1
|
Parker SM, Andreasen SC, Ricks B, Kaipust MS, Zuniga J, Knarr BA. Comparison of brain activation and functional outcomes between physical and virtual reality box and block test: a case study. Disabil Rehabil Assist Technol 2024; 19:273-280. [PMID: 35704460 DOI: 10.1080/17483107.2022.2085334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Immersive Virtual Reality (VR) systems allow for highly repetitive tasks to be performed within a virtual environment that increases practice in home environments. VR can increase access to rehabilitation by reducing access barriers. However, rehabilitation outcomes between immersive VR systems and conventional physical rehabilitation are not well understood. The purpose of this case study was to assess the use of a custom clinically based VR simulation for testing gross hand dexterity with an individual with chronic stroke. MATERIALS AND METHODS The participant performed the box and blocks test (BBT) in an immersive VR environment and a physical environment. Three trials of the BBT were performed with their less-affected and affected hands each in both environments while measuring cortical activity using fNIRS. Rests were given between trials and environment conditions. RESULTS Our results show that there was no statistical difference in the number of blocks moved between the physical and VR BBT for both the affected and less-affected hands. Furthermore, our results also indicate no statistically significant difference between the physical BBT and VR BBT conditions on contralateral motor cortex activation, suggesting that cortical involvement is comparable between physical and VR conditions. CONCLUSIONS These results suggest that an immersive VR system may be able to elicit functional and motor cortex activations that are comparable to the conventional physical BBT. Importantly, these findings highlights the potential benefits of VR therapy as a remote therapy intervention and/or to increase the effectiveness and practicality of current in-person rehabilitation programs.Implications for rehabilitationThese findings highlight the potential benefits of immersive virtual reality as a remote therapy intervention.Immersive virtual reality use has potential benefits to increase the effectiveness and practicality of current in-person rehabilitation programs.
Collapse
Affiliation(s)
- Sheridan M Parker
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Sydney C Andreasen
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Brian Ricks
- Department of Computer Science, University of Nebraska at Omaha, Omaha, NE, USA
| | - Mark S Kaipust
- Department of Occupational Therapy, Creighton University, Omaha, NE, USA
| | - Jorge Zuniga
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Brian A Knarr
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
2
|
Cui Y, Cong F, Huang F, Zeng M, Yan R. Cortical activation of neuromuscular electrical stimulation synchronized mirror neuron rehabilitation strategies: an fNIRS study. Front Neurol 2023; 14:1232436. [PMID: 37602262 PMCID: PMC10437114 DOI: 10.3389/fneur.2023.1232436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background The mirror neuron system (MNS) plays a key role in the neural mechanism underlying motor learning and neural plasticity. Action observation (AO), action execution (AE), and a combination of both, known as action imitation (AI), are the most commonly used rehabilitation strategies based on MNS. It is possible to enhance the cortical activation area and amplitude by combining traditional neuromuscular electrical stimulation (NMES) with other top-down and active rehabilitation strategies based on the MNS theory. Objective This study aimed to explore the cortical activation patterns induced by NMES synchronized with rehabilitation strategies based on MNS, namely NMES+AO, NMES+AE, and NMES+AI. In addition, the study aimed to assess the feasibility of these three novel rehabilitative treatments in order to provide insights and evidence for the design, implementation, and application of brain-computer interfaces. Methods A total of 70 healthy adults were recruited from July 2022 to February 2023, and 66 of them were finally included in the analysis. The cortical activation patterns during NMES+AO, NMES+AE, and NMES+AI were detected using the functional Near-Infrared Spectroscopy (fNIRS) technique. The action to be observed, executed, or imitated was right wrist and hand extension, and two square-shaped NMES electrodes were placed on the right extensor digitorum communis. A block design was adopted to evaluate the activation intensity of the left MNS brain regions. Results General linear model results showed that compared with the control condition, the number of channels significantly activated (PFDR < 0.05) in the NMES+AO, NMES+AE, and NMES+AI conditions were 3, 9, and 9, respectively. Region of interest (ROI) analysis showed that 2 ROIs were significantly activated (PFDR < 0.05) in the NMES+AO condition, including BA6 and BA44; 5 ROIs were significantly activated in the NMES+AE condition, including BA6, BA40, BA44, BA45, and BA46; and 6 ROIs were significantly activated in the NMES+AI condition, including BA6, BA7, BA40, BA44, BA45, and BA46. Conclusion The MNS was activated during neuromuscular electrical stimulation combined with an AO, AE, and AI intervention. The synchronous application of NMES and mirror neuron rehabilitation strategies is feasible in clinical rehabilitation. The fNIRS signal patterns observed in this study could be used to develop brain-computer interface and neurofeedback therapy rehabilitation devices.
