1
|
Guo W, Li H, Wei X, Luo N, Shi M. Molecular and Morphological Characteristics of a Novel Cyst Nematode in the Rhizosphere of Artemisia lavandulaefolia DC. in Gansu Province, Northwest China. Pathogens 2024; 13:881. [PMID: 39452752 PMCID: PMC11510491 DOI: 10.3390/pathogens13100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Cyst nematodes are obligate parasitic nematodes found in the fields of many cultivated crops. These nematodes, which have great economic importance, pose a threat to food security, though they are frequently ignored or misdiagnosed as pests because of covert parasitism. A cyst nematode population parasitizing on Artemisia lavandulaefolia DC., one of the traditional Chinese medicines was collected in Gansu Province. The species was diagnosed using integrative taxonomy and molecular approaches. The cyst population is spherical or lemon-shaped, light brown or dark brown in color, with a long neck and a protruding vulval cone. The stylet of the second-stage juvenile is strong, and the front end of the ball at the base of the stylet is concave; the median bulb and excretory pore are prominent; the tail is blunt and circular, and the transparent tail is usually shorter than the stylet. A phylogenetic analysis was carried out using the internal transcribed spacer (ITS) and 28S genes of ribosomal DNA, which further confirmed the presence of Cactodera chenopodiae. According to our literature review, this is the first report on C. chenopodiae in Compositae. By following this research, we can better understand the challenges posed by A. lavandulaefolia DC. and develop effective strategies for managing its spread and impacts. This will help to protect vulnerable ecosystems and ensure the sustainability of agricultural and forestry activities in affected areas.
Collapse
Affiliation(s)
| | - Huixia Li
- Biocontrol Engineering Laboratory of Crop Disease and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (W.G.)
| | | | | | | |
Collapse
|
2
|
Calia G, Porracciolo P, Chen Y, Kozlowski D, Schuler H, Cestaro A, Quentin M, Favery B, Danchin EGJ, Bottini S. Identification and characterization of specific motifs in effector proteins of plant parasites using MOnSTER. Commun Biol 2024; 7:850. [PMID: 38992096 PMCID: PMC11239862 DOI: 10.1038/s42003-024-06515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Plant pathogens cause billions of dollars of crop loss every year and are a major threat to global food security. Identifying and characterizing pathogens effectors is crucial towards their improved control. Because of their poor sequence conservation, effector identification is challenging, and current methods generate too many candidates without indication for prioritizing experimental studies. In most phyla, effectors contain specific sequence motifs which influence their localization and targets in the plant. Therefore, there is an urgent need to develop bioinformatics tools tailored for pathogen effectors. To circumvent these limitations, we have developed MOnSTER a specific tool that identifies clusters of motifs of protein sequences (CLUMPs). MOnSTER can be fed with motifs identified by de novo tools or from databases such as Pfam and InterProScan. The advantage of MOnSTER is the reduction of motif redundancy by clustering them and associating a score. This score encompasses the physicochemical properties of AAs and the motif occurrences. We built up our method to identify discriminant CLUMPs in oomycetes effectors. Consequently, we applied MOnSTER on plant parasitic nematodes and identified six CLUMPs in about 60% of the known nematode candidate parasitism proteins. Furthermore, we found co-occurrences of CLUMPs with protein domains important for invasion and pathogenicity. The potentiality of this tool goes beyond the effector characterization and can be used to easily cluster motifs and calculate the CLUMP-score on any set of protein sequences.
Collapse
Affiliation(s)
- Giulia Calia
- Free University of Bolzano, Faculty of Agricultural Environmental and Food Science, Bolzano, Italy
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Paola Porracciolo
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
- Université Côte d'Azur, Center of Modeling, Simulation and Interactions, Nice, France
| | - Yongpan Chen
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Djampa Kozlowski
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
- Université Côte d'Azur, Center of Modeling, Simulation and Interactions, Nice, France
| | - Hannes Schuler
- Free University of Bolzano, Faculty of Agricultural Environmental and Food Science, Bolzano, Italy
- Free University of Bolzano, Competence Centre for Plant Health, Bolzano, Italy
| | - Alessandro Cestaro
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Etienne G J Danchin
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Silvia Bottini
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France.
- Université Côte d'Azur, Center of Modeling, Simulation and Interactions, Nice, France.
| |
Collapse
|
3
|
Yu J, Yuan Q, Chen C, Xu T, Jiang Y, Hu W, Liao A, Zhang J, Le X, Li H, Wang X. A root-knot nematode effector targets the Arabidopsis cysteine protease RD21A for degradation to suppress plant defense and promote parasitism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1500-1515. [PMID: 38516730 DOI: 10.1111/tpj.16692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Meloidogyne incognita is one of the most widely distributed plant-parasitic nematodes and causes severe economic losses annually. The parasite produces effector proteins that play essential roles in successful parasitism. Here, we identified one such effector named MiCE108, which is exclusively expressed within the nematode subventral esophageal gland cells and is upregulated in the early parasitic stage of M. incognita. A yeast signal sequence trap assay showed that MiCE108 contains a functional signal peptide for secretion. Virus-induced gene silencing of MiCE108 impaired the parasitism of M. incognita in Nicotiana benthamiana. The ectopic expression of MiCE108 in Arabidopsis suppressed the deposition of callose, the generation of reactive oxygen species, and the expression of marker genes for bacterial flagellin epitope flg22-triggered immunity, resulting in increased susceptibility to M. incognita, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst) DC3000. The MiCE108 protein physically associates with the plant defense protease RD21A and promotes its degradation via the endosomal-dependent pathway, or 26S proteasome. Consistent with this, knockout of RD21A compromises the innate immunity of Arabidopsis and increases its susceptibility to a broad range of pathogens, including M. incognita, strongly indicating a role in defense against this nematode. Together, our data suggest that M. incognita deploys the effector MiCE108 to target Arabidopsis cysteine protease RD21A and affect its stability, thereby suppressing plant innate immunity and facilitating parasitism.
