1
|
Paczkowska-Walendowska M, Kulawik M, Kwiatek J, Bikiaris D, Cielecka-Piontek J. Novel Applications of Natural Biomaterials in Dentistry-Properties, Uses, and Development Perspectives. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2124. [PMID: 40363627 PMCID: PMC12074186 DOI: 10.3390/ma18092124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/27/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025]
Abstract
Natural biomaterials have gained significant attention in modern dentistry due to their biocompatibility, biodegradability, and low immunogenicity. These materials, including alginate, cellulose, chitosan, collagen, and hydroxyapatite, have been widely explored for their applications in stomatology. They play a crucial role in periodontal disease treatment, caries prevention, and implantology, providing an alternative to synthetic materials. Natural polymers such as chitosan and cellulose are utilized in drug delivery systems and tissue regeneration, while hydroxyapatite serves as a bone substitute due to its osteoconductive properties. Collagen-based scaffolds and coatings enhance periodontal and bone tissue regeneration. Additionally, bioengineered and chemically modified biomaterials offer improved mechanical and biological characteristics, expanding their clinical applications. This review aims to provide a comprehensive analysis of the biological properties, advantages, and limitations of selected natural biomaterials in dentistry. It explores their applications in various aspects of stomatology, including periodontal disease prevention and regeneration, dental caries prevention, bone substitutes in implantology, and dental implant coating. Although natural biomaterials exhibit promising properties, further research is necessary to refine their performance, enhance stability, and ensure long-term safety. Advancements in nanotechnology and bioengineering continue to drive the development of innovative natural biomaterials, paving the way for more effective and biocompatible dental therapies.
Collapse
Affiliation(s)
| | - Maciej Kulawik
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (M.K.); (J.C.-P.)
| | - Jakub Kwiatek
- Kwiatek Dental Clinic Sp. Z.o.o., Kordeckiego 22, 60-144 Poznan, Poland;
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (M.K.); (J.C.-P.)
| |
Collapse
|
2
|
Hlawa I, Reske T, Chabanovska O, Scholz M, Vasudevan P, Oschatz S, Grabow N, Lang H. In Vitro Release Dynamics of Atorvastatin-Loaded Alginate Particles for Enhanced Periodontal Treatment. Polymers (Basel) 2025; 17:427. [PMID: 39940629 PMCID: PMC11820141 DOI: 10.3390/polym17030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Periodontitis is a chronic inflammatory condition of the periodontium, which often leads to tooth loss. Recently, statins have emerged as potent anti-inflammatory agents with pleiotropic effects that can potentially outperform conventional periodontal treatments. However, the clinical application of statins is limited by the lack of suitable drug carriers that fit the periodontal region and provide a controlled local drug release. In this study, we address the critical gap in localized periodontal drug delivery and introduce an ultrasound-assisted technique to encapsulate atorvastatin within alginate microparticles (10-400 µm in diameter)-a simple, scalable, and biocompatible solution. While ultrasound is widely used in polymer synthesis, its application in alginate polymerization remains underexplored. To mimic physiological conditions, particles were incubated in artificial saliva at 37 °C, with drug release being analyzed via high-performance liquid chromatography. A methylcellulose-based hydrogel served as a conventional reference product. Results revealed that alginate particles exhibited at least a 10-fold increase in mean dissolution time compared to the methylcellulose gel, indicating superior stability. Increasing atorvastatin concentration extended the time interval needed for 50% of the drug to be released (t50%) from 1 h to 11 h, maintaining the overall drug diffusion level for several days. Further analysis showed that covalent cross-linking of alginate with divinyl sulfone significantly delayed the initial drug release by 3 h (p < 0.05) due to the additional molecular stabilization. These findings underscore the utility of ultrasonic atomization for the processing of alginate-based formulations. Given the ease of production, biocompatibility, and small size, successfully fabricated alginate particles represent a promising carrier for delivery of statins or other related drugs in clinical dentistry.