Collapse
Affiliation(s)
- Yao Cui
- Department of Physical Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Fang Cong
- Department of Physical Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Fubiao Huang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Occupational Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Ming Zeng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang, China
| | - Ruxiu Yan
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Occupational Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
3
|
Sun X, Marks RA, Zhang K, Yu C, Eggleston RL, Nickerson N, Chou T, Hu X, Tardif T, Satterfield T, Kovelman I. Brain bases of English morphological processing: A comparison between Chinese-English, Spanish-English bilingual, and English monolingual children. Dev Sci 2023; 26:e13251. [PMID: 35188687 PMCID: PMC9615011 DOI: 10.1111/desc.13251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
Abstract
How do early bilingual experiences influence children's neural architecture for word processing? Dual language acquisition can yield common influences that may be shared across different bilingual groups, as well as language-specific influences stemming from a given language pairing. To investigate these effects, we examined bilingual English speakers of Chinese or Spanish, and English monolinguals, all raised in the US (N = 152, ages 5-10). Children completed an English morphological word processing task during fNIRS neuroimaging. The findings revealed both language-specific and shared bilingual effects. The language-specific effects were that Chinese and Spanish bilinguals showed principled differences in their neural organization for English lexical morphology. The common bilingual effects shared by the two groups were that in both bilingual groups, increased home language proficiency was associated with stronger left superior temporal gyrus (STG) activation when processing the English word structures that are most dissimilar from the home language. The findings inform theories of language and brain development during the key periods of neural reorganization for learning to read by illuminating experience-based plasticity in linguistically diverse learners.
Collapse
Affiliation(s)
- Xin Sun
- Department of PsychologyUniversity of MichiganAnn ArborAnn ArborMichiganUSA
| | - Rebecca A. Marks
- Department of PsychologyUniversity of MichiganAnn ArborAnn ArborMichiganUSA
| | - Kehui Zhang
- Department of PsychologyUniversity of MichiganAnn ArborAnn ArborMichiganUSA
| | - Chi‐Lin Yu
- Department of PsychologyUniversity of MichiganAnn ArborAnn ArborMichiganUSA
| | | | - Nia Nickerson
- Department of PsychologyUniversity of MichiganAnn ArborAnn ArborMichiganUSA
| | - Tai‐Li Chou
- Department of PsychologyNational Taiwan UniversityTaipeiTaiwan
| | - Xiao‐Su Hu
- Department of PsychologyUniversity of MichiganAnn ArborAnn ArborMichiganUSA
| | - Twila Tardif
- Department of PsychologyUniversity of MichiganAnn ArborAnn ArborMichiganUSA
| | - Teresa Satterfield
- Department of PsychologyUniversity of MichiganAnn ArborAnn ArborMichiganUSA
| | - Ioulia Kovelman
- Department of PsychologyUniversity of MichiganAnn ArborAnn ArborMichiganUSA
| |
Collapse
|
4
|
Merenstein JL, Bennett IJ. Bridging patterns of neurocognitive aging across the older adult lifespan. Neurosci Biobehav Rev 2022; 135:104594. [PMID: 35227712 PMCID: PMC9888009 DOI: 10.1016/j.neubiorev.2022.104594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 02/02/2023]
Abstract
Magnetic resonance imaging (MRI) studies of brain and neurocognitive aging rarely include oldest-old adults (ages 80 +). But predictions of neurocognitive aging theories derived from MRI findings in younger-old adults (ages ~55-80) may not generalize into advanced age, particularly given the increased prevalence of cognitive impairment/dementia in the oldest-old. Here, we reviewed the MRI literature in oldest-old adults and interpreted findings within the context of regional variation, compensation, brain maintenance, and reserve theories. Structural MRI studies revealed regional variation in brain aging as larger age effects on medial temporal and posterior regions for oldest-old than younger-old adults. They also revealed that brain maintenance explained preserved cognitive functioning into the tenth decade of life. Very few functional MRI studies examined compensatory activity in oldest-old adults who perform as well as younger groups, although there was evidence that higher brain reserve in oldest-old adults may mediate effects of brain aging on cognition. Despite some continuity, different cognitive and neural profiles across the older adult lifespan should be addressed in modern neurocognitive aging theories.