Collapse
Affiliation(s)
- Jiarong Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Qing Yuan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Chen Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yuwen Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Wenjun Hu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Aolin Liao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Jiayi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Xiuhu Le
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Hongmei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Xuan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Subbotin SA. Rapid Detection of the Strawberry Foliar Nematode Aphelenchoides fragariae Using Recombinase Polymerase Amplification Assay with Lateral Flow Dipsticks. Int J Mol Sci 2024; 25:844. [PMID: 38255917 PMCID: PMC10815920 DOI: 10.3390/ijms25020844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Rapid and reliable diagnostic methods for plant-parasitic nematodes are critical for facilitating the selection of effective control measures. A diagnostic recombinase polymerase amplification (RPA) assay for Aphelenchoides fragariae using a TwistAmp® Basic Kit (TwistDx, Cambridge, UK) and AmplifyRP® Acceler8® Discovery Kit (Agdia, Elkhart, IN, USA) combined with lateral flow dipsticks (LF) has been developed. In this study, a LF-RPA assay was designed that targets the ITS rRNA gene of A. fragariae. This assay enables the specific detection of A. fragariae from crude nematode extracts without a DNA extraction step, and from DNA extracts of plant tissues infected with this nematode species. The LF-RPA assay showed reliable detection within 18-25 min with a sensitivity of 0.03 nematode per reaction tube for crude nematode extracts or 0.3 nematode per reaction tube using plant DNA extracts from 0.1 g of fresh leaves. The LF-RPA assay was developed and validated with a wide range of nematode and plant samples. Aphelenchoides fragariae was identified from seed samples in California. The LF-RPA assay has great potential for nematode diagnostics in the laboratory with minimal available equipment.
Collapse
Affiliation(s)
- Sergei A Subbotin
- Plant Pest Diagnostic Centre, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832-1448, USA
| |
Collapse
|
5
|
Lai CK, Lee YC, Ke HM, Lu MR, Liu WA, Lee HH, Liu YC, Yoshiga T, Kikuchi T, Chen PJ, Tsai IJ. The Aphelenchoides genomes reveal substantial horizontal gene transfers in the last common ancestor of free-living and major plant-parasitic nematodes. Mol Ecol Resour 2023; 23:905-919. [PMID: 36597348 DOI: 10.1111/1755-0998.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Aphelenchoides besseyi is a plant-parasitic nematode (PPN) in the family Aphelenchoididae capable of infecting more than 200 plant species. A. besseyi is also a species complex with strains exhibiting varying pathogenicity to plants. We present the genome and annotations of six Aphelenchoides species, four of which belonged to the A. besseyi species complex. Most Aphelenchoides genomes have a size of 44.7-47.4 Mb and are among the smallest in clade IV, with the exception of A. fujianensis, which has a size of 143.8 Mb and is one of the largest. Phylogenomic analysis successfully delimited the species complex into A. oryzae and A. pseudobesseyi and revealed a reduction of transposon elements in the last common ancestor of Aphelenchoides. Synteny analyses between reference genomes indicated that three chromosomes in A. besseyi were derived from fission and fusion events. A systematic identification of horizontal gene transfer (HGT) genes across 27 representative nematodes allowed us to identify two major episodes of acquisition corresponding to the last common ancestor of clade IV or major PPNs, respectively. These genes were mostly lost and differentially retained between clades or strains. Most HGT events were acquired from bacteria, followed by fungi, and also from plants; plant HGT was especially prevalent in Bursaphelenchus mucronatus. Our results comprehensively improve the understanding of HGT in nematodes.
Collapse
Affiliation(s)
- Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Yi-Chien Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Huei-Mien Ke
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Min R Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-An Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Peichen J Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
6
|
Abstract
Peptide signaling is an emerging paradigm in molecular plant-microbe interactions with vast implications for our understanding of plant-nematode interactions and beyond. Plant-like peptide hormones, first discovered in cyst nematodes, are now recognized as an important class of peptide effectors mediating several different types of pathogenic and symbiotic interactions. Here, we summarize what has been learned about nematode-secreted CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptide effectors since the last comprehensive review on this topic a decade ago. We also highlight new discoveries of a diverse array of peptide effectors that go beyond the CLE peptide effector family in not only phytonematodes but in organisms beyond the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| | - Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| |
Collapse
|
7
|
Siddique S, Coomer A, Baum T, Williamson VM. Recognition and Response in Plant-Nematode Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:143-162. [PMID: 35436424 DOI: 10.1146/annurev-phyto-020620-102355] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant-parasitic nematodes spend much of their lives inside or in contact with host tissue, and molecular interactions constantly occur and shape the outcome of parasitism. Eggs of these parasites generally hatch in the soil, and the juveniles must locate and infect an appropriate host before their stored energy is exhausted. Components of host exudate are evaluated by the nematode and direct its migration to its infection site. Host plants recognize approaching nematodes before physical contact through molecules released by the nematodes and launch a defense response. In turn, nematodes deploy numerous mechanisms to counteract plant defenses. This review focuses on these early stages of the interaction between plants and nematodes. We discuss how nematodes perceive and find suitable hosts, how plants perceive and mount a defense response against the approaching parasites, and how nematodes fight back against host defenses.