Collapse
Affiliation(s)
- Imke Hlawa
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Thomas Reske
- Institute for Implant Technology and Biomaterials e.V., 18119 Rostock-Warnemünde, Germany
| | - Oleksandra Chabanovska
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Malte Scholz
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Praveen Vasudevan
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Stefan Oschatz
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
3
|
Wuttke B, Ekat K, Chabanovska O, Jackszis M, Springer A, Vasudevan P, Kreikemeyer B, Lang H. Preparation and In Vitro Characterization of Lactococcus lactis-Loaded Alginate Particles as a Promising Delivery Tool for Periodontal Probiotic Therapy. J Funct Biomater 2024; 15:129. [PMID: 38786639 PMCID: PMC11121860 DOI: 10.3390/jfb15050129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Probiotic microorganisms are used in a variety of food supplements and medical formulations to promote human health. In periodontal therapy, probiotics are mainly used in the form of gels, tablets or rinses that often tend to leak from the periodontal pocket, resulting in a strongly reduced therapeutic effect. In this pilot in vitro study, we present biodegradable alginate-based particles as an alternative, highly efficient system for a periodontal delivery of probiotic bacteria to the inflammation site. For this purpose, Lactococcus (L.) lactis was encapsulated using a standardized pump-controlled extrusion-dripping method. Time-dependent bacterial release in artificial saliva was investigated over 9 days. The effect of freeze drying was explored to ensure long-term storage of L. lactis-loaded particles. Additionally, the particles were bound to dentin surface using approved bioadhesives and subjected to shear stress in a hydrodynamic flow chamber that mimics the oral cavity in vitro. Thus, round particles within the range of 0.80-1.75 mm in radius could be produced, whereby the diameter of the dripping tip had the most significant impact on the size. Although both small and large particles demonstrated a similar release trend of L. lactis, the release rate was significantly higher in the former. Following lyophilization, particles could restore their original shape within 4 h in artificial saliva; thereby, the bacterial viability was not affected. The attachment strength to dentin intensified by an adhesive could resist forces between 10 and 25 N/m2. Full degradation of the particles was observed after 20 days in artificial saliva. Therefore, alginate particles display a valuable probiotic carrier for periodontal applications that have several crucial advantages over existing preparations: a highly stable form, prolonged continuous release of therapeutic bacteria, precise manufacturing according to required dimensions at the application site, strong attachment to the tooth with low risk of dislocation, high biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Bettina Wuttke
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Katharina Ekat
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, 18057 Rostock, Germany
| | - Oleksandra Chabanovska
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Mario Jackszis
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, University Medical Center Rostock, 18057 Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Centre, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Praveen Vasudevan
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, 18057 Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
4
|
Paul M, Pramanik SD, Sahoo RN, Dey YN, Nayak AK. Dental delivery systems of antimicrobial drugs using chitosan, alginate, dextran, cellulose and other polysaccharides: A review. Int J Biol Macromol 2023; 247:125808. [PMID: 37460072 DOI: 10.1016/j.ijbiomac.2023.125808] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/24/2023]
Abstract
Dental caries, periodontal disease, and endodontic disease are major public health concerns worldwide due to their impact on individuals' quality of life. The present problem of dental disorders is the removal of the infection caused by numerous microbes, particularly, bacteria (both aerobes and anaerobes). The most effective method for treating and managing dental diseases appears to be the use of antibiotics or other antimicrobials, which are incorporated in some drug delivery systems. However, due to their insufficient bioavailability, poor availability for gastrointestinal absorption, and pharmacokinetics after administration via the oral route, many pharmaceutical medicines or natural bioactive substances have limited efficacy. During past few decades, a range of polysaccharide-based systems have been widely investigated for dental dug delivery. The polysaccharide-based carrier materials made of chitosan, alginate, dextran, cellulose and other polysaccharides have recently been spotlighted on the recent advancements in preventing, treating and managing dental diseases. The objective of the current review article is to present a brief comprehensive overview of the recent advancements in polysaccharide-based dental drug delivery systems for the delivery of different antimicrobial drugs.
