1
|
Delen Y, Mural RV, Palali‐Delen S, Xu G, Schnable JC, Dweikat I, Yang J. Dissecting the genetic architecture of sunflower disc diameter using genome-wide association study. PLANT DIRECT 2024; 8:e70010. [PMID: 39385760 PMCID: PMC11464090 DOI: 10.1002/pld3.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/31/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
Sunflower (Helianthus annuus L.) plays an essential role in meeting the demand for edible oil worldwide. The yield of sunflower seeds encompasses several component traits, including the disc diameter. Over three consecutive years, 2019, 2020, and 2022, we assessed phenotypic variation in disc diameter across a diverse set of sunflower accessions (N = 342) in replicated field trials. Upon aggregating the phenotypic data from multiple years, we estimated the broad sense heritability (H 2) of the disc diameter trait to be 0.88. A subset of N = 274 accessions was genotyped by using the tunable genotyping-by-sequencing (tGBS) method, resulting in 226,779 high-quality SNPs. Using these SNPs and the disc diameter phenotype, we conducted a genome-wide association study (GWAS) employing two statistical approaches: the mixed linear model (MLM) and the fixed and random model circulating probability unification (farmCPU). The MLM and farmCPU GWAS approaches identified 106 and 8 significant SNPs located close to 53 and 21 genes, respectively. The MLM analysis identified two significant peaks: a prominent signal on chromosome 10 and a relatively weaker signal on chromosome 16, both of which were also detected by farmCPU. The genetic loci associated with disc diameter, as well as the related candidate genes, present promising avenues for further functional validation and serve as a basis for sunflower oil yield improvement.
Collapse
Affiliation(s)
- Yavuz Delen
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Ravi V. Mural
- Department of Agronomy, Horticulture and Plant ScienceSouth Dakota State UniversityBrookingsSDUSA
| | - Semra Palali‐Delen
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Gen Xu
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| | - James C. Schnable
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Ismail Dweikat
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Jinliang Yang
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| |
Collapse
|
2
|
Rieu P, Arnoux-Courseaux M, Tichtinsky G, Parcy F. Thinking outside the F-box: how UFO controls angiosperm development. THE NEW PHYTOLOGIST 2023; 240:945-959. [PMID: 37664990 DOI: 10.1111/nph.19234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023]
Abstract
The formation of inflorescences and flowers is essential for the successful reproduction of angiosperms. In the past few decades, genetic studies have identified the LEAFY transcription factor and the UNUSUAL FLORAL ORGANS (UFO) F-box protein as two major regulators of flower development in a broad range of angiosperm species. Recent research has revealed that UFO acts as a transcriptional cofactor, redirecting the LEAFY floral regulator to novel cis-elements. In this review, we summarize the various roles of UFO across species, analyze past results in light of new discoveries and highlight the key questions that remain to be solved.
Collapse
Affiliation(s)
- Philippe Rieu
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - Moïra Arnoux-Courseaux
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - Gabrielle Tichtinsky
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| |
Collapse
|
3
|
Tsai WA, Sung PH, Kuo YW, Chen MC, Jeng ST, Lin JS. Involvement of microRNA164 in responses to heat stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111598. [PMID: 36657663 DOI: 10.1016/j.plantsci.2023.111598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
MicroRNAs (miRNAs) are considered to be integral parts of plant stress regulatory networks. Under long-term heat stress, miR164 is induced. Conversely, its targets are repressed. Transgenic overexpressors (164OE) and mutants of MIR164 (mir164) were used to study miR164's functions during heat responses. Target gene expression decreased in 164OE transgenic plants and increased in mir164a-4 and mir164b mutants. Under heat stress, the mir164 mutants presented heat-sensitive phenotypes, while 164OE transgenic plants showed better thermotolerance than wild-type (WT) plants. Overexpression of miR164 decreased heat-inhibition of hypocotyl lengths. Under heat stress, miR164 target genes modulated the expression of chlorophyll b reductase and chlorophyll catabolic genes, reducing the chlorophyll a/b ratio. More H2O2 accumulated in the mir164 mutants under heat stress, which may have caused oxidative damage. In addition, expression of HSPs was altered in the experimental plants compared to that of the WT. Overall, miR164 influenced target gene expression, altering development, chlorophyll a/b ratio, H2O2-caused damage, and HSPs expression under long-term heat stress. These phenomena, in turn, likely influence the thermotolerance of plants.