Collapse
Affiliation(s)
- Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, California, USA;
| | - Alison Coomer
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Thomas Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
8
|
Ahmed M, Roberts NG, Adediran F, Smythe AB, Kocot KM, Holovachov O. Phylogenomic Analysis of the Phylum Nematoda: Conflicts and Congruences With Morphology, 18S rRNA, and Mitogenomes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.769565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Phylogenetic relationships within many lineages of the phylum Nematoda remain unresolved, despite numerous morphology-based and molecular analyses. We performed several phylogenomic analyses using 286 published genomes and transcriptomes and 19 new transcriptomes by focusing on Trichinellida, Spirurina, Rhabditina, and Tylenchina separately, and by analyzing a selection of species from the whole phylum Nematoda. The phylogeny of Trichinellida supported the division of Trichinella into encapsulated and non-encapsulated species and placed them as sister to Trichuris. The Spirurina subtree supported the clades formed by species from Ascaridomorpha and Spiruromorpha respectively, but did not support Dracunculoidea. The analysis of Tylenchina supported a clade that included all sampled species from Tylenchomorpha and placed it as sister to clades that included sampled species from Cephalobomorpha and Panagrolaimomorpha, supporting the hypothesis that postulates the single origin of the stomatostylet. The Rhabditina subtree placed a clade composed of all sampled species from Diplogastridae as sister to a lineage consisting of paraphyletic Rhabditidae, a single representative of Heterorhabditidae and a clade composed of sampled species belonging to Strongylida. It also strongly supported all suborders within Strongylida. In the phylum-wide analysis, a clade composed of all sampled species belonging to Enoplia were consistently placed as sister to Dorylaimia + Chromadoria. The topology of the Nematoda backbone was consistent with previous studies, including polyphyletic placement of sampled representatives of Monhysterida and Araeolaimida.
Collapse
|
9
|
Ahmed M, Holovachov O. Twenty Years after De Ley and Blaxter-How Far Did We Progress in Understanding the Phylogeny of the Phylum Nematoda? Animals (Basel) 2021; 11:3479. [PMID: 34944255 PMCID: PMC8697950 DOI: 10.3390/ani11123479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022] Open
Abstract
Molecular phylogenetics brought radical changes to our understanding of nematode evolution, resulting in substantial modifications to nematode classification implemented by De Ley and Blaxter and widely accepted now. Numerous phylogenetic studies were subsequently published that both improved and challenged this classification. Here we present a summary of these changes. We created cladograms that summarise phylogenetic relationships within Nematoda using phylum-wide to superfamily-wide molecular phylogenies published in since 2005, and supplemented with the phylogenetic analyses for Enoplia and Chromadoria with the aim of clarifying the position of several taxa. The results show which parts of the Nematode tree are well resolved and understood, and which parts require more research, either by adding taxa that have not been included yet (increasing taxon coverage), or by changing the phylogenetic approach (improving data quality, using different types of data or different methods of analysis). The currently used classification of the phylum Nematoda in many cases does not reflect the phylogeny and in itself requires numerous improvements and rearrangements.
Collapse
Affiliation(s)
| | - Oleksandr Holovachov
- Department of Zoology, Swedish Museum of Natural History, 114 18 Stockholm, Sweden;
| |
Collapse
|
10
|
Vieira P, Myers RY, Pellegrin C, Wram C, Hesse C, Maier TR, Shao J, Koutsovoulos GD, Zasada I, Matsumoto T, Danchin EGJ, Baum TJ, Eves-van den Akker S, Nemchinov LG. Targeted transcriptomics reveals signatures of large-scale independent origins and concerted regulation of effector genes in Radopholus similis. PLoS Pathog 2021; 17:e1010036. [PMID: 34748609 PMCID: PMC8601627 DOI: 10.1371/journal.ppat.1010036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/18/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
The burrowing nematode, Radopholus similis, is an economically important plant-parasitic nematode that inflicts damage and yield loss to a wide range of crops. This migratory endoparasite is widely distributed in warmer regions and causes extensive destruction to the root systems of important food crops (e.g., citrus, banana). Despite the economic importance of this nematode, little is known about the repertoire of effectors owned by this species. Here we combined spatially and temporally resolved next-generation sequencing datasets of R. similis to select a list of candidates for the identification of effector genes for this species. We confirmed spatial expression of transcripts of 30 new candidate effectors within the esophageal glands of R. similis by in situ hybridization, revealing a large number of pioneer genes specific to this nematode. We identify a gland promoter motif specifically associated with the subventral glands (named Rs-SUG box), a putative hallmark of spatial and concerted regulation of these effectors. Nematode transcriptome analyses confirmed the expression of these effectors during the interaction with the host, with a large number of pioneer genes being especially abundant. Our data revealed that R. similis holds a diverse and emergent repertoire of effectors, which has been shaped by various evolutionary events, including neofunctionalization, horizontal gene transfer, and possibly by de novo gene birth. In addition, we also report the first GH62 gene so far discovered for any metazoan and putatively acquired by lateral gene transfer from a bacterial donor. Considering the economic damage caused by R. similis, this information provides valuable data to elucidate the mode of parasitism of this nematode.
