1
|
Wolfstetter G, Masudi T, Uçkun E, Zhu JY, Yi M, Anthonydhason V, Guan J, Sonnenberg H, Han Z, Palmer RH. Alk Tango reveals a role for Jeb/Alk signaling in the Drosophila heart. Cell Commun Signal 2025; 23:229. [PMID: 40382638 DOI: 10.1186/s12964-025-02150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/11/2025] [Indexed: 05/20/2025] Open
Abstract
Anaplastic lymphoma kinase (Alk) signaling is important in a variety of biological contexts such as cell type specification, regulation of metabolic and endocrine programs, behavior, and cancer. In this work, we generated a Tango GPCR assay-based, dimerization-sensitive Alk activity reporter (AlkTango) and followed receptor activation throughout Drosophila development. AlkTango reports Alk activation in embryonic and larval tissues previously linked to Alk signaling. Remarkably, AlkTango was active in the heart of Drosophila larvae and adult flies. We show that cardiomyocytes express Alk from late embryonic stages to adulthood, while jeb expression in pericardial cells coincided with AlkTango activity. Perturbation of cardiac Alk signaling leads to decreased adult survival as well as lower fitness and increased lethality in response to heat stress. In keeping with a role for Alk, heart measurements reveal arrythmia and irregular muscle contraction upon ligand stimulation. Finally, activation of cardiac Alk signaling induces hyperplasia in the accessory wing hearts of adult flies.
Collapse
Affiliation(s)
- G Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - T Masudi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - E Uçkun
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - J Y Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - M Yi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - V Anthonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - J Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - H Sonnenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Z Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - R H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden.
| |
Collapse
|
2
|
Li H, Sung HH, Huang YC, Cheng YJ, Yeh HF, Pi H, Giniger E, Chien CT. Fringe-positive Golgi outposts unite temporal Furin 2 convertase activity and spatial Delta signal to promote dendritic branch retraction. Cell Rep 2022; 40:111372. [PMID: 36130510 PMCID: PMC11463699 DOI: 10.1016/j.celrep.2022.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Golgi outposts (GOPs) in dendrites are known for their role in promoting branch extension, but whether GOPs have other functions is unclear. We found that terminal branches of Drosophila class IV dendritic arborization (C4da) neurons actively grow during the early third-instar (E3) larval stage but retract in the late third (L3) stage. Interestingly, the Fringe (Fng) glycosyltransferase localizes increasingly at GOPs in distal dendritic regions through the E3 to the L3 stage. Expression of the endopeptidase Furin 2 (Fur2), which proteolyzes and inactivates Fng, decreases from E3 to L3 in C4da neurons, thereby increasing Fng-positive GOPs in dendrites. The epidermal Delta ligand and neuronal Notch receptor, the substrate for Fng-mediated O-glycosylation, also negatively regulate dendrite growth. Fng inhibits actin dynamics in dendrites, linking dendritic branch retraction to suppression of the C4da-mediated thermal nociception response in late larval stages. Thus, Fng-positive GOPs function in dendrite retraction, which would add another function to the repertoire of GOPs in dendrite arborization.
Collapse
Affiliation(s)
- Hsun Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Ho Sung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chun Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiao-Fong Yeh
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Haiwei Pi
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
3
|
Jayakumar S, Richhariya S, Deb BK, Hasan G. A Multicomponent Neuronal Response Encodes the Larval Decision to Pupariate upon Amino Acid Starvation. J Neurosci 2018; 38:10202-10219. [PMID: 30301757 PMCID: PMC6246885 DOI: 10.1523/jneurosci.1163-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Organisms need to coordinate growth with development, particularly in the context of nutrient availability. Thus, multiple ways have evolved to survive extrinsic nutrient deprivation during development. In Drosophila, growth occurs during larval development. Larvae are thus critically dependent on nutritional inputs; but after critical weight, they pupariate even when starved. How nutrient availability is coupled to the internal metabolic state for the decision to pupariate needs better understanding. We had earlier identified glutamatergic interneurons in the ventral ganglion that regulate pupariation on a protein-deficient diet. Here we report that Drosophila third instar larvae (either sex) sense arginine to evaluate their nutrient environment using an amino acid transporter Slimfast. The glutamatergic interneurons integrate external protein availability with internal metabolic state through neuropeptide signals. IP3-mediated calcium release and store-operated calcium entry are essential in these glutamatergic neurons for such integration and alter neuronal function by reducing the expression of multiple ion channels.SIGNIFICANCE STATEMENT Coordinating growth with development, in the context of nutrient availability is a challenge for all organisms in nature. After attainment of "critical weight," insect larvae can pupariate, even in the absence of nutrition. Mechanism(s) that stimulate appropriate cellular responses and allow normal development on a nutritionally deficient diet remain to be understood. Here, we demonstrate that nutritional deprivation, in postcritical weight larvae, is sensed by special sensory neurons through an amino acid transporter that detects loss of environmental arginine. This information is integrated by glutamatergic interneurons with the internal metabolic state through neuropeptide signals. These glutamatergic interneurons require calcium-signaling-regulated expression of a host of neuronal channels to generate complex calcium signals essential for pupariation on a protein-deficient diet.
Collapse
Affiliation(s)
| | | | - Bipan Kumar Deb
- National Centre for Biological Sciences, TIFR, Bangalore 560065
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFR, Bangalore 560065
| |
Collapse
|
4
|
Herman JA, Willits AB, Bellemer A. Gαq and Phospholipase Cβ signaling regulate nociceptor sensitivity in Drosophila melanogaster larvae. PeerJ 2018; 6:e5632. [PMID: 30258723 PMCID: PMC6151255 DOI: 10.7717/peerj.5632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/24/2018] [Indexed: 12/29/2022] Open
Abstract
Drosophila melanogaster larvae detect noxious thermal and mechanical stimuli in their environment using polymodal nociceptor neurons whose dendrites tile the larval body wall. Activation of these nociceptors by potentially tissue-damaging stimuli elicits a stereotyped escape locomotion response. The cellular and molecular mechanisms that regulate nociceptor function are increasingly well understood, but gaps remain in our knowledge of the broad mechanisms that control nociceptor sensitivity. In this study, we use cell-specific knockdown and overexpression to show that nociceptor sensitivity to noxious thermal and mechanical stimuli is correlated with levels of Gαq and phospholipase Cβ signaling. Genetic manipulation of these signaling mechanisms does not result in changes in nociceptor morphology, suggesting that changes in nociceptor function do not arise from changes in nociceptor development, but instead from changes in nociceptor activity. These results demonstrate roles for Gαq and phospholipase Cβ signaling in facilitating the basal sensitivity of the larval nociceptors to noxious thermal and mechanical stimuli and suggest future studies to investigate how these signaling mechanisms may participate in neuromodulation of sensory function.
Collapse
Affiliation(s)
- Joshua A Herman
- Department of Biology, Appalachian State University, Boone, NC, United States of America
| | - Adam B Willits
- Department of Biology, Appalachian State University, Boone, NC, United States of America
| | - Andrew Bellemer
- Department of Biology, Appalachian State University, Boone, NC, United States of America
| |
Collapse
|