1
|
Ghorbani M, Wang ZJ, Chen X, Tiwari PB, Klauda JB, Brelidze TI. Chlorpromazine inhibits EAG1 channels by altering the coupling between the PAS, CNBH and pore domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581826. [PMID: 38464246 PMCID: PMC10925124 DOI: 10.1101/2024.02.23.581826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
EAG1 depolarization-activated potassium selective channels are important targets for treatment of cancer and neurological disorders. EAG1 channels are formed by a tetrameric subunit assembly with each subunit containing an N-terminal Per-Arnt-Sim (PAS) domain and C-terminal cyclic nucleotide-binding homology (CNBH) domain. The PAS and CNBH domains from adjacent subunits interact and form an intracellular tetrameric ring that regulates the EAG1 channel gating, including the movement of the voltage sensor domain (VSD) from closed to open states. Small molecule ligands can inhibit EAG1 channels by binding to their PAS domains. However, the allosteric pathways of this inhibition are not known. Here we show that chlorpromazine, a PAS domain small molecule binder, alters interactions between the PAS and CNBH domains and decreases the coupling between the intracellular tetrameric ring and the pore of the channel, while having little effect on the coupling between the PAS and VSD domains. In addition, chlorpromazine binding to the PAS domain did not alter Cole-Moore shift characteristic of EAG1 channels, further indicating that chlorpromazine has no effect on VSD movement from the deep closed to opened states. Our study provides a framework for understanding global pathways of EAG1 channel regulation by small molecule PAS domain binders.
Collapse
|
2
|
Porro A, Saponaro A, Castelli R, Introini B, Hafez Alkotob A, Ranjbari G, Enke U, Kusch J, Benndorf K, Santoro B, DiFrancesco D, Thiel G, Moroni A. A high affinity switch for cAMP in the HCN pacemaker channels. Nat Commun 2024; 15:843. [PMID: 38287019 PMCID: PMC10825183 DOI: 10.1038/s41467-024-45136-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.
Collapse
Affiliation(s)
| | - Andrea Saponaro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy
| | | | - Bianca Introini
- Department of Biosciences, University of Milan, Milano, Italy
| | | | - Golnaz Ranjbari
- Department of Biosciences, University of Milan, Milano, Italy
| | - Uta Enke
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Bina Santoro
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA
| | | | - Gerhard Thiel
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milano, Italy.
- Institute of Biophysics Milan, Consiglio Nazionale delle Ricerche, Milano, Italy.
| |
Collapse
|
3
|
Tiwari PB, Kamgar-Dayhoff P, Tiwari P, McKillop MI, Brelidze TI. Use of Surface Plasmon Resonance Technique for Studies of Inter-domain Interactions in Ion Channels. Methods Mol Biol 2024; 2796:105-118. [PMID: 38856898 PMCID: PMC11225882 DOI: 10.1007/978-1-0716-3818-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Ion channels are transmembrane proteins essential for cellular functions and are important drug targets. Surface plasmon resonance (SPR) is a powerful technique for investigating protein-protein and protein-small molecule ligand interactions. SPR has been underutilized for studies of ion channels, even though it could provide a wealth of information on the mechanisms of ion channel regulation and aid in ion channel drug discovery. Here we provide a detailed description of the use of SPR technology for investigating inter-domain interactions in KCNH potassium-selective and voltage-gated ion channels.
Collapse
Affiliation(s)
- Purushottam B Tiwari
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Pareesa Kamgar-Dayhoff
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Prakriti Tiwari
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
- Department of Biology, College of Arts & Sciences, Georgetown University, Washington, DC, USA
| | - Maria I McKillop
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
4
|
Kalienkova V, Peter MF, Rheinberger J, Paulino C. Structures of a sperm-specific solute carrier gated by voltage and cAMP. Nature 2023; 623:202-209. [PMID: 37880361 PMCID: PMC10620091 DOI: 10.1038/s41586-023-06629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023]
Abstract
The newly characterized sperm-specific Na+/H+ exchanger stands out by its unique tripartite domain composition1,2. It unites a classical solute carrier unit with regulatory domains usually found in ion channels, namely, a voltage-sensing domain and a cyclic-nucleotide binding domain1,3, which makes it a mechanistic chimera and a secondary-active transporter activated strictly by membrane voltage. Our structures of the sea urchin SpSLC9C1 in the absence and presence of ligands reveal the overall domain arrangement and new structural coupling elements. They allow us to propose a gating model, where movements in the voltage sensor indirectly cause the release of the exchanging unit from a locked state through long-distance allosteric effects transmitted by the newly characterized coupling helices. We further propose that modulation by its ligand cyclic AMP occurs by means of disruption of the cytosolic dimer interface, which lowers the energy barrier for S4 movements in the voltage-sensing domain. As SLC9C1 members have been shown to be essential for male fertility, including in mammals2,4,5, our structure represents a potential new platform for the development of new on-demand contraceptives.