Collapse
|
5
|
Gilmore N, Yücel MA, Li X, Boas DA, Kiran S. Investigating Language and Domain-General Processing in Neurotypicals and Individuals With Aphasia - A Functional Near-Infrared Spectroscopy Pilot Study. Front Hum Neurosci 2021; 15:728151. [PMID: 34602997 PMCID: PMC8484538 DOI: 10.3389/fnhum.2021.728151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Brain reorganization patterns associated with language recovery after stroke have long been debated. Studying mechanisms of spontaneous and treatment-induced language recovery in post-stroke aphasia requires a network-based approach given the potential for recruitment of perilesional left hemisphere language regions, homologous right hemisphere language regions, and/or spared bilateral domain-general regions. Recent hardware, software, and methodological advances in functional near-infrared spectroscopy (fNIRS) make it well-suited to examine this question. fNIRS is cost-effective with minimal contraindications, making it a robust option to monitor treatment-related brain activation changes over time. Establishing clear activation patterns in neurotypical adults during language and domain-general cognitive processes via fNIRS is an important first step. Some fNIRS studies have investigated key language processes in healthy adults, yet findings are challenging to interpret in the context of methodological limitations. This pilot study used fNIRS to capture brain activation during language and domain-general processing in neurotypicals and individuals with aphasia. These findings will serve as a reference when interpreting treatment-related changes in brain activation patterns in post-stroke aphasia in the future. Twenty-four young healthy controls, seventeen older healthy controls, and six individuals with left hemisphere stroke-induced aphasia completed two language tasks (i.e., semantic feature, picture naming) and one domain-general cognitive task (i.e., arithmetic) twice during fNIRS. The probe covered bilateral frontal, parietal, and temporal lobes and included short-separation detectors for scalp signal nuisance regression. Younger and older healthy controls activated core language regions during semantic feature processing (e.g., left inferior frontal gyrus pars opercularis) and lexical retrieval (e.g., left inferior frontal gyrus pars triangularis) and domain-general regions (e.g., bilateral middle frontal gyri) during hard versus easy arithmetic as expected. Consistent with theories of post-stroke language recovery, individuals with aphasia activated areas outside the traditional networks: left superior frontal gyrus and left supramarginal gyrus during semantic feature judgment; left superior frontal gyrus and right precentral gyrus during picture naming; and left inferior frontal gyrus pars opercularis during arithmetic processing. The preliminary findings in the stroke group highlight the utility of using fNIRS to study language and domain-general processing in aphasia.
Collapse
Affiliation(s)
- Natalie Gilmore
- Department of Speech Language & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States
| | - Meryem Ayse Yücel
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA, United States
| | - Xinge Li
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA, United States.,Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, United States
| | - David A Boas
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA, United States
| | - Swathi Kiran
- Department of Speech Language & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
6
|
Copeland C, Mukherjee M, Wang Y, Fraser K, Zuniga JM. Changes in Sensorimotor Cortical Activation in Children Using Prostheses and Prosthetic Simulators. Brain Sci 2021; 11:991. [PMID: 34439610 PMCID: PMC8392534 DOI: 10.3390/brainsci11080991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to examine the neural responses of children using prostheses and prosthetic simulators to better elucidate the emulation abilities of the simulators. We utilized functional near-infrared spectroscopy (fNIRS) to evaluate the neural response in five children with a congenital upper limb reduction (ULR) using a body-powered prosthesis to complete a 60 s gross motor dexterity task. The ULR group was matched with five typically developing children (TD) using their non-preferred hand and a prosthetic simulator on the same hand. The ULR group had lower activation within the primary motor cortex (M1) and supplementary motor area (SMA) compared to the TD group, but nonsignificant differences in the primary somatosensory area (S1). Compared to using their non-preferred hand, the TD group exhibited significantly higher action in S1 when using the simulator, but nonsignificant differences in M1 and SMA. The non-significant differences in S1 activation between groups and the increased activation evoked by the simulator's use may suggest rapid changes in feedback prioritization during tool use. We suggest that prosthetic simulators may elicit increased reliance on proprioceptive and tactile feedback during motor tasks. This knowledge may help to develop future prosthesis rehabilitative training or the improvement of tool-based skills.
