1
|
Crouzier M, Avrillon S, Hug F, Cattagni T. Horizontal foot orientation affects the distribution of neural drive between gastrocnemii during plantarflexion, without changing neural excitability. J Appl Physiol (1985) 2024; 136:786-798. [PMID: 38205551 DOI: 10.1152/japplphysiol.00536.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The distribution of activation among muscles from the same anatomical group can be affected by the mechanical constraints of the task, such as limb orientation. For example, the distribution of activation between the gastrocnemius medialis (GM) and lateralis (GL) muscles during submaximal plantarflexion depends on the orientation of the foot in the horizontal plane. The neural mechanisms behind these modulations are not known. The overall aim of this study was to determine whether the excitability of the two gastrocnemius muscles is differentially affected by changes in foot orientation. Nineteen males performed isometric plantarflexions with their foot internally (toes-in) or externally (toes-out) rotated. GM and GL motor unit discharge characteristics were estimated from high-density surface electromyography to estimate neural drive. GM and GL corticospinal excitability and intracortical activity were assessed using transcranial magnetic stimulation through motor-evoked potentials. The efficacy of synaptic transmission between Ia-afferent fibers and α-motoneurons of the GM and GL was evaluated through the Hoffmann reflex. We observed a differential change in neural drive between GM (toes-out > toes-in) and GL (toes-out < toes-in). However, there was no foot orientation-related modulation in corticospinal excitability of the GM or GL, either at the cortical level or through modulation of the efficacy of Ia-α-motoneuron transmission. These results demonstrate that change in the motor pathway excitability is not the mechanism controlling the different distribution of neural drive between GM and GL with foot orientation.NEW & NOTEWORTHY Horizontal foot orientation affects the distribution of neural drive between the gastrocnemii during plantarflexion. There is no foot orientation-related modulation in the corticospinal excitability of the gastrocnemii, either at the cortical level or through modulation of the efficacy of Ia-α-motoneuron transmission. Change in motor pathway excitability is not the mechanism controlling the different distribution of neural drive between gastrocnemius medialis and lateralis with foot orientation.
Collapse
Affiliation(s)
- Marion Crouzier
- Nantes University, Movement - Interactions - Performance, MIP, UR-4334, Nantes, France
| | - Simon Avrillon
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - François Hug
- Université Côte d'Azur, LAMHESS, Nice, France
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas Cattagni
- Nantes University, Movement - Interactions - Performance, MIP, UR-4334, Nantes, France
| |
Collapse
|
2
|
Ma ZZ, Wu JJ, Hua XY, Zheng MX, Xing XX, Ma J, Shan CL, Xu JG. Evidence of neuroplasticity with brain-computer interface in a randomized trial for post-stroke rehabilitation: a graph-theoretic study of subnetwork analysis. Front Neurol 2023; 14:1135466. [PMID: 37346164 PMCID: PMC10281191 DOI: 10.3389/fneur.2023.1135466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/03/2023] [Indexed: 06/23/2023] Open
Abstract
Background Brain-computer interface (BCI) has been widely used for functional recovery after stroke. Understanding the brain mechanisms following BCI intervention to optimize BCI strategies is crucial for the benefit of stroke patients. Methods Forty-six patients with upper limb motor dysfunction after stroke were recruited and randomly divided into the control group or the BCI group. The primary outcome was measured by the assessment of Fugl-Meyer Assessment of Upper Extremity (FMA-UE). Meanwhile, we performed resting-state functional magnetic resonance imaging (rs-fMRI) in all patients, followed by independent component analysis (ICA) to identify functionally connected brain networks. Finally, we assessed the topological efficiency of both groups using graph-theoretic analysis in these brain subnetworks. Results The FMA-UE score of the BCI group was significantly higher than that of the control group after treatment (p = 0.035). From the network topology analysis, we first identified seven subnetworks from the rs-fMRI data. In the following analysis of subnetwork properties, small-world properties including γ (p = 0.035) and σ (p = 0.031) within the visual network (VN) decreased in the BCI group. For the analysis of the dorsal attention network (DAN), significant differences were found in assortativity (p = 0.045) between the groups. Additionally, the improvement in FMA-UE was positively correlated with the assortativity of the dorsal attention network (R = 0.498, p = 0.011). Conclusion Brain-computer interface can promote the recovery of upper limbs after stroke by regulating VN and DAN. The correlation trend of weak intensity proves that functional recovery in stroke patients is likely to be related to the brain's visuospatial processing ability, which can be used to optimize BCI strategies. Clinical Trial Registration The trial is registered in the Chinese Clinical Trial Registry, number ChiCTR2000034848. Registered 21 July 2020.