Collapse
Affiliation(s)
- Valeria Kalienkova
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, The Netherlands
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Martin F Peter
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, The Netherlands
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Jan Rheinberger
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Cristina Paulino
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, The Netherlands.
- Biochemistry Center, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
5
|
Wojciechowski MN, Schreiber S, Jose J. A Novel Flow Cytometry-Based Assay for the Identification of HCN4 CNBD Ligands. Pharmaceuticals (Basel) 2023; 16:ph16050710. [PMID: 37242492 DOI: 10.3390/ph16050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are promising therapeutic targets because of their association with the genesis of several diseases. The identification of selective compounds that alter cAMP-induced ion channel modulation by binding to the cyclic nucleotide-binding domain (CNBD) will facilitate HCN channel-specific drug development. In this study, a fast and protein purification-free ligand-binding approach with a surface-displayed HCN4 C-Linker-CNBD on E. coli is presented. 8-Fluo-cAMP ligand binding was monitored by single-cell analysis via flow cytometry, and a Kd-value of 173 ± 46 nM was determined. The Kd value was confirmed by ligand depletion analysis and equilibrium state measurements. Applying increasing concentrations of cAMP led to a concentration-dependent decrease in fluorescence intensity, indicating a displacement of 8-Fluo-cAMP. A Ki-value of 8.5 ± 2 µM was determined. The linear relationship of IC50 values obtained for cAMP as a function of ligand concentration confirmed the competitive binding mode: IC50: 13 ± 2 µM/16 ± 3 µM/23 ± 1 µM/27 ± 1 µM for 50 nM/150 nM/250 nM/500 nM 8-Fluo-cAMP. A similar competitive mode of binding was confirmed for 7-CH-cAMP, and an IC50 value of 230 ± 41 nM and a Ki of 159 ± 29 nM were determined. Two established drugs were tested in the assay. Ivabradine, an approved HCN channel pore blocker and gabapentin, is known to bind to HCN4 channels in preference to other isoforms with an unknown mode of action. As expected, ivabradine had no impact on ligand binding. In addition, gabapentin had no influence on 8-Fluo-cAMP's binding to HCN4-CNBD. This is the first indication that gabapentin is not interacting with this part of the HCN4 channel. The ligand-binding assay as described can be used to determine binding constants for ligands such as cAMP and derivatives. It could also be applied for the identification of new ligands binding to the HCN4-CNBD.
Collapse
Affiliation(s)
- Magdalena N Wojciechowski
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| | - Sebastian Schreiber
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| | - Joachim Jose
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| |
Collapse
|
6
|
Hou Y, Lu H, Li J, Guan Z, Zhang J, Zhang W, Yin C, Sun L, Zhang Y, Jiang H. A photoaffinity labeling strategy identified EF1A1 as a binding protein of cyclic dinucleotide 2'3'-cGAMP. Cell Chem Biol 2021; 29:133-144.e20. [PMID: 34478637 DOI: 10.1016/j.chembiol.2021.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 01/12/2023]
Abstract
2'3'-cyclic GMP-AMP (2'3'-cGAMP), generated by cyclic GMP-AMP synthase (cGAS) under activation by cytosolic DNA, has a vital role in innate immune response via its receptor protein stimulator of interferon genes (STING) to fight viral infections and tumors. In order to have a complete understanding of biological functions of 2'3'-cGAMP, it is important to find out whether 2'3'-cGAMP has other unrevealed binding proteins present in mammalian cells and executes unknown functions. Here we report the 2'3'-cGAMP-based photoaffinity probes that capture and isolate 2'3'-cGAMP-binding proteins. These probes enable the identification of some potential 2'3'-cGAMP-binding proteins from HeLa cells. EF1A1, an essential protein regulating protein synthesis, is further validated to associate with 2'3'-cGAMP in vitro and in cells to impede protein synthesis. Thus, our studies provide a powerful approach to enable identification of the 2'3'-cGAMP interactome, discover unknown functions of 2'3'-cGAMP, and understand its physiological/pathological roles in tumor immunity and immune-related diseases.