Collapse
Affiliation(s)
- Wei-An Tsai
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| | - Po-Han Sung
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Yun-Wei Kuo
- Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming 365000, Fujian, China.
| | - Ming-Cheng Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
4
|
Huang Z, Dinh TT, Luscher E, Li S, Liu X, Won SY, Chen X. Genetic Screens for Floral Mutants in Arabidopsis thaliana: Enhancers and Suppressors. Methods Mol Biol 2023; 2686:131-162. [PMID: 37540357 DOI: 10.1007/978-1-0716-3299-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The flower is a hallmark feature that has contributed to the evolutionary success of land plants. Diverse mutagenic agents have been employed as a tool to genetically perturb flower development and identify genes involved in floral patterning and morphogenesis. Since the initial studies to identify genes governing processes such as floral organ specification, mutagenesis in sensitized backgrounds has been used to isolate enhancers and suppressors to further probe the molecular basis of floral development. Here, we first describe two commonly employed methods for mutagenesis (using ethyl methanesulfonate (EMS) or T-DNAs as mutagens), and then describe three methods for identifying a mutation that leads to phenotypic alterations: traditional map-based cloning, modified high-efficiency thermal asymmetric interlaced PCR (mhiTAIL-PCR), and deep sequencing in the plant model Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhigang Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Thanh Theresa Dinh
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Elizabeth Luscher
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Shaofang Li
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Xigang Liu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - So Youn Won
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Xuemei Chen
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
5
|
Chahtane H, Lai X, Tichtinsky G, Rieu P, Arnoux-Courseaux M, Cancé C, Marondedze C, Parcy F. Flower Development in Arabidopsis. Methods Mol Biol 2023; 2686:3-38. [PMID: 37540352 DOI: 10.1007/978-1-0716-3299-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Like in other angiosperms, the development of flowers in Arabidopsis starts right after the floral transition, when the shoot apical meristem (SAM) stops producing leaves and makes flowers instead. On the flanks of the SAM emerge the flower meristems (FM) that will soon differentiate into the four main floral organs, sepals, petals, stamens, and pistil, stereotypically arranged in concentric whorls. Each phase of flower development-floral transition, floral bud initiation, and floral organ development-is under the control of specific gene networks. In this chapter, we describe these different phases and the gene regulatory networks involved, from the floral transition to the floral termination.
Collapse
Affiliation(s)
- Hicham Chahtane
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Institut de Recherche Pierre Fabre, Green Mission Pierre Fabre, Conservatoire Botanique Pierre Fabre, Soual, France
| | - Xuelei Lai
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Wuhan, China
| | | | - Philippe Rieu
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | - Coralie Cancé
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
| | - Claudius Marondedze
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Senga, Gweru, Zimbabwe
| | - François Parcy
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France.
| |
Collapse
|
6
|
Wen S, Li J, Hao Z, Wei L, Ma J, Zong Y, Li H. Overexpression of the LcCUC2-like gene in Arabidopsis thaliana alters the cotyledon morphology and increases rosette leaf number. PeerJ 2022; 10:e12615. [PMID: 35178288 PMCID: PMC8817629 DOI: 10.7717/peerj.12615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/18/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The unique 'mandarin jacket' leaf shape is the most famous trait of Liriodendron chinense and this characteristic gives L. chinense aesthetic and landscaping value. However, the underlying regulatory mechanism of genes involved in the leaf development of L. chinense has remained unclear. METHODS Based on transcriptome data of leaves at different developmental stages from L. chinense, we identified differentially expression genes (DEGs) functioning in leaf development. A candidate gene named LcCUC2-like (LcCUC2L) had high similarity in sequence with Arabidopsis thaliana CUC2, and used for further research. We isolated the full-length LcCUC2L gene and its promoter from L. chinense. Subsequently, we analyzed the function of the LcCUC2L gene and its promoter activity via transformation into A. thaliana. RESULTS In this study, we found that the LcCUC2L and AtCUC2 are homologous in sequence but not homologous in function. Unlike the role of AtCUC2 in leaf serration and SAM formation, the LcCUC2L mainly regulates cotyledon development and rosette leaf number. Histochemical β-glucuronidase (GUS) staining revealed that LcCUC2L was expressed in the cotyledons of A. thaliana seedlings, indicating that the LcCUC2L may play a role in cotyledon development. Ectopic expression of LcCUC2L resulted in long, narrow cotyledons without petioles, abnormal lamina epidermis cells and defective vascular tissue in cotyledons, and these results were consistent with the LcCUC2L expression pattern. Further analysis showed that overexpression of LcCUC2L also induced numerous rosette leaves. Also, LcCUC2L and other related genes showed a severe response in L. chinense by introducing exogenous auxin stimulation, partly revealed that LcCUC2L affects the leaf development by regulating the auxin content. CONCLUSIONS These results suggest that LcCUC2L may play a critical role in leaf development and morphogenesis in L. chinense, and our findings provide insight into the molecular mechanisms of leaf development in L. chinense.