Collapse
Affiliation(s)
- Zhen-Zhen Ma
- Department of Rehabilitation Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
| | - Jia-Jia Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Ma ZZ, Wu JJ, Hua XY, Zheng MX, Xing XX, Ma J, Li SS, Shan CL, Xu JG. Brain Function and Upper Limb Deficit in Stroke With Motor Execution and Imagery: A Cross-Sectional Functional Magnetic Resonance Imaging Study. Front Neurosci 2022; 16:806406. [PMID: 35663563 PMCID: PMC9160973 DOI: 10.3389/fnins.2022.806406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMotor imagery training might be helpful in stroke rehabilitation. This study explored if a specific modulation of movement-related regions is related to motor imagery (MI) ability.MethodsTwenty-three patients with subcortical stroke and 21 age-matched controls were recruited. They were subjectively screened using the Kinesthetic and Visual Imagery Questionnaire (KVIQ). They then underwent functional magnetic resonance imaging (fMRI) while performing three repetitions of different motor tasks (motor execution and MI). Two separate runs were acquired [motor execution tasks (ME and rest) and motor imagery (MI and rest)] in a block design. For the different tasks, analyses of cerebral activation and the correlation of motor/imagery task-related activity and KVIQ scores were performed.ResultsDuring unaffected hand (UH) active grasp movement, we observed decreased activations in the contralateral precentral gyrus (PreCG), contralateral postcentral gyrus (PoCG) [p < 0.05, family wise error (FWE) corrected] and a positive correlation with the ability of FMA-UE (PreCG: r = 0.46, p = 0.028; PoCG: r = 0.44, p = 0.040). During active grasp of the affected hand (AH), decreased activation in the contralateral PoCG was observed (p < 0.05, FWE corrected). MI of the UH induced significant activations of the contralateral superior frontal gyrus, opercular region of the inferior frontal gyrus, and ipsilateral ACC and deactivation in the ipsilateral supplementary motor area (p < 0.05, AlphaSim correction). Ipsilateral anterior cingulate cortex (ACC) activity negatively correlated with MI ability (r = =–0.49, p = 0.022). Moreover, we found significant activation of the contralesional middle frontal gyrus (MFG) during MI of the AH.ConclusionOur results proved the dominant effects of MI dysfunction that exist in stroke during the processing of motor execution. In the motor execution task, the enhancement of the contralateral PreCG and PoCG contributed to reversing the motor dysfunction, while in the MI task, inhibition of the contralateral ACC can increase the impaired KVIQ ability. The bimodal balance recovery model can explain our results well. Recognizing neural mechanisms is critical to helping us formulate precise strategies when intervening with electrical or magnetic stimulation.
Collapse
Affiliation(s)
- Zhen-Zhen Ma
- Department of Rehabilitation Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-Si Li
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Chun-Lei Shan,
| | - Jian-Guang Xu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jian-Guang Xu,
| |
Collapse
|
4
|
Nakayama H, Kawakami M, Takahashi Y, Kondo K, Shimizu E. The changes in spinal reciprocal inhibition during motor imagery in lower extremity. Neurol Sci 2021; 42:3813-3820. [PMID: 33464412 DOI: 10.1007/s10072-021-05054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Motor imagery (MI) is known to improve motor function through enhancement of motor cortex activity. Spinal reciprocal inhibition (RI) is modulated by motor cortex activity, and, therefore, MI may change RI. The aim of this study was to examine the changes in RI during MI involving the lower extremity. Spinal RI was measured from the tibialis anterior (TA) to the soleus (SOL). Eleven healthy adults participated in experiment 1. All participants performed the following three conditions, and RI was assessed during each condition: (1) resting condition; (2) MI of ankle dorsiflexion condition (MI-DF); and (3) MI of ankle plantarflexion condition (MI-PF). Twelve healthy adults participated in experiment 2. All participants performed the following two conditions, and RI was assessed before and after MI practice for 10 min: (1) resting condition and (2) MI-DF. The interval between the conditioning and test stimulus (inter-stimulus interval; ISI) was set at 0, 1, 2, or 3 ms and 20 ms. In experiment 1, RI during MI-PF was significantly decreased compared with that during resting with both stimulus intervals. RI during MI-DF showed no significant change compared with that during resting with both ISIs. In experiment 2, the difference between the rest condition and the MI-DF condition after the MI task with ISI of 20 ms was significantly higher than before the MI task. Our findings suggest that real-time changes in RI during MI involving the lower extremity may vary depending on the direction of motion and MI practice.