Collapse
Affiliation(s)
- Paulo Vieira
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Roxana Y. Myers
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA ARS, Hilo, Hawaii, United States of America
| | - Clement Pellegrin
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Catherine Wram
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Cedar Hesse
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Thomas R. Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Jonathan Shao
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | | | - Inga Zasada
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Tracie Matsumoto
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA ARS, Hilo, Hawaii, United States of America
| | - Etienne G. J. Danchin
- INRAE, Université Côte d’Azur, CNRS, Institute Sophia Agrobiotech, Sophia Antipolis, France
| | - Thomas J. Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | | | - Lev G. Nemchinov
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
11
|
Vlaar LE, Bertran A, Rahimi M, Dong L, Kammenga JE, Helder J, Goverse A, Bouwmeester HJ. On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasit Vectors 2021; 14:554. [PMID: 34706780 PMCID: PMC8555053 DOI: 10.1186/s13071-021-04953-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Nematodes are presumably the most abundant Metazoa on Earth, and can even be found in some of the most hostile environments of our planet. Various types of hypobiosis evolved to adapt their life cycles to such harsh environmental conditions. The five most distal major clades of the phylum Nematoda (Clades 8-12), formerly referred to as the Secernentea, contain many economically relevant parasitic nematodes. In this group, a special type of hypobiosis, dauer, has evolved. The dauer signalling pathway, which culminates in the biosynthesis of dafachronic acid (DA), is intensively studied in the free-living nematode Caenorhabditis elegans, and it has been hypothesized that the dauer stage may have been a prerequisite for the evolution of a wide range of parasitic lifestyles among other nematode species. Biosynthesis of DA is not specific for hypobiosis, but if it results in exit of the hypobiotic state, it is one of the main criteria to define certain behaviour as dauer. Within Clades 9 and 10, the involvement of DA has been validated experimentally, and dauer is therefore generally accepted to occur in those clades. However, for other clades, such as Clade 12, this has hardly been explored. In this review, we provide clarity on the nomenclature associated with hypobiosis and dauer across different nematological subfields. We discuss evidence for dauer-like stages in Clades 8 to 12 and support this with a meta-analysis of available genomic data. Furthermore, we discuss indications for a simplified dauer signalling pathway in parasitic nematodes. Finally, we zoom in on the host cues that induce exit from the hypobiotic stage and introduce two hypotheses on how these signals might feed into the dauer signalling pathway for plant-parasitic nematodes. With this work, we contribute to the deeper understanding of the molecular mechanisms underlying hypobiosis in parasitic nematodes. Based on this, novel strategies for the control of parasitic nematodes can be developed.
Collapse
Affiliation(s)
- Lieke E Vlaar
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Andre Bertran
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Mehran Rahimi
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Characterization of the Habitat- and Season-Independent Increase in Fungal Biomass Induced by the Invasive Giant Goldenrod and Its Impact on the Fungivorous Nematode Community. Microorganisms 2021; 9:microorganisms9020437. [PMID: 33669897 PMCID: PMC7923273 DOI: 10.3390/microorganisms9020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/04/2022] Open
Abstract
Outside its native range, the invasive plant species giant goldenrod (Solidago gigantea) has been shown to increase belowground fungal biomass. This non-obvious effect is poorly characterized; we don’t know whether it is plant developmental stage-dependent, which fractions of the fungal community are affected, and whether it is reflected in the next trophic level. To address these questions, fungal assemblages in soil samples collected from invaded and uninvaded plots in two soil types were compared. Although using ergosterol as a marker for fungal biomass demonstrated a significant increase in fungal biomass, specific quantitative PCR (qPCR) assays did not point at a quantitative shift. MiSeq-based characterization of the belowground effects of giant goldenrod revealed a local increase of mainly Cladosporiaceae and Glomeraceae. This asymmetric boost in the fungal community was reflected in a specific shift in the fungivorous nematode community. Our findings provide insight into the potential impact of invasive plants on local fungal communities.
Collapse
|
13
|
Montarry J, Mimee B, Danchin EGJ, Koutsovoulos GD, Ste-Croix DT, Grenier E. Recent Advances in Population Genomics of Plant-Parasitic Nematodes. PHYTOPATHOLOGY 2021; 111:40-48. [PMID: 33151824 DOI: 10.1094/phyto-09-20-0418-rvw] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant-parasitic nematodes are a costly burden of crop production. Ubiquitous in nature, phytoparasitic nematodes are associated with nearly every important agricultural crop and represent a significant constraint on global food security. Population genetics is a key discipline in plant nematology to understand aspects of the life strategies of these parasites, in particular their modes of reproduction, geographic origins, evolutionary histories, and dispersion abilities. Advances in high-throughput sequencing technologies have enabled a recent but active effort in genomic analyses of plant-parasitic nematodes. Such genomic approaches applied to multiple populations are providing new insights into the molecular and evolutionary processes that underpin the establishment of these nematodes and into a better understanding of the genetic and mechanistic basis of their pathogenicity and adaptation to their host plants. In this review, we attempt to update information about genome resources and genotyping techniques useful for nematologists who are thinking about initiating population genomics or genome sequencing projects. This review is intended also to foster the development of population genomics in plant-parasitic nematodes through highlighting recent publications that illustrate the potential for this approach to identify novel molecular markers or genes of interest and improve our knowledge of the genome variability, pathogenicity, and evolutionary potential of plant-parasitic nematodes.
Collapse
Affiliation(s)
| | - Benjamin Mimee
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | | | - Dave T Ste-Croix
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Eric Grenier
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35650, Le Rheu, France
| |
Collapse
|
14
|
Carlson CJ, Dallas TA, Alexander LW, Phelan AL, Phillips AJ. What would it take to describe the global diversity of parasites? Proc Biol Sci 2020; 287:20201841. [PMID: 33203333 PMCID: PMC7739500 DOI: 10.1098/rspb.2020.1841] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022] Open
Abstract
How many parasites are there on Earth? Here, we use helminth parasites to highlight how little is known about parasite diversity, and how insufficient our current approach will be to describe the full scope of life on Earth. Using the largest database of host-parasite associations and one of the world's largest parasite collections, we estimate a global total of roughly 100 000-350 000 species of helminth endoparasites of vertebrates, of which 85-95% are unknown to science. The parasites of amphibians and reptiles remain the most poorly described, but the majority of undescribed species are probably parasites of birds and bony fish. Missing species are disproportionately likely to be smaller parasites of smaller hosts in undersampled countries. At current rates, it would take centuries to comprehensively sample, collect and name vertebrate helminths. While some have suggested that macroecology can work around existing data limitations, we argue that patterns described from a small, biased sample of diversity aren't necessarily reliable, especially as host-parasite networks are increasingly altered by global change. In the spirit of moonshots like the Human Genome Project and the Global Virome Project, we consider the idea of a Global Parasite Project: a global effort to transform parasitology and inventory parasite diversity at an unprecedented pace.
