyocytes and cardiac fibroblasts by mechanical stretching with Bioflex Collagen I plates. The effects of Rg1 on cell hypertrophy, fibrosis, cardiac function, [Ca2+]i, and the expression of CaSR and calcineurin (CaN) were assayed both on rat and cellular level. Results Rg1 alleviated cardiac hypertrophy and fibrosis, and improved cardiac decompensation induced by AAC in rat myocardial tissue and cultured cardiomyocytes and cardiac fibroblasts. Importantly, Rg1 treatment inhibited CaSR expression and increase of [Ca2+]i, which similar to the CaSR inhibitor NPS2143. In addition, Rg1 treatment inhibited CaN and TGF-β1 pathways activation. Mechanistic analysis showed that the CaSR agonist GdCl3 could not further increase the [Ca2+]i and CaN pathway related protein expression induced by mechanical stretching in cultured cardiomyocytes. CsA, an inhibitor of CaN, inhibited cardiac hypertrophy, cardiac fibrosis, [Ca2+]i and CaN signaling but had no effect on CaSR expression. Conclusion The activation of CaN pathway and the increase of [Ca2+]i mediated by CaSR are involved in cardiac hypertrophy and fibrosis, that may be the target of cardioprotection of Rg1 against myocardial injury.
Collapse
|
7
|
Hajializadeh Z, Khaksari M. The protective effects of 17-β estradiol and SIRT1 against cardiac hypertrophy: a review. Heart Fail Rev 2021; 27:725-738. [PMID: 34537933 DOI: 10.1007/s10741-021-10171-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/27/2022]
Abstract
One of the major causes of morbidity and mortality worldwide is cardiac hypertrophy (CH), which leads to heart failure. Sex differences in CH can be caused by sex hormones or their receptors. The incidence of CH increases in postmenopausal women due to the decrease in female sex hormone 17-β estradiol (E2) during menopause. E2 and its receptors inhibit CH in humans and animal models. Silent information regulator 1 (SIRT1) is a NAD+-dependent HDAC (histone deacetylase) and plays a major role in biological processes, such as inflammation, apoptosis, and oxidative stress responses. Probably SIRT1 because of these effects, is one of the main suppressors of CH and has a cardioprotective effect. On the other hand, estrogen and its agonists are highly efficient in modulating SIRT1 expression. In the present study, we review the protective effects of E2 and SIRT1 against CH.
Collapse
Affiliation(s)
- Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Cheng W, Li X, Yang S, Wang H, Li Y, Feng Y, Wang Y. Low doses of BPF-induced hypertrophy in cardiomyocytes derived from human embryonic stem cells via disrupting the mitochondrial fission upon the interaction between ERβ and calcineurin A-DRP1 signaling pathway. Cell Biol Toxicol 2021; 38:409-426. [PMID: 34023961 DOI: 10.1007/s10565-021-09615-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Bisphenol F (BPF) is a replacement to bisphenol A, which has been extensively used in industrial manufacturing. Its wide detection in various human samples raises increasing concern on its safety. Currently, whether a low dose of BPF compromises cardiac function is still unknown. This study provides the first evidence that low-dose BPF can induce cardiac hypertrophy by using cardiomyocytes derived from human embryonic stem cells (hES). Non-cytotoxic BPF increased cytosolic Ca 2+ influx ([Ca2+ ]c), which was most remarkable at low dose (7 ng/ml) rather than at higher doses. Significant changes in the morphological parameters of mitochondria and significant decreases in ATP production were induced by 7 ng/ml BPF, representing a classic hypertrophic cardiomyocyte. After eliminating the direct effects on mitochondrial fission-related DRP1 by administration of the DRP1 inhibitor Mdivi-1, we examined the changes in [Ca 2+ ]c levels induced by BPF, which enhanced the calcineurin (Cn) activity and induced the abnormal mitochondrial fission via the CnAβ-DRP1 signaling pathway. BPF triggered excessive Ca 2+ influx by disrupting the L-type Ca 2+channel in cardiomyocytes. The interaction between ERβ and CnAβ cooperatively involved in the BPF-induced Ca 2+ influx, which resulted in the abnormal mitochondrial fission and compromised the cardiac function. Our findings provide a feasible molecular mechanism for explaining low-dose BPF-induced cardiac hypertrophy in vitro, preliminarily suggesting that BPF may not be as safe as assumed in humans.