Collapse
Affiliation(s)
- Mousumi Paul
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, West Bengal, India
| | - Siddhartha Das Pramanik
- Department of Biosciences and Bioengineering, Indian Institute Technology-Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Yadu Nandan Dey
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, West Bengal, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
5
|
Wong PY, Soo S, Wong ESC, Praveen P, Clode P, Baker MV, Matsubara VH. A Novel Antimicrobial Hydrogel for the Management of Periodontal Diseases. Int Dent J 2023; 73:354-361. [PMID: 36754776 DOI: 10.1016/j.identj.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVES This study aimed to synthesise a drug-delivery system based on a porous polymer hydrogel, with antimicrobial properties against Porphyromonas gingivalis and potential to be used in tissue regeneration. MATERIAL AND METHODS 2-Hydroxyethyl methacrylate monomers were polymerised using thermal and photoactivation in the presence of silver nitrate (AgNO3) and/or chlorhexidine digluconate. Poly-2-hydroxyethyl methacrylate (pHEMA) hydrogels containing silver nanoparticles (AgNPs) and/or 0.12% chlorhexidine (CHX) were produced and characterised using cryo-SEM and confocal microscopy. Hydrogel degradation and leaching of AgNP were tested for 1.5 months. The antimicrobial properties were tested against P. gingivalis using broth culture system and disk diffusion tests. RESULTS Our methodology manufactured porous polymeric hydrogels doped with AgNPs and CHX. Hydrogels showed a successful delivery of CHX and sustainable release of AgNPs in a steady hydrogel degradation rate determined based on the weight loss of samples. Hydrogels with AgNPs or CHX had a significant antimicrobial effect against P. gingivalis, with CHX-hydrogels exhibiting a stronger effect than AgNP-hydrogels in the short-term assessment. AgNP-CHX hydrogels showed a compounded antimicrobial effect, whereas control hydrogels containing neither AgNPs nor CHX had no influence on bacterial growth (P < .05). CONCLUSIONS The dual-cured pHEMA hydrogel loaded with antimicrobial agents proved to be an efficient drug-delivery system against periodontopathogens, with the potential to be used as a scaffold for tissue regeneration.
Collapse
Affiliation(s)
- Pauline Yang Wong
- UWA Dental School, The University of Western Australia, Perth, Western Australia, Australia
| | - Shane Soo
- UWA Dental School, The University of Western Australia, Perth, Western Australia, Australia
| | - Edmund Soon-Chern Wong
- UWA Dental School, The University of Western Australia, Perth, Western Australia, Australia
| | - Praveen Praveen
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Peta Clode
- Centre for Microscopy, Characterisation, and Analysis and School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Murray V Baker
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Victor Haruo Matsubara
- UWA Dental School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Grafted Microparticles Based on Glycidyl Methacrylate, Hydroxyethyl Methacrylate and Sodium Hyaluronate: Synthesis, Characterization, Adsorption and Release Studies of Metronidazole. Polymers (Basel) 2022; 14:polym14194151. [PMID: 36236098 PMCID: PMC9572090 DOI: 10.3390/polym14194151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022] Open
Abstract
Three types of precursor microparticles based on glycidyl methacrylate, hydroxyethyl methacrylate and one of the following three crosslinking agents (mono-, di- or triethylene glycol dimethacrylate) were prepared using the suspension polymerization technique. The precursor microparticles were subsequently used to obtain three types of hybrid microparticles. Their synthesis took place by grafting sodium hyaluronate, in a basic medium, to the epoxy groups located on the surface of the precursor microparticles. Both types of the microparticles were characterized by: FTIR spectroscopy, epoxy groups content, thermogravimetric analysis, dimensional analysis, grafting degree of sodium hyaluronate, SEM and AFM analyses, and specific parameters of porous structures (specific surface area, pore volume, porosity). The results showed that the hybrid microparticles present higher specific surface areas, higher swelling capacities as well as higher adsorption capacities of antimicrobial drugs (metronidazole). To examine the interactions between metronidazole and the precursor/hybrid microparticles the adsorption equilibrium, kinetic and thermodynamic studies were carried out. Thus, it was determined the performance of the polymer systems in order to select a polymer-drug system with a high efficiency. The release kinetics reflect that the release mechanism of metronidazole in the case of hybrid microparticles is a complex mechanism characteristic of anomalous or non-Fickian diffusion.