Collapse
Affiliation(s)
- Colin J. Carlson
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
- Center for Global Health Science and Security, Georgetown University, Washington, DC, USA
| | - Tad A. Dallas
- Centre for Ecological Change, University of Helsinki, 00840 Helsinki, Finland
| | - Laura W. Alexander
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Alexandra L. Phelan
- Center for Global Health Science and Security, Georgetown University, Washington, DC, USA
- O’Neill Institute for National and Global Health Law, Georgetown University Law Center, Washington, DC, USA
| | - Anna J. Phillips
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
15
|
Comparative Genomics Reveals Novel Target Genes towards Specific Control of Plant-Parasitic Nematodes. Genes (Basel) 2020; 11:genes11111347. [PMID: 33202889 PMCID: PMC7696266 DOI: 10.3390/genes11111347] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Plant-parasitic nematodes cause extensive annual yield losses to worldwide agricultural production. Most cultivated plants have no known resistance against nematodes and the few bearing a resistance gene can be overcome by certain species. Chemical methods that have been deployed to control nematodes have largely been banned from use due to their poor specificity and high toxicity. Hence, there is an urgent need for the development of cleaner and more specific control methods. Recent advances in nematode genomics, including in phytoparasitic species, provide an unprecedented opportunity to identify genes and functions specific to these pests. Using phylogenomics, we compared 61 nematode genomes, including 16 for plant-parasitic species and identified more than 24,000 protein families specific to these parasites. In the genome of Meloidogyne incognita, one of the most devastating plant parasites, we found ca. 10,000 proteins with orthologs restricted only to phytoparasitic species and no further homology in protein databases. Among these phytoparasite-specific proteins, ca. 1000 shared the same properties as known secreted effectors involved in essential parasitic functions. Of these, 68 were novel and showed strong expression during the endophytic phase of the nematode life cycle, based on both RNA-seq and RT-qPCR analyses. Besides effector candidates, transcription-related and neuro-perception functions were enriched in phytoparasite-specific proteins, revealing interesting targets for nematode control methods. This phylogenomics analysis constitutes a unique resource for the further understanding of the genetic basis of nematode adaptation to phytoparasitism and for the development of more efficient control methods.
Collapse
|
16
|
Mathew R, Opperman CH. Current Insights into Migratory Endoparasitism: Deciphering the Biology, Parasitism Mechanisms, and Management Strategies of Key Migratory Endoparasitic Phytonematodes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E671. [PMID: 32466416 PMCID: PMC7356796 DOI: 10.3390/plants9060671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/12/2023]
Abstract
Despite their physiological differences, sedentary and migratory plant-parasitic nematodes (PPNs) share several commonalities. Functional characterization studies of key effectors and their targets identified in sedentary phytonematodes are broadly applied to migratory PPNs, generalizing parasitism mechanisms existing in distinct lifestyles. Despite their economic significance, host-pathogen interaction studies of migratory endoparasitic nematodes are limited; they have received little attention when compared to their sedentary counterparts. Because several migratory PPNs form disease complexes with other plant-pathogens, it is important to understand multiple factors regulating their feeding behavior and lifecycle. Here, we provide current insights into the biology, parasitism mechanism, and management strategies of the four-key migratory endoparasitic PPN genera, namely Pratylenchus, Radopholus, Ditylenchus, and Bursaphelenchus. Although this review focuses on these four genera, many facets of feeding mechanisms and management are common across all migratory PPNs and hence can be applied across a broad genera of migratory phytonematodes.
Collapse
Affiliation(s)
| | - Charles H. Opperman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
17
|
Harkes P, van Steenbrugge JJM, van den Elsen SJJ, Suleiman AKA, de Haan JJ, Holterman MHM, Helder J. Shifts in the Active Rhizobiome Paralleling Low Meloidogyne chitwoodi Densities in Fields Under Prolonged Organic Soil Management. FRONTIERS IN PLANT SCIENCE 2020; 10:1697. [PMID: 31998352 PMCID: PMC6965313 DOI: 10.3389/fpls.2019.01697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Plants manipulate their rhizosphere community in a species and even a plant life stage-dependent manner. In essence plants select, promote and (de)activate directly the local bacterial and fungal community, and indirectly representatives of the next trophic level, protists and nematodes. By doing so, plants enlarge the pool of bioavailable nutrients and maximize local disease suppressiveness within the boundaries set by the nature of the local microbial community. MiSeq sequencing of specific variable regions of the 16S or 18S ribosomal DNA (rDNA) is widely used to map microbial shifts. As current RNA extraction procedures are time-consuming and expensive, the rRNA-based characterization of the active microbial community is taken along less frequently. Recently, we developed a relatively fast and affordable protocol for the simultaneous extraction of rDNA and rRNA from soil. Here, we investigated the long-term impact of three type of soil management, two conventional and an organic regime, on soil biota in fields naturally infested with the Columbian root-knot nematode Meloidogyne chitwoodi with pea (Pisum sativum) as the main crop. For all soil samples, large differences were observed between resident (rDNA) and active (rRNA) microbial communities. Among the four organismal group under investigation, the bacterial community was most affected by the main crop, and unweighted and weighted UniFrac analyses (explaining respectively 16.4% and 51.3% of the observed variation) pointed at a quantitative rather than a qualitative shift. LEfSe analyses were employed for each of the four organismal groups to taxonomically pinpoint the effects of soil management. Concentrating on the bacterial community in the pea rhizosphere, organic soil management resulted in a remarkable activation of members of the Burkholderiaceae, Enterobacteriaceae, and Pseudomonadaceae. Prolonged organic soil management was also accompanied by significantly higher densities of bacterivorous nematodes, whereas levels of M. chitwoodi had dropped drastically. Though present and active in the fields under investigation Orbiliaceae, a family harboring numerous nematophagous fungi, was not associated with the M. chitwoodi decline. A closer look revealed that a local accumulation and activation of Pseudomonas, a genus that includes a number of nematode-suppressive species, paralleled the lower M. chitwoodi densities. This study underlines the relevance of taking along both resident and active fractions of multiple organismal groups while mapping the impact of e.g. crops and soil management regimes.