Collapse
Affiliation(s)
- Christopher Copeland
- Department of Biomechanics, University of Nebraska-Omaha, Omaha, NE 68182, USA; (C.C.); (M.M.); (K.F.)
| | - Mukul Mukherjee
- Department of Biomechanics, University of Nebraska-Omaha, Omaha, NE 68182, USA; (C.C.); (M.M.); (K.F.)
| | - Yingying Wang
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Kaitlin Fraser
- Department of Biomechanics, University of Nebraska-Omaha, Omaha, NE 68182, USA; (C.C.); (M.M.); (K.F.)
| | - Jorge M. Zuniga
- Department of Biomechanics, University of Nebraska-Omaha, Omaha, NE 68182, USA; (C.C.); (M.M.); (K.F.)
| |
Collapse
|
7
|
Bell L, Peng ZE, Pausch F, Reindl V, Neuschaefer-Rube C, Fels J, Konrad K. fNIRS Assessment of Speech Comprehension in Children with Normal Hearing and Children with Hearing Aids in Virtual Acoustic Environments: Pilot Data and Practical Recommendations. CHILDREN (BASEL, SWITZERLAND) 2020; 7:E219. [PMID: 33171753 PMCID: PMC7695031 DOI: 10.3390/children7110219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
The integration of virtual acoustic environments (VAEs) with functional near-infrared spectroscopy (fNIRS) offers novel avenues to investigate behavioral and neural processes of speech-in-noise (SIN) comprehension in complex auditory scenes. Particularly in children with hearing aids (HAs), the combined application might offer new insights into the neural mechanism of SIN perception in simulated real-life acoustic scenarios. Here, we present first pilot data from six children with normal hearing (NH) and three children with bilateral HAs to explore the potential applicability of this novel approach. Children with NH received a speech recognition benefit from low room reverberation and target-distractors' spatial separation, particularly when the pitch of the target and the distractors was similar. On the neural level, the left inferior frontal gyrus appeared to support SIN comprehension during effortful listening. Children with HAs showed decreased SIN perception across conditions. The VAE-fNIRS approach is critically compared to traditional SIN assessments. Although the current study shows that feasibility still needs to be improved, the combined application potentially offers a promising tool to investigate novel research questions in simulated real-life listening. Future modified VAE-fNIRS applications are warranted to replicate the current findings and to validate its application in research and clinical settings.
Collapse
Affiliation(s)
- Laura Bell
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.R.); (K.K.)
| | - Z. Ellen Peng
- Teaching and Research Area of Medical Acoustics, Institute of Technical Acoustics, RWTH Aachen University, 52074 Aachen, Germany; (F.P.); (J.F.)
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Florian Pausch
- Teaching and Research Area of Medical Acoustics, Institute of Technical Acoustics, RWTH Aachen University, 52074 Aachen, Germany; (F.P.); (J.F.)
| | - Vanessa Reindl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.R.); (K.K.)
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, 52428 Juelich, Germany
| | - Christiane Neuschaefer-Rube
- Clinic of Phoniatrics, Pedaudiology, and Communication Disorders, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
| | - Janina Fels
- Teaching and Research Area of Medical Acoustics, Institute of Technical Acoustics, RWTH Aachen University, 52074 Aachen, Germany; (F.P.); (J.F.)
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (V.R.); (K.K.)
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, 52428 Juelich, Germany
| |
Collapse
|
8
|
Karunakaran KD, Peng K, Berry D, Green S, Labadie R, Kussman B, Borsook D. NIRS measures in pain and analgesia: Fundamentals, features, and function. Neurosci Biobehav Rev 2020; 120:335-353. [PMID: 33159918 DOI: 10.1016/j.neubiorev.2020.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Current pain assessment techniques based only on clinical evaluation and self-reports are not objective and may lead to inadequate treatment. Having a functional biomarker will add to the clinical fidelity, diagnosis, and perhaps improve treatment efficacy in patients. While many approaches have been deployed in pain biomarker discovery, functional near-infrared spectroscopy (fNIRS) is a technology that allows for non-invasive measurement of cortical hemodynamics. The utility of fNIRS is especially attractive given its ability to detect specific changes in the somatosensory and high-order cortices as well as its ability to measure (1) brain function similar to functional magnetic resonance imaging, (2) graded responses to noxious and innocuous stimuli, (3) analgesia, and (4) nociception under anesthesia. In this review, we evaluate the utility of fNIRS in nociception/pain with particular focus on its sensitivity and specificity, methodological advantages and limitations, and the current and potential applications in various pain conditions. Everything considered, fNIRS technology could enhance our ability to evaluate evoked and persistent pain across different age groups and clinical populations.