Collapse
|
7
|
Nanofibrous chitosan/polyethylene oxide silver/hydroxyapatite/silica composite as a potential biomaterial for local treatment of periodontal disease. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
9
|
Zussman M, Giladi S, Zilberman M. In vitro
characterization of injectable
chlorhexidine‐eluting
gelatin hydrogels for local treatment of periodontal infections. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Merav Zussman
- Department of Materials Science and Engineering Tel‐Aviv University Tel‐Aviv Israel
- Department of Biomedical Engineering Tel‐Aviv University Tel‐Aviv Israel
| | - Shir Giladi
- Department of Materials Science and Engineering Tel‐Aviv University Tel‐Aviv Israel
| | - Meital Zilberman
- Department of Materials Science and Engineering Tel‐Aviv University Tel‐Aviv Israel
- Department of Biomedical Engineering Tel‐Aviv University Tel‐Aviv Israel
| |
Collapse
|
10
|
Polysaccharide-Based Micro- and Nanosized Drug Delivery Systems for Potential Application in the Pediatric Dentistry. Polymers (Basel) 2021; 13:polym13193342. [PMID: 34641160 PMCID: PMC8512615 DOI: 10.3390/polym13193342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
The intensive development of micro- and nanotechnologies in recent years has offered a wide horizon of new possibilities for drug delivery in dentistry. The use of polymeric drug carriers turned out to be a very successful technique for formulating micro- and nanoparticles with controlled or targeted drug release in the oral cavity. Such innovative strategies have the potential to provide an improved therapeutic approach to prevention and treatment of various oral diseases not only for adults, but also in the pediatric dental practice. Due to their biocompatibility, biotolerance and biodegradability, naturally occurring polysaccharides like chitosan, alginate, pectin, dextran, starch, etc., are among the most preferred materials for preparation of micro- and nano-devices for drug delivery, offering simple particle-forming characteristics and easily tunable properties of the formulated structures. Their low immunogenicity and low toxicity provide an advantage over most synthetic polymers for the development of pediatric formulations. This review is focused on micro- and nanoscale polysaccharide biomaterials as dental drug carriers, with an emphasis on their potential application in pediatric dentistry.
Collapse
|
11
|
Baranov N, Popa M, Atanase LI, Ichim DL. Polysaccharide-Based Drug Delivery Systems for the Treatment of Periodontitis. Molecules 2021; 26:2735. [PMID: 34066568 PMCID: PMC8125343 DOI: 10.3390/molecules26092735] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Periodontal diseases are worldwide health problems that negatively affect the lifestyle of many people. The long-term effect of the classical treatments, including the mechanical removal of bacterial plaque, is not effective enough, causing the scientific world to find other alternatives. Polymer-drug systems, which have different forms of presentation, chosen depending on the nature of the disease, the mode of administration, the type of polymer used, etc., have become very promising. Hydrogels, for example (in the form of films, micro-/nanoparticles, implants, inserts, etc.), contain the drug included, encapsulated, or adsorbed on the surface. Biologically active compounds can also be associated directly with the polymer chains by covalent or ionic binding (polymer-drug conjugates). Not just any polymer can be used as a support for drug combination due to the constraints imposed by the fact that the system works inside the body. Biopolymers, especially polysaccharides and their derivatives and to a lesser extent proteins, are preferred for this purpose. This paper aims to review in detail the biopolymer-drug systems that have emerged in the last decade as alternatives to the classical treatment of periodontal disease.
