1
|
Simpson J, Starke CE, Ortiz AM, Ransier A, Darko S, Llewellyn-Lacey S, Fennessey CM, Keele BF, Douek DC, Price DA, Brenchley JM. Immunotoxin-mediated depletion of Gag-specific CD8+ T cells undermines natural control of SIV. JCI Insight 2024; 9:e174168. [PMID: 38885329 PMCID: PMC11383179 DOI: 10.1172/jci.insight.174168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Antibody-mediated depletion studies have demonstrated that CD8+ T cells are required for effective immune control of SIV. However, this approach is potentially confounded by several factors, including reactive CD4+ T cell proliferation, and provides no information on epitope specificity, a likely determinant of CD8+ T cell efficacy. We circumvented these limitations by selectively depleting CD8+ T cells specific for the Gag epitope CTPYDINQM (CM9) via the administration of immunotoxin-conjugated tetrameric complexes of CM9/Mamu-A*01. Immunotoxin administration effectively depleted circulating but not tissue-localized CM9-specific CD8+ T cells, akin to the bulk depletion pattern observed with antibodies directed against CD8. However, we found no evidence to indicate that circulating CM9-specific CD8+ T cells suppressed viral replication in Mamu-A*01+ rhesus macaques during acute or chronic progressive infection with a pathogenic strain of SIV. This observation extended to macaques with established infection during and after continuous antiretroviral therapy. In contrast, natural controller macaques experienced dramatic increases in plasma viremia after immunotoxin administration, highlighting the importance of CD8+ T cell-mediated immunity against CM9. Collectively, these data showed that CM9-specific CD8+ T cells were necessary but not sufficient for robust immune control of SIV in a nonhuman primate model and, more generally, validated an approach that could inform the design of next-generation vaccines against HIV-1.
Collapse
Affiliation(s)
- Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Citores L, Iglesias R, Ferreras JM. Antiviral Activity of Ribosome-Inactivating Proteins. Toxins (Basel) 2021; 13:80. [PMID: 33499086 PMCID: PMC7912582 DOI: 10.3390/toxins13020080] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are rRNA N-glycosylases from plants (EC 3.2.2.22) that inactivate ribosomes thus inhibiting protein synthesis. The antiviral properties of RIPs have been investigated for more than four decades. However, interest in these proteins is rising due to the emergence of infectious diseases caused by new viruses and the difficulty in treating viral infections. On the other hand, there is a growing need to control crop diseases without resorting to the use of phytosanitary products which are very harmful to the environment and in this respect, RIPs have been shown as a promising tool that can be used to obtain transgenic plants resistant to viruses. The way in which RIPs exert their antiviral effect continues to be the subject of intense research and several mechanisms of action have been proposed. The purpose of this review is to examine the research studies that deal with this matter, placing special emphasis on the most recent findings.
Collapse
Affiliation(s)
| | | | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.)
| |
Collapse
|
3
|
Lumley SF, McNaughton AL, Klenerman P, Lythgoe KA, Matthews PC. Hepatitis B Virus Adaptation to the CD8+ T Cell Response: Consequences for Host and Pathogen. Front Immunol 2018; 9:1561. [PMID: 30061882 PMCID: PMC6054973 DOI: 10.3389/fimmu.2018.01561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic viral hepatitis infections are a major public health concern, with an estimated 290 million individuals infected with hepatitis B virus (HBV) globally. This virus has been a passenger in human populations for >30,000 years, and remains highly prevalent in some settings. In order for this endemic pathogen to persist, viral adaptation to host immune responses is pre-requisite. Here, we focus on the interplay between HBV infection and the CD8+ T cell response. We present the evidence that CD8+ T cells play an important role in control of chronic HBV infection and that the selective pressure imposed on HBV through evasion of these immune responses can potentially influence viral diversity, chronicity, and the outcome of infection, and highlight where there are gaps in current knowledge. Understanding the nature and mechanisms of HBV evolution and persistence could shed light on differential disease outcomes, including cirrhosis and hepatocellular carcinoma, and help reach the goal of global HBV elimination by guiding the design of new strategies, including vaccines and therapeutics.
Collapse
Affiliation(s)
- Sheila F. Lumley
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Anna L. McNaughton
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford BRC, John Radcliffe Hospital, Oxford, United Kingdom
| | - Katrina A. Lythgoe
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Philippa C. Matthews
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford BRC, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|