Collapse
Affiliation(s)
- Shaoying Wen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jiayu Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ziyuan Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Lingmin Wei
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jikai Ma
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Borna RS, Murchie EH, Pyke KA, Roberts JA, Gonzalez‐Carranza ZH. The rice EP3 and OsFBK1 E3 ligases alter plant architecture and flower development, and affect transcript accumulation of microRNA pathway genes and their targets. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:297-309. [PMID: 34543503 PMCID: PMC8753360 DOI: 10.1111/pbi.13710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
ERECTA PANICLE 3 (EP3) and ORYZA SATIVA F-BOX KELCH 1 (OsFBK1) proteins share 57% and 54% sequence identity with the Arabidopsis F-box protein HAWAIIAN SKIRT (HWS). Previously we showed that EP3 is a functional orthologue of HWS. Here we demonstrate that OsFBK1 is another functional orthologue of HWS and show the complexity of interaction between EP3 and OsFBK1 genes at different developmental stages of the plant. qRT-PCR expression analyses and studies of EP3-GFP and OsFBK1-RFP promoter reporter lines demonstrate that although EP3 and OsFBK1 expression can be detected in the same tissues some cells exclusively express EP3 or OsFBK1 whilst others co-express both genes. Loss, reduction or gain-of-function lines for EP3 and OsFBK1, show that EP3 and OsFBK1 affect plant architecture, organ size, floral organ number and size, floral morphology, pollen viability, grain size and weight. We have identified the putative orthologue genes of the rice microRNA pathway for ORYZA SATIVA DAWDLE (OsDDL) and ORYZA SATIVA SERRATE (OsSE), and demonstrated that EP3 and OsFBK1 affect their transcript levels as well as those of CROWN ROOT DEFECT 1/ORYZA SATIVA Exportin-5 HASTY (CRD1/OsHST), ORYZA SATIVA DICER-LIKE 1 (OsDCL) and ORYZA SATIVA WEAVY LEAF1 (OsWAF1). We show that EP3 affects OsPri-MIR164, OsNAM1 and OsNAC1 transcript levels. OsNAC1 transcripts are modified by OsFBK1, suggesting two independent regulatory pathways, one via EP3 and OsMIR164 and the other via OsFBK1. Our data propose that EP3 and OsFBK1 conjointly play similar roles in rice to how HWS does in Arabidopsis.