Collapse
Affiliation(s)
- Nicolae Baranov
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
| | - Marcel Popa
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
- Academy of Romanian Scientists, 50085 Bucharest, Romania
| | | | | |
Collapse
|
12
|
Schmid JL, Kirchberg M, Sarembe S, Kiesow A, Sculean A, Mäder K, Buchholz M, Eick S. In Vitro Evaluation of Antimicrobial Activity of Minocycline Formulations for Topical Application in Periodontal Therapy. Pharmaceutics 2020; 12:pharmaceutics12040352. [PMID: 32295046 PMCID: PMC7238147 DOI: 10.3390/pharmaceutics12040352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022] Open
Abstract
Periodontal therapy using antimicrobials that are topically applied requires slow or controlled release devices. The in vitro antimicrobial activity of biodegradable polymer formulations that contain a new minocycline lipid complex (P-MLC) was evaluated. The new P-MLC formulations that contained 11.5% minocycline were compared with pure minocycline or an existing commercial formulation, which included determination of minimal inhibitory concentration (MIC) values against two oral bacteria and activity on six-species periodontal biofilm. Moreover, the flow of gingival crevicular fluid (GCF) was modeled up to 42 d and the obtained eluates were tested both for MIC values and inhibiting biofilm formation. In general, MICs of the P-MLC formulations were slightly increased as compared with pure minocycline. Biofilm formation was clearly inhibited by all tested formulations containing minocycline with no clear difference between them. In 3.5 d old biofilms, all formulations with 250 µg/mL minocycline decreased bacterial counts by 3 log10 and metabolic activity with no difference to pure antimicrobials. Eluates of experimental formulations showed superiority in antimicrobial activity. Eluates of one experimental formulation (P503-MLC) still inhibited biofilm formation at 28 d, with a reduction by 1.87 log10 colony forming units (CFU) vs. the untreated control. The new experimental formulations can easily be instilled in periodontal pockets and represent alternatives in local antimicrobials, and thus warrant further testing.
Collapse
Affiliation(s)
- Jan-Luca Schmid
- Laboratory of Oral Microbiology, Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010 Bern, Switzerland;
| | - Martin Kirchberg
- Institute of Pharmacy, Martin-Luther University Halle, D-06120 Halle (Saale), Germany; (M.K.); (K.M.)
| | - Sandra Sarembe
- Characterization of Medical and Cosmetic Care Products, Fraunhofer Institute for Microstructures and Materials IMWS, D-06120 Halle/Saale, Germany; (S.S.); (A.K.)
| | - Andreas Kiesow
- Characterization of Medical and Cosmetic Care Products, Fraunhofer Institute for Microstructures and Materials IMWS, D-06120 Halle/Saale, Germany; (S.S.); (A.K.)
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010 Bern, Switzerland;
| | - Karsten Mäder
- Institute of Pharmacy, Martin-Luther University Halle, D-06120 Halle (Saale), Germany; (M.K.); (K.M.)
| | - Mirko Buchholz
- Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT and PerioTrap Pharmaceuticals GmbH, D-06120 Halle/Saale, Germany;
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010 Bern, Switzerland;
- Correspondence:
| |
Collapse
|
13
|
Enzyme responsive copolymer micelles enhance the anti-biofilm efficacy of the antiseptic chlorhexidine. Int J Pharm 2019; 566:329-341. [PMID: 31152793 DOI: 10.1016/j.ijpharm.2019.05.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022]
Abstract
Staphylococcal biofilms cause many infectious diseases and are highly tolerant to the effects of antimicrobials; this is partly due to the biofilm matrix, which acts as a physical barrier retarding the penetration and reducing susceptibility to antimicrobials, thereby decreasing successful treatment outcomes. In this study, both single and mixed micellar systems based on poly vinyl caprolactam (PCL)-polyethylene glycol (PEG) copolymers were optimised for delivery of chlorhexidine (CHX) to S. aureus, MRSA and S. epidermidis biofilms and evaluated for their toxicity using Caenorhabditis elegans. The respective polyethylene glycol (PEG) and poly vinyl caprolactam (PCL) structural components promoted stealth properties and enzymatic responsive release of CHX inside biofilms, leading to significantly enhanced penetration (56%) compared with free CHX and improving the efficacy against Staphylococcus aureus biofilms grown on an artificial dermis (2.4 log reduction of CFU). Mixing Soluplus-based micelles with Solutol further enhanced the CHX penetration (71%) and promoted maximum reduction in biofilm biomass (>60%). Nematodes-based toxicity assay showed micelles with no lethal effects as indicated by their high survival rate (100%) after 72 h exposure. This study thus demonstrated that bio-responsive carriers can be designed to deliver a poorly water-soluble antimicrobial agent and advance the control of biofilm associated infections.
Collapse
|