Collapse
Affiliation(s)
- Wei Cheng
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China, 200025
| | - Xiaolan Li
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China, 200025
| | - Shoufei Yang
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China, 200025
| | - Hui Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China, 200025
| | - Yan Li
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China, 200025
| | - Yan Feng
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China, 200025
| | - Yan Wang
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China, 200025. .,The Ninth People's Hospital of Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China, 200011. .,Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China, 200025.
| |
Collapse
|
9
|
Firth JM, Yang HY, Francis AJ, Islam N, MacLeod KT. The Effect of Estrogen on Intracellular Ca 2+ and Na + Regulation in Heart Failure. ACTA ACUST UNITED AC 2020; 5:901-912. [PMID: 33015413 PMCID: PMC7524784 DOI: 10.1016/j.jacbts.2020.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
During the progression toward heart failure, indicators of in vivo whole-heart function suggest greater impairment in the absence of estrogen. At the single cardiac myocyte level, the absence of estrogen results in further reduction of Ca2+ transient amplitudes, further slowing of transient decay kinetics, less SR Ca2+ content, and a further increase in Ca2+ spark frequencies and spark-mediated SR leak compared with animals with normal estrus cycles. Cardiac myocyte Na+ regulation is also more disrupted in the absence of estrogen.
Contradictory findings of estrogen supplementation in cardiac disease highlight the need to investigate the involvement of estrogen in the progression of heart failure in an animal model that lacks traditional comorbidities. Heart failure was induced by aortic constriction (AC) in female guinea pigs. Selected AC animals were ovariectomized (ACOV), and a group of these received 17β-estradiol supplementation (ACOV+E). One hundred-fifty days post-AC surgery, left-ventricular myocytes were isolated, and their electrophysiology and Ca2+ and Na+ regulation were examined. Long-term absence of ovarian hormones exacerbates the decline in cardiac function during the progression to heart failure. Estrogen supplementation reverses these aggravating effects.
Collapse
Key Words
- AC, aortic constriction
- ACOV+E, aortic constriction with ovariectomy, supplemented with 17β-estradiol
- ACOV, aortic constriction with ovariectomy
- FS, fractional shortening
- ICa, l-type Ca2+ channel current (cadmium-sensitive)
- INa,L, late Na+ current (ranolazine-sensitive)
- NCX, Na+/Ca2+ exchange
- OV, ovariectomy
- SERCA, Sarco/endoplasmic reticulum Ca2+-ATPase
- SR, sarcoplasmic reticulum
- calcium regulation
- cardiomyocytes
- estrogen
- excitation-contraction coupling
- female
- heart failure
Collapse
Affiliation(s)
- Jahn M Firth
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, United Kingdom
| | - Hsiang-Yu Yang
- Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (R.O.C.)
| | - Alice J Francis
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, United Kingdom
| | - Najah Islam
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, United Kingdom
| | - Kenneth T MacLeod
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
10
|
Jiao L, Machuki JO, Wu Q, Shi M, Fu L, Adekunle AO, Tao X, Xu C, Hu X, Yin Z, Sun H. Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2020; 318:H820-H829. [PMID: 32083972 DOI: 10.1152/ajpheart.00734.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estrogen deficiency is considered to be an important factor leading to cardiovascular diseases (CVDs). Indeed, the prevalence of CVDs in postmenopausal women exceeds that of premenopausal women and men of the same age. Recent research findings provide evidence that estrogen plays a pivotal role in the regulation of calcium homeostasis and therefore fine-tunes normal cardiomyocyte contraction and relaxation processes. Disruption of calcium homeostasis is closely associated with the pathological mechanism of CVDs. Thus, this paper maps out and summarizes the effects and mechanisms of estrogen on calcium handling proteins in cardiac myocytes, including L-type Ca2+ channel, the sarcoplasmic reticulum Ca2+ release channel named ryanodine receptor, sarco(endo)plasmic reticulum Ca2+-ATPase, and sodium-calcium exchanger. In so doing, we provide theoretical and experimental evidence for the successful design of estrogen-based prevention and treatment therapies for CVDs.