Collapse
Affiliation(s)
- Yingjie Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxin Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhenyu Guan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wentao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Le Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Saponaro A, Sharifzadeh AS, Moroni A. Detection of ligand binding to purified HCN channels using fluorescence-based size exclusion chromatography. Methods Enzymol 2021; 652:105-123. [PMID: 34059279 DOI: 10.1016/bs.mie.2021.01.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Biochemical measurements of ligand binding to eukaryotic membrane proteins are challenging because they can require large amounts of purified protein. For this reason, ligand binding is preferentially evaluated on soluble domains rather than on the full length proteins. In this chapter, we describe the use of fluorescence size exclusion chromatography-based thermostability (FSEC-TS) as an assay to monitor ligand binding to the full length mammalian ion channel HCN4. FSEC-TS monitors the effect of the ligand on the thermal denaturation curve of the protein by following the fluorescence of a fused GFP protein. Changes in the melting temperature (Tm) provide a quantitative value for measuring ligand-protein interaction. As a proof of concept, we describe here the protocol for monitoring the binding of the second messenger cAMP and of the known HCN drug Ivabradine to the purified GFP-HCN4 channel. cTMP, a known non-binder of HCN channels, is used as a control. Due to the small amount of protein required, the assay represents a high-throughput screening system for evaluating binding of small molecules to full length proteins.
Collapse
Affiliation(s)
- Andrea Saponaro
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
8
|
Wang ZJ, Soohoo SM, Tiwari PB, Piszczek G, Brelidze TI. Chlorpromazine binding to the PAS domains uncovers the effect of ligand modulation on EAG channel activity. J Biol Chem 2020; 295:4114-4123. [PMID: 32047112 PMCID: PMC7105296 DOI: 10.1074/jbc.ra119.012377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Ether-a-go-go (EAG) potassium selective channels are major regulators of neuronal excitability and cancer progression. EAG channels contain a Per-Arnt-Sim (PAS) domain in their intracellular N-terminal region. The PAS domain is structurally similar to the PAS domains in non-ion channel proteins, where these domains frequently function as ligand-binding domains. Despite the structural similarity, it is not known whether the PAS domain can regulate EAG channel function via ligand binding. Here, using surface plasmon resonance, tryptophan fluorescence, and analysis of EAG currents recorded in Xenopus laevis oocytes, we show that a small molecule chlorpromazine (CH), widely used as an antipsychotic medication, binds to the isolated PAS domain of EAG channels and inhibits currents from these channels. Mutant EAG channels that lack the PAS domain show significantly lower inhibition by CH, suggesting that CH affects currents from EAG channels directly through the binding to the PAS domain. Our study lends support to the hypothesis that there are previously unaccounted steps in EAG channel gating that could be activated by ligand binding to the PAS domain. This has broad implications for understanding gating mechanisms of EAG and related ERG and ELK K+ channels and places the PAS domain as a new target for drug discovery in EAG and related channels. Up-regulation of EAG channel activity is linked to cancer and neurological disorders. Our study raises the possibility of repurposing the antipsychotic drug chlorpromazine for treatment of neurological disorders and cancer.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., 20057
| | - Stephanie M Soohoo
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., 20057
| | - Purushottam B Tiwari
- Department of Oncology, Georgetown University Medical Center, Washington, D. C., 20057
| | - Grzegorz Piszczek
- Biophysics Core, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., 20057.
| |
Collapse
|
9
|
Ng LCT, Zhuang M, Van Petegem F, Li YX, Accili EA. Binding and structural asymmetry governs ligand sensitivity in a cyclic nucleotide-gated ion channel. J Gen Physiol 2019; 151:1190-1212. [PMID: 31481514 PMCID: PMC6785730 DOI: 10.1085/jgp.201812162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/26/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
HCN channel opening is facilitated by cyclic nucleotides, but what determines the sensitivity of these channels to cAMP or cGMP is unclear. Ng et al. propose that ligand sensitivity depends on negative cooperativity and the asymmetric effects of ligand binding on channel structure and pore opening. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open more easily when cAMP or cGMP bind to a domain in the intracellular C-terminus in each of four identical subunits. How sensitivity of the channels to these ligands is determined is not well understood. Here, we apply a mathematical model, which incorporates negative cooperativity, to gating and mutagenesis data available in the literature and combine the results with binding data collected using isothermal titration calorimetry. This model recapitulates the concentration–response data for the effects of cAMP and cGMP on wild-type HCN2 channel opening and, remarkably, predicts the concentration–response data for a subset of mutants with single-point amino acid substitutions in the binding site. Our results suggest that ligand sensitivity is determined by negative cooperativity and asymmetric effects on structure and channel opening, which are tuned by ligand-specific interactions and residues within the binding site.