Collapse
Affiliation(s)
- Rita S. Borna
- Plant and Crop Sciences DivisionSchool of BiosciencesUniversity of NottinghamNottinghamUK
- Present address:
Department of BotanyUniversity of DhakaDhaka1000Bangladesh
| | - Erik H. Murchie
- Plant and Crop Sciences DivisionSchool of BiosciencesUniversity of NottinghamNottinghamUK
| | - Kevin A. Pyke
- Plant and Crop Sciences DivisionSchool of BiosciencesUniversity of NottinghamNottinghamUK
| | - Jeremy A. Roberts
- Plant and Crop Sciences DivisionSchool of BiosciencesUniversity of NottinghamNottinghamUK
- Present address:
Faculty of Science and EngineeringSchool of Biological & Marine SciencesUniversity of PlymouthDevonUK
| | | |
Collapse
|
8
|
Aslam M, She Z, Jakada BH, Fakher B, Greaves JG, Yan M, Chen Y, Zheng P, Cheng Y, Qin Y. Interspecific complementation-restoration of phenotype in Arabidopsis cuc2cuc3 mutant by sugarcane CUC2 gene. BMC PLANT BIOLOGY 2022; 22:47. [PMID: 35065620 PMCID: PMC8783490 DOI: 10.1186/s12870-022-03440-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In plants, a critical balance between differentiation and proliferation of stem cells at the shoot apical meristem zone is essential for proper growth. The spatiotemporal regulation of some crucial genes dictates the formation of a boundary within and around budding organs. The boundary plays a pivotal role in distinguishing one tissue type from another and provides a defined shape to the organs at their developed stage. NAM/CUC subfamily of the NAC transcription factors control the boundary formation during meristematic development. RESULTS Here, we have identified the CUP-SHAPED COTYLEDON (CUC) genes in sugarcane and named SsCUC2 (for the orthologous gene of CUC1 and CUC2) and SsCUC3. The phylogenetic reconstruction showed that SsCUCs occupy the CUC2 and CUC3 clade together with monocots, whereas eudicot CUC2 and CUC3 settled separately in the different clade. The structural analysis of CUC genes showed that most of the CUC3 genes were accompanied by an intron gain during eudicot divergence. Besides, the study of SsCUCs expression in the RNA-seq obtained during different stages of ovule development revealed that SsCUCs express in developing young tissues, and the expression of SsCUC2 is regulated by miR164. We also demonstrate that SsCUC2 (a monocot) could complement the cuc2cuc3 mutant phenotype of Arabidopsis (eudicot). CONCLUSIONS This study further supports that CUC2 has diverged in CUC1 and CUC2 during the evolution of monocots and eudicots from ancestral plants. The functional analysis of CUC expression patterns during sugarcane ovule development and ectopic expression of SsCUC2 in Arabidopsis showed that SsCUC2 has a conserved role in boundary formation. Overall, these findings improve our understanding of the functions of sugarcane CUC genes. Our results reveal the crucial functional role of CUC genes in sugarcane.
Collapse
Affiliation(s)
- Mohammad Aslam
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 530004, Nanning, Guangxi, China
| | - Zeyuan She
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 530004, Nanning, Guangxi, China
| | - Bello Hassan Jakada
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, 350002, Fuzhou, Fujian, China
| | - Beenish Fakher
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, 350002, Fuzhou, Fujian, China
| | - Joseph G Greaves
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, 350002, Fuzhou, Fujian, China
| | - Maokai Yan
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 530004, Nanning, Guangxi, China
| | - Yingzhi Chen
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 530004, Nanning, Guangxi, China
| | - Ping Zheng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, 350002, Fuzhou, Fujian, China
| | - Yan Cheng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, 350002, Fuzhou, Fujian, China
| | - Yuan Qin
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 530004, Nanning, Guangxi, China.
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, 350002, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
|
10
|
Qu H, Liu Y, Jiang H, Liu Y, Song W, Chen L. Identification and characterization of miRNAs associated with sterile flower buds in the tea plant based on small RNA sequencing. Hereditas 2021; 158:26. [PMID: 34271985 PMCID: PMC8285856 DOI: 10.1186/s41065-021-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Background miRNAs are a type of conserved, small RNA molecule that regulate gene expression and play an important role in the growth and development of plants. miRNAs are involved in seed germination, root development, shoot apical meristem maintenance, leaf development, and flower development by regulating various target genes. However, the role of miRNAs in the mechanism of tea plant flower sterility remains unclear. Therefore, we performed miRNA sequencing on the flowers of fertile male parents, female parents, and sterile offspring. Results A total of 55 known miRNAs and 90 unknown miRNAs were identified. In the infertile progeny, 37 miRNAs were differentially expressed; 18 were up-regulated and 19 were down-regulated. miR156, miR157, miR164, miR167, miR169, miR2111 and miR396 family members were down-regulated, and miR160, miR172 and miR319 family members were up-regulated. Moreover, we predicted that the 37 differentially expressed miRNAs target a total of 363 genes, which were enriched in 31 biological functions. We predicted that miR156 targets 142 genes, including ATD1A, SPL, ACA1, ACA2, CKB22 and MADS2. Conclusion We detected a large number of differentially expressed miRNAs in the sterile tea plant flowers, and their target genes were involved in complex biological processes. Among these miRNAs, the down-regulation of miR156 may be one of the factor in the formation of sterile floral buds in tea plants. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00188-8.