Collapse
Affiliation(s)
- Paula Harkes
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Afnan Khalil Ahmad Suleiman
- Department of Microbial Ecology, NIOO-KNAW, Wageningen, Netherlands
- Department of Microbiological Water Quality and Health, KWR Watercycle Research Institute, PE Nieuwegein, Netherlands
| | - Johannes Jan de Haan
- Open Teelten, Department of Wageningen Plant Research, Wageningen University & Research, Lelystad, Netherlands
| | | | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Consoli E, Ruthes AC, Reinhard E, Dahlin P. First Morphological and Molecular Report of Aphelenchoides blastophthorus on Strawberry Plants in Switzerland. PLANT DISEASE 2019; 103:2851-2856. [PMID: 31486741 DOI: 10.1094/pdis-07-18-1241-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Foliar nematodes represent a minor feeding group within the genus Aphelenchoides Fischer, 1894. The facultative plant parasitic species A. blastophthorus can cause crinkling of leaves, reduced vigor, and stunting of agricultural and ornamental plants. Here we report the first finding of A. blastophthorus in leaves, crowns, and roots of strawberry plants collected in Switzerland in 2018. Species identification was confirmed by morphological and morphometric characterization supported by molecular barcoding of 18S ribosomal RNA (18S), 28S ribosomal RNA (28S), and cytochrome c oxidase I (COI) gene fragment analyses. Phylogenetic analysis of 18S indicated that A. blastophthorus was grouped within close distance to A. fragariae, a well-known foliar nematode affecting strawberry plants. Furthermore, the newly generated molecular barcodes of the partial 28S and COI of A. blastophthorus will support species identification in the future.
Collapse
Affiliation(s)
- Erika Consoli
- Agroscope, Research Division Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | | | - Eder Reinhard
- Agroscope, Research Division Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Paul Dahlin
- Agroscope, Research Division Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| |
Collapse
|
19
|
Mathew R, Opperman CH. The genome of the migratory nematode, Radopholus similis, reveals signatures of close association to the sedentary cyst nematodes. PLoS One 2019; 14:e0224391. [PMID: 31652297 PMCID: PMC6814228 DOI: 10.1371/journal.pone.0224391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/11/2019] [Indexed: 11/19/2022] Open
Abstract
Radopholus similis, commonly known as the burrowing nematode, is an important pest of myriad crops and ornamentals including banana (Musa spp.) and Citrus spp. In order to characterize the potential role of putative effectors encoded by R. similis genes we compared predicted proteins from a draft R. similis genome with other plant-parasitic nematodes in order to define the suite of excreted/secreted proteins that enable it to function as a parasite and to ascertain the phylogenetic position of R. similis in the Tylenchida order. Identification and analysis of candidate genes encoding for key plant cell-wall degrading enzymes including GH5 cellulases, PL3 pectate lyases and GH28 polygalactouranase revealed a pattern of occurrence similar to other PPNs, although with closest phylogenetic associations to the sedentary cyst nematodes. We also observed the absence of a suite of effectors essential for feeding site formation in the cyst nematodes. Clustering of various orthologous genes shared by R. similis with other nematodes showed higher overlap with the cyst nematodes than with the root-knot or other migratory endoparasitic nematodes. The data presented here support the hypothesis that R. similis is evolutionarily closer to the cyst nematodes, however, differences in the effector repertoire delineate ancient divergence of parasitism, probably as a consequence of niche specialization. These similarities and differences further underscore distinct evolutionary relationships during the evolution of parasitism in this group of nematodes.
Collapse
Affiliation(s)
- Reny Mathew
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| | - Charles H. Opperman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| |
Collapse
|
20
|
Rybarczyk-Mydłowska K, Dmowska E, Kowalewska K. Phylogenetic studies on three Helicotylenchus species based on 28S rDNA and mtCOI sequence data. J Nematol 2019; 51:1-17. [PMID: 31169369 PMCID: PMC6929645 DOI: 10.21307/jofnem-2019-033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 11/29/2022] Open
Abstract
To facilitate the process of spiral nematode species delineation, populations of Helicotylenchus canadensis, H. pseudorobustus, and H. varicaudatus deriving from various locations and diverse natural and anthropogenic environments from Poland were investigated and characterized. For the first time, 28S rDNA sequences are reported for H. canadensis and H. varicaudatus, whereas new mtCOI sequences were acquired for all three analyzed species. A Bayesian phylogenetic analysis of the 28S rDNA fragments revealed that H. canadensis and H. varicaudatus are members of a clade that is a sister group to all other Helicotylenchus species; however, the closest known sister group to H. canadensis is H. vulgaris type A. Both 28S rDNA- and mtCOI-based phylogenetic results suggest that this clade excludes H. pseudorobustus, whose most recent common ancestor with the former species was inferred to be the ancestor of all Helicotylenchus species. Moreover, within the mtCOI sequences obtained from H. pseudorobustus, unlike from the other two, a simultaneous presence of TAG and TAA codons was identified. This may indicate mitochondrial genetic code alterations or other genomic rearrangements in H. pseudorobustus.