Collapse
Affiliation(s)
- Lijuan Jiao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingjin Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Xi Tao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenxi Xu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xide Hu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zeyuan Yin
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
11
|
Cheng W, Yang S, Li X, Liang F, Zhou R, Wang H, Feng Y, Wang Y. Low doses of BPA induced abnormal mitochondrial fission and hypertrophy in human embryonic stem cell-derived cardiomyocytes via the calcineurin-DRP1 signaling pathway: A comparison between XX and XY cardiomyocytes. Toxicol Appl Pharmacol 2019; 388:114850. [PMID: 31830493 DOI: 10.1016/j.taap.2019.114850] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023]
Abstract
Humans are inevitably exposed to bisphenol A (BPA) via multiple exposure ways. Thus, attention should be raised to the possible adverse effects related to low doses of BPA. Epidemiological studies have outlined BPA exposure and the increased risk of cardiovascular diseases (such as cardiac hypertrophy), which has been confirmed to be sex-specific in rodent animals and present in few in vitro studies, although the molecular mechanism is still unclear. However, whether BPA at low doses equivalent to human internal exposure level could induce cardiac hypertrophy via the calcineurin-DRP1 signaling pathway by disrupting calcium homeostasis is unknown. To address this, human embryonic stem cell (H1, XY karyotype and H9, XX karyotype)-derived cardiomyocytes (CM) were purified and applied to study the low-dose effects of BPA on cardiomyocyte hypertrophy. In our study, when H1- and H9-CM were exposed to noncytotoxic BPA (8 ng/ml), markedly elevated hypertrophic-related mRNA expression levels (such as NPPA and NPPB), enhanced cellular area and reduced ATP supplementation, demonstrated the hypertrophic cardiomyocyte phenotype in vitro. The excessive fission produced by BPA was promoted by CnAβ-mediated dephosphorylation of DRP1. At the molecular level, the increase in cytosolic Ca2+ levels by low doses of BPA could discriminate between H1- and H9-CM, which may suggest a potential sex-specific hypertrophic risk in cardiomyocytes in terms of abnormal mitochondrial fission and ATP production by impairing CnAβ-DRP1 signaling. In CnAβ-knockdown cardiomyocytes, these changes were highly presented in XX-karyotyped cells, rather than in XY-karyotyped cells.
Collapse
Affiliation(s)
- Wei Cheng
- School of Public Health, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China
| | - Shoufei Yang
- School of Public Health, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China
| | - Xiaolan Li
- School of Public Health, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China
| | - Fan Liang
- School of Public Health, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China
| | - Ren Zhou
- The Ninth People's Hospital of Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, PR China
| | - Hui Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, PR China
| | - Yan Feng
- School of Public Health, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China
| | - Yan Wang
- School of Public Health, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China; The Ninth People's Hospital of Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, PR China; Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
12
|
Wang XQY, Xu ZT, Zhang GP, Hou N, Mo QX, Wei J, Jiang X, Liu Y, Luo JD. Endophilin A2 attenuates cardiac hypertrophy induced by isoproterenol through the activation of autophagy. Am J Transl Res 2019; 11:5065-5075. [PMID: 31497222 PMCID: PMC6731414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Decreased autophagy has been reported to contribute to the progression of cardiac hypertrophy. Our previous research has demonstrated that endophilin A2 (EndoA2) attenuates H2O2-induced cardiomyocyte apoptosis by strengthening autophagy. However, the role of EndoA2 in the regulation of autophagy in cardiac hypertrophy is unknown. In this study, we tested the hypothesis that EndoA2 suppresses cardiac hypertrophy induced by isoproterenol (ISO) by activating autophagy. In vivo, we established a cardiac hypertrophy model by subcutaneous injection of ISO and used intramyocardial delivery of adenovirus vector harboring EndoA2 cDNA (Ad-EndoA2) to overexpress EndoA2. The cardiac hypertrophic response and autophagy level were measured. EndoA2 overexpression suppressed pathological cardiac hypertrophy and enhanced autophagy in rat hearts. In addition, the effects of EndoA2 on cardiac hypertrophy and autophagy were observed in cultured neonatal rat cardiomyocytes (NRCMs) with gain- and loss-of-function approaches to regulate EndoA2 expression. The results were consistent with those of the in vivo study. Furthermore, the involvement of EndoA2-mediated autophagy in the attenuation of ISO-induced cardiac hypertrophy was explored by pharmaceutical inhibition of autophagy. Pretreatment with 3-methyladenine (3-MA) clearly diminished the anti-hypertrophic effects of EndoA2 in ISO-treated NRCMs. The results presented here provide the first evidence that EndoA2 is involved in ISO-induced cardiac hypertrophy. The anti-hypertrophic effects of EndoA2 can be partially attributed to its regulation of autophagy.