Collapse
Affiliation(s)
- Hao Qu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Yue Liu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Huibing Jiang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Yufei Liu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Weixi Song
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Linbo Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China. .,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China.
| |
Collapse
|
11
|
Lombardo F, Gramazio P, Ezura H. Increase in Phloem Area in the Tomato hawaiian skirt Mutant Is Associated with Enhanced Sugar Transport. Genes (Basel) 2021; 12:genes12060932. [PMID: 34207298 PMCID: PMC8234570 DOI: 10.3390/genes12060932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022] Open
Abstract
The HAWAIIAN SKIRT (HWS) gene has been described in Arabidopsis, rice, tomato and poplar where it seems to perform distinct functions with relatively little overlap. In tomato, alteration of the gene function confers facultative parthenocarpy, thought to be a consequence of changes in the microRNA metabolism. In the rice mutant, improvement in panicle architecture is associated with an increase in grain yield. Knowing that hws tomato fruits show a higher Brix level, it was suspected that vascular bundles might also be altered in this species, in a similar fashion to the rice phenotype. The pedicel structure of the hws-1 line was therefore examined under the microscope and sugar concentrations from phloem exudate were determined in an enzymatic assay. A distinct increase in the phloem area was observed as well as a higher sugar content in mutant phloem exudates, which is hypothesized to contribute to the high Brix level in the mutant fruits. Furthermore, the described phenotype in this study bridges the gap between Arabidopsis and rice phenotypes, suggesting that the modulation of the microRNA metabolism by HWS influences traits of agricultural interest across several species.
Collapse
Affiliation(s)
- Fabien Lombardo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
- Correspondence:
| | - Pietro Gramazio
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Japan;
| |
Collapse
|
12
|
Yuan S, Kawasaki S, Abdellatif IMY, Nishida K, Kondo A, Ariizumi T, Ezura H, Miura K. Efficient base editing in tomato using a highly expressed transient system. PLANT CELL REPORTS 2021; 40:667-676. [PMID: 33550455 DOI: 10.1007/s00299-021-02662-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Base editing in tomatoes was achieved by transient expression. The Solanaceae plants, particularly the tomato (Solanum lycopersicum), is of huge economic value worldwide. The tomato is a unique model plant for studying the functions of genes related to fruit ripening. Deeper understanding of tomatoes is of great importance for both plant research and the economy. Genome editing technology, such as CRISPR/Cas9, has been used for functional genetic research. However, some challenges, such as low transformation efficiency, remain with this technology. Moreover, the foreign Cas9 and gRNA expression cassettes must be removed to obtain null-segregants In this study, we used a high-level transient expression system to improve the base editing technology. A high-level transient expression system has been established previously using geminiviral replication and a double terminator. The pBYR2HS vector was used for this transient expression system. nCas9-CDA and sgRNA-SlHWS were introduced into this vector, and the protein and RNA were then transiently expressed in tomato tissues by agroinfiltration. The homozygous mutant produced by base editing was obtained in the next generation with an efficiency of about 18%. nCas9-free next-generation plants were 71%. All the homozygous base-edited plants in next generation are nCas9-free. These findings show that the high-level transient expression system is useful for base editing in tomatoes.