Collapse
Affiliation(s)
- Hideto Nakayama
- Yatsu Hoken Hospital, 4-6-16 Yatsu, Narashino-shi, Chiba, 275-0026, Japan.,Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan.,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Chuo-ku, inohana, Chiba-shi, Chiba, 260-8670, Japan
| | - Michiyuki Kawakami
- Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan. .,Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yoko Takahashi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyou-ku, Tokyo, 113-8421, Japan
| | - Kunitsugu Kondo
- Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan
| | - Eiji Shimizu
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Chuo-ku, inohana, Chiba-shi, Chiba, 260-8670, Japan
| |
Collapse
|
5
|
Orlandi A, Arno E, Proverbio AM. The Effect of Expertise on Kinesthetic Motor Imagery of Complex Actions. Brain Topogr 2020; 33:238-254. [PMID: 32112306 DOI: 10.1007/s10548-020-00760-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 02/23/2020] [Indexed: 12/25/2022]
Abstract
The ability to mentally simulate an action by recalling the body sensations relative to the real execution is referred to as kinesthetic motor imagery (MI). Frontal and parietal motor-related brain regions are generally engaged during MI. The present study aimed to investigate the time course and neural correlates of complex action imagery and possible effects of expertise on the underlying action representation processes. Professional ballet dancers and controls were presented with effortful and effortless ballet steps and instructed to mentally reproduce each movement during EEG recording. Time-locked MI was associated with an Anterior Negativity (AN) component (400-550 ms) that was larger in dancers relative to controls. The AN was differentially modulated by the motor content (effort) as a function of ballet expertise. It was more negative in response to effortful (than effortless) movements in control participants only. This effect also had a frontal distribution in controls and a centro-parietal distribution in dancers, as shown by the topographic maps of the scalp voltage. The source reconstruction (swLORETA) of the recorded potentials in the AN time-window showed enhanced engagement of prefrontal regions in controls (BA 10/47) relative to dancers, and occipitotemporal (BA 20) and bilateral sensorimotor areas in dancers (BA6/40) compared with controls. This evidence seems to suggest that kinesthetic MI of complex action relied on visuomotor simulation processes in participants with acquired dance expertise. Simultaneously, increased cognitive demands occurred in participants lacking in motor knowledge with the specific action. Hence, professional dance training may lead to refined action representation processes.
Collapse
Affiliation(s)
- Andrea Orlandi
- Department of Psychology, Neuro-MI, Milan Center for Neuroscience, University of Milano - Bicocca, Milan, Italy.
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy.
| | - Elisa Arno
- Department of Psychology, Neuro-MI, Milan Center for Neuroscience, University of Milano - Bicocca, Milan, Italy
| | - Alice Mado Proverbio
- Department of Psychology, Neuro-MI, Milan Center for Neuroscience, University of Milano - Bicocca, Milan, Italy
| |
Collapse
|
6
|
Kato K, Vogt T, Kanosue K. Brain Activity Underlying Muscle Relaxation. Front Physiol 2019; 10:1457. [PMID: 31849707 PMCID: PMC6901433 DOI: 10.3389/fphys.2019.01457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 11/11/2019] [Indexed: 01/04/2023] Open
Abstract
Fine motor control of not only muscle contraction but also muscle relaxation is required for appropriate movements in both daily life and sports. Movement disorders such as Parkinson’s disease and dystonia are often characterized by deficits of muscle relaxation. Neuroimaging and neurophysiological studies suggest that muscle relaxation is an active process requiring cortical activation, and not just the cessation of contraction. In this article, we review the neural mechanisms of muscle relaxation, primarily utilizing research involving transcranial magnetic stimulation (TMS). Several studies utilizing single-pulse TMS have demonstrated that, during the relaxation phase of a muscle, the excitability of the corticospinal tract controlling that particular muscle is more suppressed than in the resting condition. Other studies, utilizing paired-pulse TMS, have shown that the intracortical inhibition is activated just before muscle relaxation. Moreover, muscle relaxation of one body part suppresses cortical activities controlling other body parts in different limbs. Therefore, the cortical activity might not only be a trigger for muscle relaxation of the target muscles but could also bring about an inhibitory effect on other muscles. This spread of inhibition can hinder the appropriate contraction of muscles involved in multi-limb movements such as those used in sports and the play of musical instruments. This may also be the reason why muscle relaxation is so difficult for beginners, infants, elderly, and the cognitively impaired.