Collapse
Affiliation(s)
- Xin-Qiu-Yue Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical UniversityGuangzhou 511436, Guangdong, P. R. China
| | - Zong-Tang Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical UniversityGuangzhou 511436, Guangdong, P. R. China
| | - Gui-Ping Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical UniversityGuangzhou 511436, Guangdong, P. R. China
| | - Ning Hou
- Key Laboratory of Molecular Target and Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical UniversityGuangzhou 511436, Guangdong, P. R. China
| | - Qin-Xing Mo
- Key Laboratory of Molecular Target and Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical UniversityGuangzhou 511436, Guangdong, P. R. China
| | - Jie Wei
- Key Laboratory of Molecular Target and Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical UniversityGuangzhou 511436, Guangdong, P. R. China
| | - Xin Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical UniversityGuangzhou 511436, Guangdong, P. R. China
| | - Yun Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical UniversityGuangzhou 511436, Guangdong, P. R. China
| | - Jian-Dong Luo
- Department of Pharmacology, Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhou 510260, Guangdong, P. R. China
| |
Collapse
|
13
|
Genistein reverses isoproterenol-induced cardiac hypertrophy by regulating miR-451/TIMP2. Biomed Pharmacother 2019; 112:108618. [DOI: 10.1016/j.biopha.2019.108618] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 11/21/2022] Open
|
14
|
Huang M, Liu J, Sheng Y, Lv Y, Yu J, Qi H, Di W, Lv S, Zhou S, Ding G. 11β-hydroxysteroid dehydrogenase type 1 inhibitor attenuates high-fat diet induced cardiomyopathy. J Mol Cell Cardiol 2018; 125:106-116. [DOI: 10.1016/j.yjmcc.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 12/29/2022]
|
15
|
Chen BC, Weng YJ, Shibu MA, Han CK, Chen YS, Shen CY, Lin YM, Viswanadha VP, Liang HY, Huang CY. Estrogen and/or Estrogen Receptor α Inhibits BNIP3-Induced Apoptosis and Autophagy in H9c2 Cardiomyoblast Cells. Int J Mol Sci 2018; 19:ijms19051298. [PMID: 29701696 PMCID: PMC5983791 DOI: 10.3390/ijms19051298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
The process of autophagy in heart cells maintains homeostasis during cellular stress such as hypoxia by removing aggregated proteins and damaged organelles and thereby protects the heart during the times of starvation and ischemia. However, autophagy can lead to substantial cell death under certain circumstances. BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), a hypoxia-induced marker, has been shown to induce both autophagy and apoptosis. A BNIP3-docked organelle, e.g., mitochondria, also determines whether autophagy or apoptosis will take place. Estrogen (E2) and estrogen receptor (ER) alpha (ERα) have been shown to protect the heart against mitochondria-dependent apoptosis. The aim of the present study is to investigate the mechanisms by which ERα regulates BNIP3-induced apoptosis and autophagy, which is associated with hypoxic injury, in cardiomyoblast cells. An in vitro model to mimic hypoxic injury in the heart by engineering H9c2 cardiomyoblast cells to overexpress BNIP3 was established. Further, the effects of E2 and ERα in BNIP3-induced apoptosis and autophagy were determined in BNIP3 expressing H9c2 cells. Results from TUNEL assay and Immunoflourecense assay for LC3 puncta formation, respectively, revealed that ERα/E2 suppresses BNIP3-induced apoptosis and autophagy. The Western blot analysis showed ERα/E2 decreases the protein levels of caspase 3 (apoptotic marker), Atg5, and LC3-II (autophagic markers). Co-immunoprecipitation of BNIP3 and immunoblotting of Bcl-2 and Rheb showed that ERα reduced the interaction between BNIP3 and Bcl-2 or Rheb. The results confirm that ERα binds to BNIP3 causing a reduction in the levels of functional BNIP3 and thereby inhibits cellular apoptosis and autophagy. In addition, ERα attenuated the activity of the BNIP3 promoter by binding to SP-1 or NFκB sites.
Collapse
Affiliation(s)
- Bih-Cheng Chen
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Yi-Jiun Weng
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
| | - Marthandam Asokan Shibu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
| | - Chien-Kuo Han
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 404, Taiwan.
| | - Yueh-Sheng Chen
- School of Chinese Medicine, China Medical University, Taichung 413, Taiwan.
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung 912, Taiwan.
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan.
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management College, Taipei 11260, Taiwan.
| | | | - Hsin-Yueh Liang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.
- Division of Cardiology, China Medical University Hospital, Taichung 404, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 413, Taiwan.
- Department of Biological Science and Technology, Asia University, Taichung 404, Taiwan.
| |
Collapse
|