Collapse
Affiliation(s)
- Keerthana Deepti Karunakaran
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States.
| | - Ke Peng
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States; Département en Neuroscience, Centre de Recherche du CHUM, l'Université de Montréal Montreal, QC, Canada
| | - Delany Berry
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Stephen Green
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Robert Labadie
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Barry Kussman
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States.
| |
Collapse
|
9
|
Yeung MK, Chan AS. A Systematic Review of the Application of Functional Near-Infrared Spectroscopy to the Study of Cerebral Hemodynamics in Healthy Aging. Neuropsychol Rev 2020; 31:139-166. [PMID: 32959167 DOI: 10.1007/s11065-020-09455-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies have shown that healthy aging is associated with functional brain deterioration that preferentially affects the prefrontal cortex. This article reviews the application of an alternative method, functional near-infrared spectroscopy (fNIRS), to the study of age-related changes in cerebral hemodynamics and factors that influence cerebral hemodynamics in the elderly population. We conducted literature searches in PudMed and PsycINFO, and selected only English original research articles that used fNIRS to study healthy individuals with a mean age of ≥ 55 years. All articles were published in peer-reviewed journals between 1977 and May 2019. We synthesized 114 fNIRS studies examining hemodynamic changes that occurred in the resting state and during the tasks of sensation and perception, motor control, semantic processing, word retrieval, attentional shifting, inhibitory control, memory, and emotion and motivation in healthy older adults. This review, which was not registered in a registry, reveals an age-related reduction in resting-state cerebral oxygenation and connectivity in the prefrontal cortex. It also shows that aging is associated with a reduction in functional hemispheric asymmetry and increased compensatory activity in the frontal lobe across multiple task domains. In addition, this article describes the beneficial effects of healthy lifestyles and the detrimental effects of cardiovascular disease risk factors on brain functioning among nondemented older adults. Limitations of this review include exclusion of gray and non-English literature and lack of meta-analysis. Altogether, the fNIRS literature provides some support for various neurocognitive aging theories derived from task-based PET and fMRI studies. Because fNIRS is relatively motion-tolerant and environmentally unconstrained, it is a promising tool for fostering the development of aging biomarkers and antiaging interventions.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China.
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, China. .,Chanwuyi Research Center for Neuropsychological Well-being, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
10
|
Safyer P, Volling BL, Wagley N, Hu X, Swain JE, Arredondo MM, Kovelman I. More than meets the eye: The neural development of emotion face processing during infancy. Infant Behav Dev 2020; 59:101430. [PMID: 32146254 PMCID: PMC7315358 DOI: 10.1016/j.infbeh.2020.101430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/21/2022]
Abstract
This study explored the impact of infant temperament and maternal stress on the development of the infant medial prefrontal cortex (mPFC) among sixteen 6-8-month-old infants. Functional Near Infrared Spectroscopy (fNIRS) was used to measure activation of the infant mPFC in response to angry, happy, and sad faces. Infant temperament and dimensions of maternal stress were measured with the Infant Behavior Questionnaire and the Parenting Stress Index Respectively. Infants with high negative emotionality demonstrated increased mPFC activation in association with all emotion face conditions. Negative emotionality moderated the effect of total maternal stress on mPFC activation to angry and sad faces. Mother-infant dysfunctional interaction was related to increased mPFC activation associated with happy faces, supporting the "novelty hypothesis", in which the mPFC responds more strongly to unique experiences. Therefore, this study provides additional evidence that infant temperament and the quality of the mother-infant relationship influence the development of the mPFC and how infants process emotions.