Collapse
Affiliation(s)
- Leo C T Ng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Meiying Zhuang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Yue Xian Li
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Eric A Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Wang ZJ, Tiwari PB, Üren A, Brelidze TI. Identification of undecylenic acid as EAG channel inhibitor using surface plasmon resonance-based screen of KCNH channels. BMC Pharmacol Toxicol 2019; 20:42. [PMID: 31315662 PMCID: PMC6637479 DOI: 10.1186/s40360-019-0324-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND KCNH family of potassium channels is responsible for diverse physiological functions ranging from the regulation of neuronal excitability and cardiac contraction to the regulation of cancer progression. KCNH channels contain a Per-Arn-Sim (PAS) domain in their N-terminal and cyclic nucleotide-binding homology (CNBH) domain in their C-terminal regions. These intracellular domains shape the function of KCNH channels and are important targets for drug development. METHODS Here we describe a surface plasmon resonance (SPR)-based screening method aimed in identifying small molecule binders of PAS and CNBH domains for three KCNH channel subfamilies: ether-à-go-go (EAG), EAG-related gene (ERG), and EAG-like K+ (ELK). The method involves purification of the PAS and CNBH domains, immobilization of the purified domains on the SPR senor chip and screening small molecules in a chemical library for binding to the immobilized domains using changes in the SPR response as a reporter of the binding. The advantages of this method include low quantity of purified PAS and CNBH domains necessary for the implementation of the screen, direct assessment of the small molecule binding to the PAS and CNBH domains and easiness of assessing KCNH subfamily specificity of the small molecule binders. RESULTS Using the SPR-based method we screened the Spectrum Collection Library of 2560 compounds against the PAS and CNBH domains of the three KCNH channel subfamilies and identified a pool of small molecules that bind to the PAS or CNBH domains. To further evaluate the effectiveness of the screen we tested the functional effect of one of the identified mEAG PAS domain specific small molecule binders on currents recorded from EAG channels. Undecylenic acid inhibited currents recorded from EAG channels in a concentration-dependent manner with IC50 of ~ 1 μM. CONCLUSION Our results show that the SPR-based method is well suited for identifying small molecule binders of KCNH channels and can facilitate drug discovery for other ion channels as well.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC USA
| | | | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, DC USA
| | - Tinatin I. Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC USA
| |
Collapse
|
11
|
Protein Redox State Monitoring Studies of Thiol Reactivity. Antioxidants (Basel) 2019; 8:antiox8050143. [PMID: 31121865 PMCID: PMC6563020 DOI: 10.3390/antiox8050143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 01/07/2023] Open
Abstract
Protein cysteine thiol status is a major determinant of oxidative stress and oxidant signaling. The -SulfoBiotics- Protein Redox State Monitoring Kit provides a unique opportunity to investigate protein thiol states. This system adds a 15-kDa Protein-SHifter to reduced cysteine residues, and this molecular mass shift can be detected by gel electrophoresis. Even in biological samples, Protein-SHifter Plus allows the thiol states of specific proteins to be studied using Western blotting. Peroxiredoxin 6 (Prx6) is a unique one-cysteine peroxiredoxin that scavenges peroxides by utilizing conserved Cysteine-47. Human Prx6 also contains an additional non-conserved cysteine residue, while rat Prx6 only has the catalytic cysteine. In cultured cells, cysteine residues of Prx6 were found to be predominantly fully reduced. The treatment of human cells with hydrogen peroxide (H2O2) formed Prx6 with one cysteine reduced. Since catalytic cysteine becomes oxidized in rat cells by the same H2O2 treatment and treating denatured human Prx6 with H2O2 results in the oxidation of both cysteines, non-conserved cysteine may not be accessible to H2O2 in human cells. We also found that untreated cells contained Prx6 multimers bound through disulfide bonds. Surprisingly, treating cells with H2O2 eliminated these Prx6 multimers. In contrast, treating cell lysates with H2O2 promoted the formation of Prx6 multimers. Similarly, treating purified preparations of the recombinant cyclic nucleotide-binding domain of the human hyperpolarization-activated cyclic nucleotide-modulated channels with H2O2 promoted the formation of multimers. These studies revealed that the cellular environment defines the susceptibility of protein cysteines to H2O2 and determines whether H2O2 acts as a facilitator or a disrupter of disulfide bonds.