Collapse
Affiliation(s)
- Kouki Kato
- Physical Education Center, Nanzan University, Nagoya, Japan.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Tobias Vogt
- Institute of Professional Sport Education and Sport Qualifications, German Sport University Cologne, Cologne, Germany
| | | |
Collapse
|
7
|
Takahashi Y, Kawakami M, Yamaguchi T, Idogawa Y, Tanabe S, Kondo K, Liu M. Effects of Leg Motor Imagery Combined With Electrical Stimulation on Plasticity of Corticospinal Excitability and Spinal Reciprocal Inhibition. Front Neurosci 2019; 13:149. [PMID: 30846928 PMCID: PMC6393385 DOI: 10.3389/fnins.2019.00149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
Motor imagery (MI) combined with electrical stimulation (ES) enhances upper-limb corticospinal excitability. However, its after-effects on both lower limb corticospinal excitability and spinal reciprocal inhibition remain unknown. We aimed to investigate the effects of MI combined with peripheral nerve ES (MI + ES) on the plasticity of lower limb corticospinal excitability and spinal reciprocal inhibition. Seventeen healthy individuals performed the following three tasks on different days, in a random order: (1) MI alone; (2) ES alone; and (3) MI + ES. The MI task consisted of repetitive right ankle dorsiflexion for 20 min. ES was percutaneously applied to the common peroneal nerve at a frequency of 100 Hz and intensity of 120% of the sensory threshold of the tibialis anterior (TA) muscle. We examined changes in motor-evoked potential (MEP) of the TA (task-related muscle) and soleus muscle (SOL; task-unrelated muscle). We also examined disynaptic reciprocal inhibition before, immediately after, and 10, 20, and 30 min after the task. MI + ES significantly increased TA MEPs immediately and 10 min after the task compared with baseline, but did not change the task-unrelated muscle (SOL) MEPs. MI + ES resulted in a significant increase in the magnitude of reciprocal inhibition immediately and 10 min after the task compared with baseline. MI and ES alone did not affect TA MEPs or reciprocal inhibition. MI combined with ES is effective in inducing plastic changes in lower limb corticospinal excitability and reciprocal Ia inhibition.
Collapse
Affiliation(s)
- Yoko Takahashi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomofumi Yamaguchi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | | | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | | | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Stone KD, Bullock F, Keizer A, Dijkerman HC. The disappearing limb trick and the role of sensory suggestibility in illusion experience. Neuropsychologia 2018; 117:418-427. [DOI: 10.1016/j.neuropsychologia.2018.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
|
9
|
Li F, Zhang T, Li BJ, Zhang W, Zhao J, Song LP. Motor imagery training induces changes in brain neural networks in stroke patients. Neural Regen Res 2018; 13:1771-1781. [PMID: 30136692 PMCID: PMC6128064 DOI: 10.4103/1673-5374.238616] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown. We conducted a randomized controlled trial in the China Rehabilitation Research Center. Twenty stroke patients, including 13 males and 7 females, 32–51 years old, were recruited and randomly assigned to the traditional rehabilitation treatment group (PP group, n = 10) or the motor imagery training combined with traditional rehabilitation treatment group (MP group, n = 10). All patients received rehabilitation training once a day, 45 minutes per session, five times per week, for 4 consecutive weeks. In the MP group, motor imagery training was performed for 45 minutes after traditional rehabilitation training, daily. Action Research Arm Test and the Fugl-Meyer Assessment of the upper extremity were used to evaluate hand functions before and after treatment. Transcranial magnetic stimulation was used to analyze motor evoked potentials in the affected extremity. Diffusion tensor imaging was used to assess changes in brain neural networks. Compared with the PP group, the MP group showed better recovery of hand function, higher amplitude of the motor evoked potential in the abductor pollicis brevis, greater fractional anisotropy of the right dorsal pathway, and an increase in the fractional anisotropy of the bilateral dorsal pathway. Our findings indicate that 4 weeks of motor imagery training combined with traditional rehabilitation treatment improves hand function in stroke patients by enhancing the dorsal pathway. This trial has been registered with the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).
Collapse
Affiliation(s)
- Fang Li
- Capital Medical University School of Rehabilitation Medicine; Neurorehabilitation Center, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Tong Zhang
- Capital Medical University School of Rehabilitation Medicine; Neurorehabilitation Center, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Bing-Jie Li
- Capital Medical University School of Rehabilitation Medicine; Neurorehabilitation Center, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Wei Zhang
- Capital Medical University School of Rehabilitation Medicine; Neurorehabilitation Center, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Jun Zhao
- Capital Medical University School of Rehabilitation Medicine; Neurorehabilitation Center, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Lu-Ping Song
- Capital Medical University School of Rehabilitation Medicine; Neurorehabilitation Center, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|