Collapse
Affiliation(s)
| | | | | | - Xiaosu Hu
- University of Michigan, United States
| | | | | | | |
Collapse
|
11
|
LEE JOOHYUN, JUNG YOUNGJIN. FUNCTIONAL NEAR-INFRARED SPECTROSCOPY-BASED UPPER EXTREMITY FUNCTION REHABILITATION FOR STROKE SURVIVOR: A REVIEW. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519420500013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, the functional near-infrared spectroscopy (600–900[Formula: see text]nm electromagnetic wave) ([Formula: see text]-NIRS)-based rehabilitation researches have been studied for understanding the human brain. Although [Formula: see text]-NIRS can successfully measure the relative blood concentration changes of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) as an assessment tool to identify significant clinical intervention during pre- and post-rehabilitation therapy for stroke survivors, there is insufficient information particularly on the use of [Formula: see text]-NIRS as a clinical translation in upper extremity function rehabilitation. In order to widely utilize the [Formula: see text]-NIRS for upper extremity rehabilitation, device information, experiment design, measurement procedure, and analyzing method are described for clinician aspect in this study. In addition, further research trend was introduced from previous studies for stroke survivor rehabilitation. The authors believed that the information provided in this study can be a useful guideline to encourage future researchers to focus on upper extremity function rehabilitation of stroke survivors.
Collapse
Affiliation(s)
- JOO-HYUN LEE
- Department of Occupational Therapy, Baekseok University, Cheonan 31065, Republic of Korea
| | - YOUNG-JIN JUNG
- Department of Radiological Science, Dongseo University, Busan 47011, Republic of Korea
| |
Collapse
|
12
|
Udina C, Avtzi S, Durduran T, Holtzer R, Rosso AL, Castellano-Tejedor C, Perez LM, Soto-Bagaria L, Inzitari M. Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A Review. Front Aging Neurosci 2020; 11:367. [PMID: 32038224 PMCID: PMC6985209 DOI: 10.3389/fnagi.2019.00367] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
The integrity of the frontal areas of the brain, specifically the prefrontal cortex, are critical to preserve cognition and mobility in late life. Prefrontal cortex regions are involved in executive functions and gait control and have been related to the performance of dual-tasks. Dual-task performance assessment may help identify older adults at risk of negative health outcomes. As an alternative to neuroimaging techniques that do not allow assessment during actual motion, functional Near-Infrared Spectroscopy (fNIRS) is a non-invasive technique that can assess neural activation through the measurement of cortical oxygenated and deoxygenated hemoglobin levels, while the person is performing a motor task in a natural environment as well as during cognitive tasks. The aim of this review was to describe the use of fNIRS to study frontal lobe hemodynamics during cognitive, motor and dual-tasks in older adults. From the 46 included publications, 20 studies used only cognitive tasks, three studies used motor tasks and 23 used dual-tasks. Our findings suggest that fNIRS detects changes in frontal activation in older adults (cognitively healthy and mild cognitive impairment), especially while performing cognitive and dual-tasks. In both the comparison between older and younger adults, and in people with different neurological conditions, compared to healthier controls, the prefrontal cortex seems to experience a higher activation, which could be interpreted in the context of proposed neural inefficiency and limited capacity models. Further research is needed to establish standardized fNIRS protocols, study the cerebral hemodynamic in different neurological and systemic conditions that might influence cortical activation and explore its role in predicting incident health outcomes such as dementia.
Collapse
Affiliation(s)
- Cristina Udina
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stella Avtzi
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Turgut Durduran
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, NY, United States.,Department of Neurology, Albert Einstein College of Medicine, New York, NY, United States
| | - Andrea L Rosso
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carmina Castellano-Tejedor
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura-Monica Perez
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain
| | - Luis Soto-Bagaria
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain
| | - Marco Inzitari
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Neural Compensatory Response During Complex Cognitive Function Tasks in Mild Cognitive Impairment: A Near-Infrared Spectroscopy Study. Neural Plast 2019; 2019:7845104. [PMID: 31320893 PMCID: PMC6607700 DOI: 10.1155/2019/7845104] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/09/2019] [Indexed: 11/17/2022] Open
Abstract
The present pilot study was aimed at conducting a comparative analysis of the level of activation in the prefrontal cortex among a normal elderly group and amnestic and nonamnestic mild cognitive impairment (MCI) groups and investigating the presence of neural compensatory mechanisms according to types of MCI and different cognitive tasks. We performed functional near-infrared spectroscopy (fNIRS) along with cognitive tasks, including two-back test, Korean color word Stroop test, and semantic verbal fluency task (SVFT), to investigate hemodynamic response and the presence of neural compensation and neuroplasticity in the prefrontal cortex of patients with amnestic and nonamnestic MCI compared with a healthy elderly group. During the two-back test, there was no significant difference in the bilateral region-of-interest (ROI) analysis in the three groups. During the Stroop test, right-sided hyperactivation compared to the left side during the task was shown in the nonamnestic MCI and normal groups with statistical significance. Mean acc∆HbO2 on the right side was highest in the nonamnestic MCI group (0.30 μM) followed by the normal group (0.07 μM) and the amnestic MCI group (-0.10 μM). Otherwise, intergroup ROI analysis of acc∆HbO2 in these activated right sides showed no significant difference. During the VFT test, there was no significant difference in the bilateral region-of-interest analysis in the three groups. The highest mean acc∆HbO2 was shown in the normal group (0.79 μM) followed by the nonamnestic MCI group (0.52 μM) and the amnestic MCI group (0.21 μM). Otherwise, there was no significant difference between groups. The hemodynamic response during fNIRS showed different findings according to MCI types and cognitive tasks. Among the three tasks, the Stroop test showed results that were suggestive of neural compensatory mechanisms in the prefrontal cortex in nonamnestic MCI.