Collapse
|
12
|
Garcia PK, Annamalai T, Wang W, Bell RS, Le D, Martin Pancorbo P, Sikandar S, Seddek A, Yu X, Sun D, Uhlemann AC, Tiwari PB, Leng F, Tse-Dinh YC. Mechanism and resistance for antimycobacterial activity of a fluoroquinophenoxazine compound. PLoS One 2019; 14:e0207733. [PMID: 30794538 PMCID: PMC6386362 DOI: 10.1371/journal.pone.0207733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/07/2019] [Indexed: 01/28/2023] Open
Abstract
We have previously reported the inhibition of bacterial topoisomerase I activity by a fluoroquinophenoxazine compound (FP-11g) with a 6-bipiperidinyl lipophilic side chain that exhibited promising antituberculosis activity (MIC = 2.5 μM against Mycobacterium tuberculosis, SI = 9.8). Here, we found that the compound is bactericidal towards Mycobacterium smegmatis, resulting in greater than 5 Log10 reduction in colony-forming units [cfu]/mL following a 10 h incubation at 1.25 μM (4X MIC) concentration. Growth inhibition (MIC = 50 μM) and reduction in cfu could also be observed against a clinical isolate of Mycobacterium abscessus. Stepwise isolation of resistant mutants of M. smegmatis was conducted to explore the mechanism of resistance. Mutations in the resistant isolates were identified by direct comparison of whole-genome sequencing data from mutant and wild-type isolates. These include mutations in genes likely to affect the entry and retention of the compound. FP-11g inhibits Mtb topoisomerase I and Mtb gyrase with IC50 of 0.24 and 27 μM, respectively. Biophysical analysis showed that FP-11g binds DNA as an intercalator but the IC50 for inhibition of Mtb topoisomerase I activity is >10 fold lower than the compound concentrations required for producing negatively supercoiled DNA during ligation of nicked circular DNA. Thus, the DNA-binding property of FP-11g may contribute to its antimycobacterial mechanism, but that alone cannot account for the observed inhibition of Mtb topoisomerase I.
Collapse
Affiliation(s)
- Pamela K. Garcia
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Biochemistry PhD Program, Florida International University, Miami, Florida, United States of America
| | - Thirunavukkarasu Annamalai
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Wenjie Wang
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Raven S. Bell
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Duc Le
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Paula Martin Pancorbo
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Sabah Sikandar
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Ahmed Seddek
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Xufen Yu
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, United States of America
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, United States of America
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Medical Center, New York, New York, United States of America
| | - Purushottam B. Tiwari
- Department of Oncology, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, United States of America
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
13
|
Sunkara MR, Schwabe T, Ehrlich G, Kusch J, Benndorf K. All four subunits of HCN2 channels contribute to the activation gating in an additive but intricate manner. J Gen Physiol 2018; 150:1261-1271. [PMID: 29959170 PMCID: PMC6122924 DOI: 10.1085/jgp.201711935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 01/25/2023] Open
Abstract
HCN pacemaker channels are dually gated by hyperpolarizing voltages and cyclic nucleotide binding. Sunkara et al. show that each of the four binding sites promotes channel opening, most likely by exerting a turning momentum on the tetrameric intracellular gating ring. Hyperpolarization-activated cyclic nucleotide–modulated (HCN) channels are tetramers that elicit electrical rhythmicity in specialized brain neurons and cardiomyocytes. The channels are dually activated by voltage and binding of cyclic adenosine monophosphate (cAMP) to their four cyclic nucleotide-binding domains (CNBDs). Here we analyze the effects of cAMP binding to different concatemers of HCN2 channel subunits, each having a defined number of functional CNBDs. We show that each liganded CNBD promotes channel activation in an additive manner and that, in the special case of two functional CNBDs, functionality does not depend on the arrangement of the subunits. Correspondingly, the reverse process of deactivation is slowed by progressive liganding, but only if four and three ligands as well as two ligands in trans position (opposite to each other) are bound. In contrast, two ligands bound in cis positions (adjacent to each other) and a single bound ligand do not affect channel deactivation. These results support an activation mechanism in which each single liganded CNBD causes a turning momentum on the tetrameric ring-like structure formed by all four CNBDs and that at least two liganded subunits in trans positions are required to maintain activation.
Collapse
Affiliation(s)
- Mallikarjuna Rao Sunkara
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Tina Schwabe
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Gunter Ehrlich
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|