Collapse
Affiliation(s)
- Shaoze Yuan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Shunsuke Kawasaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Islam M Y Abdellatif
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Keiji Nishida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan.
| |
Collapse
|
13
|
Abd-Hamid NA, Ahmad-Fauzi MI, Zainal Z, Ismail I. Diverse and dynamic roles of F-box proteins in plant biology. PLANTA 2020; 251:68. [PMID: 32072251 DOI: 10.1007/s00425-020-03356-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/05/2020] [Indexed: 05/23/2023]
Abstract
The SCF complex is a widely studied multi-subunit ring E3 ubiquitin ligase that tags targeted proteins with ubiquitin for protein degradation by the ubiquitin 26S-proteasome system (UPS). The UPS is an important system that generally keeps cellular events tightly regulated by purging misfolded or damaged proteins and selectively degrading important regulatory proteins. The specificity of this post-translational regulation is controlled by F-box proteins (FBPs) via selective recognition of a protein-protein interaction motif at the C-terminal domain. Hence, FBPs are pivotal proteins in determining the plant response in multiple scenarios. It is not surprising that the FBP family is one of the largest protein families in the plant kingdom. In this review, the roles of FBPs, specifically in plants, are compiled to provide insights into their involvement in secondary metabolites, plant stresses, phytohormone signalling, plant developmental processes and miRNA biogenesis.
Collapse
Affiliation(s)
- Nur-Athirah Abd-Hamid
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Muhammad-Izzat Ahmad-Fauzi
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
14
|
Zhang S, Tian Z, Li H, Guo Y, Zhang Y, Roberts JA, Zhang X, Miao Y. Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L. BMC Genomics 2019; 20:993. [PMID: 31856713 PMCID: PMC6921459 DOI: 10.1186/s12864-019-6280-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background F-box proteins are substrate-recognition components of the Skp1-Rbx1-Cul1-F-box protein (SCF) ubiquitin ligases. By selectively targeting the key regulatory proteins or enzymes for ubiquitination and 26S proteasome mediated degradation, F-box proteins play diverse roles in plant growth/development and in the responses of plants to both environmental and endogenous signals. Studies of F-box proteins from the model plant Arabidopsis and from many additional plant species have demonstrated that they belong to a super gene family, and function across almost all aspects of the plant life cycle. However, systematic exploration of F-box family genes in the important fiber crop cotton (Gossypium hirsutum) has not been previously performed. The genome-wide analysis of the cotton F-box gene family is now possible thanks to the completion of several cotton genome sequencing projects. Results In current study, we first conducted a genome-wide investigation of cotton F-box family genes by reference to the published F-box protein sequences from other plant species. 592 F-box protein encoding genes were identified in the Gossypium hirsutume acc.TM-1 genome and, subsequently, we were able to present their gene structures, chromosomal locations, syntenic relationships with their parent species. In addition, duplication modes analysis showed that cotton F-box genes were distributed to 26 chromosomes, with the maximum number of genes being detected on chromosome 5. Although the WGD (whole-genome duplication) mode seems play a dominant role during cotton F-box gene expansion process, other duplication modes including TD (tandem duplication), PD (proximal duplication), and TRD (transposed duplication) also contribute significantly to the evolutionary expansion of cotton F-box genes. Collectively, these bioinformatic analysis suggest possible evolutionary forces underlying F-box gene diversification. Additionally, we also conducted analyses of gene ontology, and expression profiles in silico, allowing identification of F-box gene members potentially involved in hormone signal transduction. Conclusion The results of this study provide first insights into the Gossypium hirsutum F-box gene family, which lays the foundation for future studies of functionality, particularly those involving F-box protein family members that play a role in hormone signal transduction.
Collapse
Affiliation(s)
- Shulin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Haipeng Li
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yutao Guo
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yanqi Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Devon, UK
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| |
Collapse
|
15
|
Zheng G, Wei W, Li Y, Kan L, Wang F, Zhang X, Li F, Liu Z, Kang C. Conserved and novel roles of miR164-CUC2 regulatory module in specifying leaf and floral organ morphology in strawberry. THE NEW PHYTOLOGIST 2019; 224:480-492. [PMID: 31179543 DOI: 10.1111/nph.15982] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are a kind of short noncoding RNA (20-24 nt), playing versatile roles in plant growth and development. Strawberry generates leaves and flowers with unique features. However, few miRNAs have been functionally characterised in strawberry, especially for their developmental regulation. Here, we identified one ethyl methanesulfonate (EMS) mutant, deeply serrated (des), in the woodland strawberry Fragaria vesca that has wrinkled leaves with deeper serrations, serrated petals and deformed carpels. The causative mutation occurs in the 19th nucleotide of the FvemiR164a mature sequence. Overexpressing FveMIR164A rescued the phenotypes of des/fvemir164a except the petal serrations. Furthermore, we identified two allelic mutants of FveCUC2a, one target of FvemiR164a, which developed leaves with smooth margins and fused leaflets. Phenotypes of the double mutant fvemir164a fvecuc2a indicated that the two genes act linearly in leaf and carpel development, but synergistically in the development of other floral organs and inflorescence architecture. This work demonstrates the conserved and novel roles of the miR164-CUC2 module in leaf and flower development in different plant species, and reveals that the 19th nucleotide of FvemiR164a is important for its processing.