Collapse
Affiliation(s)
| | - E Dmowska
- Museum and Institute of Zoology PAS , Wilcza 64, 00-679, Warsaw , Poland
| | - K Kowalewska
- Museum and Institute of Zoology PAS , Wilcza 64, 00-679, Warsaw , Poland
| |
Collapse
|
21
|
Masonbrink R, Maier TR, Muppirala U, Seetharam AS, Lord E, Juvale PS, Schmutz J, Johnson NT, Korkin D, Mitchum MG, Mimee B, den Akker SEV, Hudson M, Severin AJ, Baum TJ. The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes. BMC Genomics 2019; 20:119. [PMID: 30732586 PMCID: PMC6367775 DOI: 10.1186/s12864-019-5485-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Heterodera glycines, commonly referred to as the soybean cyst nematode (SCN), is an obligatory and sedentary plant parasite that causes over a billion-dollar yield loss to soybean production annually. Although there are genetic determinants that render soybean plants resistant to certain nematode genotypes, resistant soybean cultivars are increasingly ineffective because their multi-year usage has selected for virulent H. glycines populations. The parasitic success of H. glycines relies on the comprehensive re-engineering of an infection site into a syncytium, as well as the long-term suppression of host defense to ensure syncytial viability. At the forefront of these complex molecular interactions are effectors, the proteins secreted by H. glycines into host root tissues. The mechanisms of effector acquisition, diversification, and selection need to be understood before effective control strategies can be developed, but the lack of an annotated genome has been a major roadblock. RESULTS Here, we use PacBio long-read technology to assemble a H. glycines genome of 738 contigs into 123 Mb with annotations for 29,769 genes. The genome contains significant numbers of repeats (34%), tandem duplicates (18.7 Mb), and horizontal gene transfer events (151 genes). A large number of putative effectors (431 genes) were identified in the genome, many of which were found in transposons. CONCLUSIONS This advance provides a glimpse into the host and parasite interplay by revealing a diversity of mechanisms that give rise to virulence genes in the soybean cyst nematode, including: tandem duplications containing over a fifth of the total gene count, virulence genes hitchhiking in transposons, and 107 horizontal gene transfers not reported in other plant parasitic nematodes thus far. Through extensive characterization of the H. glycines genome, we provide new insights into H. glycines biology and shed light onto the mystery underlying complex host-parasite interactions. This genome sequence is an important prerequisite to enable work towards generating new resistance or control measures against H. glycines.
Collapse
Affiliation(s)
- Rick Masonbrink
- Department of Plant Pathology, Iowa State University, Ames, IA USA
- Genome Informatics Facility, Iowa State University, Ames, IA USA
| | - Tom R. Maier
- Department of Plant Pathology, Iowa State University, Ames, IA USA
| | - Usha Muppirala
- Department of Plant Pathology, Iowa State University, Ames, IA USA
- Genome Informatics Facility, Iowa State University, Ames, IA USA
| | - Arun S. Seetharam
- Department of Plant Pathology, Iowa State University, Ames, IA USA
- Genome Informatics Facility, Iowa State University, Ames, IA USA
| | - Etienne Lord
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC Canada
| | | | - Jeremy Schmutz
- Department of Energy, Joint Genome Institute, Walnut Creek, CA USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Nathan T. Johnson
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA USA
| | - Dmitry Korkin
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA USA
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA USA
| | | | - Benjamin Mimee
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC Canada
| | | | - Matthew Hudson
- Department of Crop Sciences University of Illinois, Urbana, IL USA
| | | | - Thomas J. Baum
- Department of Plant Pathology, Iowa State University, Ames, IA USA
| |
Collapse
|
22
|
Fanelli E, Troccoli A, De Luca F. Functional Variation of Two Novel Cellulases, Pv-eng-5 and Pv-eng-8, and the Heat Shock 90 Gene, Pv-hsp-90, in Pratylenchus vulnus and Their Expression in Response to Different Temperature Stress. Int J Mol Sci 2018; 20:E107. [PMID: 30597892 PMCID: PMC6337429 DOI: 10.3390/ijms20010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 11/18/2022] Open
Abstract
Functional characterization of two novel endoglucanase genes, Pv-eng-5 and Pv-eng-8, of the root-lesion nematode Pratylenchus vulnus was carried out. In situ-hybridization experiments revealed that Pv-eng-8 transcript was localized in the pharyngeal glands. Silencing of Pv-eng-5 and Pv-eng-8 resulted in a significant reduction of expression level (52% and 67%, respectively). Furthermore, the silencing of Pv-eng-8 determined a reduction (41%) in nematode reproduction, suggesting that treated nematodes are much less able to process food. Surprisingly, no significant difference on reproduction rate was observed with Pv-eng-5 dsRNA nematodes, suggesting a neofunctionalization of Pv-eng-5 despite the high similarity with nematode endoglucanases. Pratylenchus species are poikilothermic organisms showing close relationships with the environmental temperature. The effects of different temperature ranges revealed that the reproductive potential of P. vulnus increased with increasing temperature from 23 °C to 28 °C, but no reproduction was observed at 33 °C. In real time, increasing temperature from 23 °C to 28 °C the heat shock gene Pv-hsp-90 was differentially expressed in adult stages, while the levels of the effector genes Pv-eng-1 and Pv-eng-8 in females showed no significant differences compared to those observed at 23 °C, only in males Pv-eng-8 level decreased (45%). The upregulation of Pv-hsp-90 in both adult stages suggests a protective mechanism in order to cope with unfavorable environmental conditions.