Collapse
|
14
|
Liu X, Kim CS, Hong KS. An fNIRS-based investigation of visual merchandising displays for fashion stores. PLoS One 2018; 13:e0208843. [PMID: 30533055 PMCID: PMC6289445 DOI: 10.1371/journal.pone.0208843] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/25/2018] [Indexed: 02/06/2023] Open
Abstract
This paper investigates a brain-based approach for visual merchandising display (VMD) in fashion stores. In marketing, VMD has become a research topic of interest. However, VMD research using brain activation information is rare. We examine the hemodynamic responses (HRs) in the prefrontal cortex (PFC) using functional near-infrared spectroscopy (fNIRS) while positive/negative displays of four stores (menswear, womenswear, underwear, and sportswear) are shown to 20 subjects. As features for classifying the HRs, the mean, variance, peak, skewness, kurtosis, t-value, and slope of the signals for a 20-sec time window for the activated channels are analyzed. Linear discriminant analysis is used for classifying two-class (positive and negative displays) and four-class (four fashion stores) models. PFC brain activation maps based on t-values depicting the data from the 16 channels are provided. In the two-class classification, the underwear store had the highest average classification result of 67.04%, whereas the menswear store had the lowest value of 64.15%. Men's classification accuracy for the underwear stores with positive and negative displays was 71.38%, whereas the highest classification accuracy obtained by women for womenswear stores was 73%. The average accuracy over the 20 subjects for positive displays was 50.68%, while that of negative displays was 51.07%. Therefore, these findings suggest that human brain activation is involved in the evaluation of the fashion store displays. It is concluded that fNIRS can be used as a brain-based tool in the evaluation of fashion stores in a daily life environment.
Collapse
Affiliation(s)
- Xiaolong Liu
- School of Mechanical Engineering, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
- School of Life Science and Technology, University of Electronic Science and Technology of China, West Hi-Tech Zone, Chengdu, Sichuan, P. R. China
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650-900 nm) to measure changes in cerebral blood volume and oxygenation. Over the last several decades, this technique has been utilized in a growing number of functional and resting-state brain studies. The lower operation cost, portability, and versatility of this method make it an alternative to methods such as functional magnetic resonance imaging for studies in pediatric and special populations and for studies without the confining limitations of a supine and motionless acquisition setup. However, the analysis of fNIRS data poses several challenges stemming from the unique physics of the technique, the unique statistical properties of data, and the growing diversity of non-traditional experimental designs being utilized in studies due to the flexibility of this technology. For these reasons, specific analysis methods for this technology must be developed. In this paper, we introduce the NIRS Brain AnalyzIR toolbox as an open-source Matlab-based analysis package for fNIRS data management, pre-processing, and first- and second-level (i.e., single subject and group-level) statistical analysis. Here, we describe the basic architectural format of this toolbox, which is based on the object-oriented programming paradigm. We also detail the algorithms for several of the major components of the toolbox including statistical analysis, probe registration, image reconstruction, and region-of-interest based statistics.
Collapse
Affiliation(s)
- Hendrik Santosa
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA
| | - Xuetong Zhai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA
| | - Frank Fishburn
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA
| | - Theodore Huppert
- Departments of Radiology and Bioengineering, University of Pittsburgh, Clinical Science Translational Institute, and Center for the Neural Basis of Cognition, Pittsburgh, PA 15213-2536, USA
| |
Collapse
|