Collapse
Affiliation(s)
- Guanghui Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Wei
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongping Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijun Kan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuxi Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Xi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongchi Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
16
|
Jiao K, Li X, Guo Y, Guan Y, Guo W, Luo D, Hu Z, Shen Z. Regulation of compound leaf development in mungbean (Vigna radiata L.) by CUP-SHAPED COTYLEDON/NO APICAL MERISTEM (CUC/NAM) gene. PLANTA 2019; 249:765-774. [PMID: 30390139 DOI: 10.1007/s00425-018-3038-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/31/2018] [Indexed: 05/09/2023]
Abstract
The results provide a significant verification of functional redundancy and diversity of CUC/NAM genes in legumes. The CUP-SHAPED COTYLEDON/NO APICAL MERISTEM (CUC/NAM) orthologs play key roles for plant organ boundary formation and organ development. Here, we performed a forward screen of the gamma irradiation mutagenesis population in mungbean and characterised a mutant, reduced rachis and fused leaflets (rrf1), which gave rise to the formation of compound leaves with reduced rachis and fused leaflets. Map-based cloning revealed that RRF1 encoded a CUC/NAM protein in mungbean. Phylogenetic analysis indicated that legume CUC1/CUC2 genes were classified as belonging to two subclades, and there are different copies of CUC1/CUC2 genes in legumes. Transcriptomic analysis showed that expression levels of a set of developmental regulators, including class I KNOTTED-LIKE HOMEOBOXI (KNOXI) gene and LATERAL ORGAN BOUNDARIES DOMAIN (LBD) gene, were altered in rrf1 mutants compared to the wild-type plants. Furthermore, rrf1 genetically interacted with heptafoliate leaflets1 (hel1), a mutant displaying a seven-leaflet compound leaf, to regulate leaf development in mungbean. Our results suggest functional redundancy and diversity of two subclades of CUC1/CUC2 genes in legumes, following the duplication of an ancestral gene.
Collapse
Affiliation(s)
- Keyuan Jiao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Li
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Yafang Guo
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yining Guan
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wuxiu Guo
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Da Luo
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Zhenguo Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Damayanti F, Lombardo F, Masuda JI, Shinozaki Y, Ichino T, Hoshikawa K, Okabe Y, Wang N, Fukuda N, Ariizumi T, Ezura H. Functional Disruption of the Tomato Putative Ortholog of HAWAIIAN SKIRT Results in Facultative Parthenocarpy, Reduced Fertility and Leaf Morphological Defects. FRONTIERS IN PLANT SCIENCE 2019; 10:1234. [PMID: 31681360 PMCID: PMC6801985 DOI: 10.3389/fpls.2019.01234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/05/2019] [Indexed: 05/03/2023]
Abstract
A number of plant microRNAs have been demonstrated to regulate developmental processes by integrating internal and environmental cues. Recently, the Arabidopsis thaliana F-box protein HAWAIIAN SKIRT (HWS) gene has been described for its role in miRNA biogenesis. We have isolated in a forward genetic screen a tomato (Solanum lycopersicum) line mutated in the putative ortholog of HWS. We show that the tomato hws-1 mutant exhibits reduction in leaflet serration, leaflet fusion, some degree of floral organ fusion, and alteration in miRNA levels, similarly to the original A. thaliana hws-1 mutant. We also describe novel phenotypes for hws such as facultative parthenocarpy, reduction in fertility and flowering delay. In slhws-1, the parthenocarpy trait is influenced by temperature, with higher parthenocarpy rate in warmer environmental conditions. Conversely, slhws-1 is able to produce seeds when grown in cooler environment. We show that the reduction in seed production in the mutant is mainly due to a defective male function and that the levels of several miRNAs are increased, in accordance with previous HWS studies, accounting for the abnormal leaf and floral phenotypes as well as the altered flowering and fruit development processes. This is the first study of HWS in fleshy fruit plant, providing new insights in the function of this gene in fruit development.