Collapse
Affiliation(s)
- Elena Fanelli
- Istituto per la Protezione Sostenibile delle Piante (IPSP), SS-Bari, Consiglio Nazionale delle Ricerche, (CNR), 70126 Bari, Italy.
| | - Alberto Troccoli
- Istituto per la Protezione Sostenibile delle Piante (IPSP), SS-Bari, Consiglio Nazionale delle Ricerche, (CNR), 70126 Bari, Italy.
| | - Francesca De Luca
- Istituto per la Protezione Sostenibile delle Piante (IPSP), SS-Bari, Consiglio Nazionale delle Ricerche, (CNR), 70126 Bari, Italy.
| |
Collapse
|
23
|
Werner MS, Sieriebriennikov B, Prabh N, Loschko T, Lanz C, Sommer RJ. Young genes have distinct gene structure, epigenetic profiles, and transcriptional regulation. Genome Res 2018; 28:1675-1687. [PMID: 30232198 PMCID: PMC6211652 DOI: 10.1101/gr.234872.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
Species-specific, new, or "orphan" genes account for 10%-30% of eukaryotic genomes. Although initially considered to have limited function, an increasing number of orphan genes have been shown to provide important phenotypic innovation. How new genes acquire regulatory sequences for proper temporal and spatial expression is unknown. Orphan gene regulation may rely in part on origination in open chromatin adjacent to preexisting promoters, although this has not yet been assessed by genome-wide analysis of chromatin states. Here, we combine taxon-rich nematode phylogenies with Iso-Seq, RNA-seq, ChIP-seq, and ATAC-seq to identify the gene structure and epigenetic signature of orphan genes in the satellite model nematode Pristionchus pacificus Consistent with previous findings, we find young genes are shorter, contain fewer exons, and are on average less strongly expressed than older genes. However, the subset of orphan genes that are expressed exhibit distinct chromatin states from similarly expressed conserved genes. Orphan gene transcription is determined by a lack of repressive histone modifications, confirming long-held hypotheses that open chromatin is important for new gene formation. Yet orphan gene start sites more closely resemble enhancers defined by H3K4me1, H3K27ac, and ATAC-seq peaks, in contrast to conserved genes that exhibit traditional promoters defined by H3K4me3 and H3K27ac. Although the majority of orphan genes are located on chromosome arms that contain high recombination rates and repressive histone marks, strongly expressed orphan genes are more randomly distributed. Our results support a model of new gene origination by rare integration into open chromatin near enhancers.
Collapse
Affiliation(s)
- Michael S Werner
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Neel Prabh
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Tobias Loschko
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Christa Lanz
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Lilley CJ, Maqbool A, Wu D, Yusup HB, Jones LM, Birch PRJ, Banfield MJ, Urwin PE, Eves-van den Akker S. Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene. PLoS Genet 2018; 14:e1007310. [PMID: 29641602 PMCID: PMC5919673 DOI: 10.1371/journal.pgen.1007310] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/26/2018] [Accepted: 03/16/2018] [Indexed: 11/24/2022] Open
Abstract
Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to "GS-like effectors". Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function.
Collapse
Affiliation(s)
- Catherine J. Lilley
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Abbas Maqbool
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Duqing Wu
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hazijah B. Yusup
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Laura M. Jones
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Paul R. J. Birch
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark J. Banfield
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter E. Urwin
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sebastian Eves-van den Akker
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
25
|
Smant G, Helder J, Goverse A. Parallel adaptations and common host cell responses enabling feeding of obligate and facultative plant parasitic nematodes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:686-702. [PMID: 29277939 DOI: 10.1111/tpj.13811] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 05/08/2023]
Abstract
Parallel adaptations enabling the use of plant cells as the primary food source have occurred multiple times in distinct nematode clades. The hallmark of all extant obligate and facultative plant-feeding nematodes is the presence of an oral stylet, which is required for penetration of plant cell walls, delivery of pharyngeal gland secretions into host cells and selective uptake of plant assimilates. Plant parasites from different clades, and even within a single clade, display a large diversity in feeding behaviours ranging from short feeding cycles on single cells to prolonged feeding on highly sophisticated host cell complexes. Despite these differences, feeding of nematodes frequently (but certainly not always) induces common responses in host cells (e.g. endopolyploidization and cellular hypertrophy). It is thought that these host cell responses are brought about by the interplay of effectors and other biological active compounds in stylet secretions of feeding nematodes, but this has only been studied for the most advanced sedentary plant parasites. In fact, these responses are thought to be fundamental for prolonged feeding of sedentary plant parasites on host cells. However, as we discuss in this review, some of these common plant responses to independent lineages of plant parasitic nematodes might also be generic reactions to cell stress and as such their onset may not require specific inputs from plant parasitic nematodes. Sedentary plant parasitic nematodes may utilize effectors and their ability to synthesize other biologically active compounds to tailor these common responses for prolonged feeding on host cells.
Collapse
Affiliation(s)
- Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| |
Collapse
|
26
|
Danchin EGJ, Perfus-Barbeoch L, Rancurel C, Thorpe P, Da Rocha M, Bajew S, Neilson R, Guzeeva ES, Da Silva C, Guy J, Labadie K, Esmenjaud D, Helder J, Jones JT, den Akker SEV. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes. Genes (Basel) 2017; 8:genes8100287. [PMID: 29065523 PMCID: PMC5664137 DOI: 10.3390/genes8100287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022] Open
Abstract
Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum.
Collapse
Affiliation(s)
- Etienne G J Danchin
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis Cedex, France.
| | | | - Corinne Rancurel
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis Cedex, France.
| | - Peter Thorpe
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | - Martine Da Rocha
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis Cedex, France.
| | - Simon Bajew
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | - Roy Neilson
- Ecological Sciences Group, IPM@Hutton, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | - Elena Sokolova Guzeeva
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
- Centre of Parasitology of the A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii Prospect 33, Moscow 119071, Russia.
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 92057, Evry, France.
| | - Julie Guy
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 92057, Evry, France.
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 92057, Evry, France.
| | - Daniel Esmenjaud
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis Cedex, France.
| | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
- School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9TZ, UK.
| | - Sebastian Eves-van den Akker
- Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|