Collapse
Affiliation(s)
- Farida Damayanti
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Fabien Lombardo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jun-ichiro Masuda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yoshihito Shinozaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Takuji Ichino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Ken Hoshikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Innovation Center, Nippon Flour Mills Co., Ltd, Atsugi, Japan
| | - Ning Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Naoya Fukuda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Hiroshi Ezura,
| |
Collapse
|
18
|
Lang PLM, Christie MD, Dogan ES, Schwab R, Hagmann J, van de Weyer AL, Scacchi E, Weigel D. A Role for the F-Box Protein HAWAIIAN SKIRT in Plant microRNA Function. PLANT PHYSIOLOGY 2018; 176:730-741. [PMID: 29114080 PMCID: PMC5761791 DOI: 10.1104/pp.17.01313] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 05/02/2023]
Abstract
As regulators of gene expression in multicellular organisms, microRNAs (miRNAs) are crucial for growth and development. Although a plethora of factors involved in their biogenesis and action in Arabidopsis (Arabidopsis thaliana) has been described, these processes and their fine-tuning are not fully understood. Here, we used plants expressing an artificial miRNA target mimic (MIM) to screen for negative regulators of miR156. We identified a new mutant allele of the F-box gene HAWAIIAN SKIRT (HWS; At3G61590), hws-5, as a suppressor of the MIM156-induced developmental and molecular phenotypes. In hws plants, levels of some endogenous miRNAs are increased and their mRNA targets decreased. Plants constitutively expressing full-length HWS-but not a truncated version lacking the F-box domain-display morphological and molecular phenotypes resembling those of mutants defective in miRNA biogenesis and activity. In combination with such mutants, hws loses its delayed floral organ abscission ("skirt") phenotype, suggesting epistasis. Also, the hws transcriptome profile partially resembles those of well-known miRNA mutants hyl1-2, se-3, and ago1-27, pointing to a role in a common pathway. We thus propose HWS as a novel, F-box dependent factor involved in miRNA function.
Collapse
Affiliation(s)
| | | | - Ezgi S Dogan
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rebecca Schwab
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jörg Hagmann
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Emanuele Scacchi
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
19
|
Zhang X, Jayaweera D, Peters JL, Szecsi J, Bendahmane M, Roberts JA, González-Carranza ZH. The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT is a new player in the microRNA pathway. PLoS One 2017; 12:e0189788. [PMID: 29244865 PMCID: PMC5731758 DOI: 10.1371/journal.pone.0189788] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/03/2017] [Indexed: 11/26/2022] Open
Abstract
In Arabidopsis, the F-box HAWAIIAN SKIRT (HWS) protein is important for organ growth. Loss of function of HWS exhibits pleiotropic phenotypes including sepal fusion. To dissect the HWS role, we EMS-mutagenized hws-1 seeds and screened for mutations that suppress hws-1 associated phenotypes. We identified shs-2 and shs-3 (suppressor of hws-2 and 3) mutants in which the sepal fusion phenotype of hws-1 was suppressed. shs-2 and shs-3 (renamed hst-23/hws-1 and hst-24/hws-1) carry transition mutations that result in premature terminations in the plant homolog of Exportin-5 HASTY (HST), known to be important in miRNA biogenesis, function and transport. Genetic crosses between hws-1 and mutant lines for genes in the miRNA pathway also suppress the phenotypes associated with HWS loss of function, corroborating epistatic relations between the miRNA pathway genes and HWS. In agreement with these data, accumulation of miRNA is modified in HWS loss or gain of function mutants. Our data propose HWS as a new player in the miRNA pathway, important for plant growth.
Collapse
Affiliation(s)
- Xuebin Zhang
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Dasuni Jayaweera
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Janny L. Peters
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Judit Szecsi
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Lyon, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Lyon, France
| | - Jeremy A. Roberts
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Zinnia H. González-Carranza
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|