1
|
Aust AC, Vidova V, Coufalikova K, Smetanova S, Kozeluhova K, Micenkova L, Videnska P, Smatana S, Budinska E, Borek I, Janku P, Klanova J, Spacil Z, Thon V. Fecal tryptophan metabolite profiling in newborns in relation to microbiota and antibiotic treatment. Appl Microbiol Biotechnol 2024; 108:504. [PMID: 39500766 PMCID: PMC11538234 DOI: 10.1007/s00253-024-13339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
In the first days of life, the newborns' intestinal microbiota develops simultaneously with the intestinal gut barrier and follows intestinal immunity. The mode of delivery shows significant impact on microbial development and, thus, the initiation of the tryptophan catabolism pathway. Further antibiotics (ATB) treatment of mothers before or during delivery affects the microbial and tryptophan metabolite composition of stool of the caesarean- and vaginal-delivered newborns. The determination of microbiome and levels of tryptophan microbial metabolites in meconium and stool can characterize intestinal colonization of a newborn. From 134 samples from the Central European Longitudinal Studies of Parents and Children: The Next Generation (CELSPAC: TNG) cohort study, 16S rRNA gene sequencing was performed, and microbial tryptophan metabolites were quantified using ultra-high-performance liquid chromatography with triple-quadrupole mass spectrometry. Microbial diversity and concentrations of tryptophan metabolites were significantly higher in stool compared to meconium. Treatment of mothers with ATB before or during delivery affects metabolite composition and microbial diversity in stool of vaginal- and caesarean-delivered newborns. Correlation of microbial and metabolite composition shows significant positive correlations of indol-3-lactic acid, N-acetyl-tryptophan and indol-3-acetic acid with Bifidobacterium, Bacteroides and Peptoclostridium. The positive effect of vaginal delivery on newborns' microbiome development is degraded when mother is treated with ATB before or during delivery. KEY POINTS: • Antibiotic treatment diminishes the positive effects of vaginal delivery. • Antibiotic treatment affects metabolite and microbial composition in newborns. • Bifidobacterium and Peptoclostridium could be the producer of indole-lactic acid.
Collapse
Affiliation(s)
- Anne-Christine Aust
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion D29/1S101, 625 00, Brno, Czech Republic
| | - Veronika Vidova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion D29/1S101, 625 00, Brno, Czech Republic
| | - Katerina Coufalikova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion D29/1S101, 625 00, Brno, Czech Republic
| | - Sona Smetanova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion D29/1S101, 625 00, Brno, Czech Republic
| | - Kristyna Kozeluhova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion D29/1S101, 625 00, Brno, Czech Republic
| | - Lenka Micenkova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion D29/1S101, 625 00, Brno, Czech Republic
| | - Petra Videnska
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion D29/1S101, 625 00, Brno, Czech Republic
| | - Stanislav Smatana
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion D29/1S101, 625 00, Brno, Czech Republic
| | - Eva Budinska
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion D29/1S101, 625 00, Brno, Czech Republic
| | - Ivo Borek
- Department of Neonatology, University Hospital Brno, Brno, Czech Republic
| | - Petr Janku
- Clinic of Gynecology and Obstetrics, University Hospital Brno, Brno, Czech Republic
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion D29/1S101, 625 00, Brno, Czech Republic
| | - Zdenek Spacil
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion D29/1S101, 625 00, Brno, Czech Republic
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion D29/1S101, 625 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Preechasuth K, Brazier L, Khamduang W, Hongjaisee S, Wangsaeng N, Ngo-Giang-Huong N. Analyzing Cervical Microbiome Composition in HIV-Infected Women with Different HPV Infection Profiles: A Pilot Study in Thailand. Microorganisms 2024; 12:1298. [PMID: 39065066 PMCID: PMC11278691 DOI: 10.3390/microorganisms12071298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
We conducted a pilot study to analyze the microbiome in cervical samples of women living with HIV with various profiles of HPV infections. The participants had an average age of 41.5 years. Sequence analysis of 16S rRNA V3 gene amplicons was performed using next-generation sequencing technology (Ion Torrent PGMTM). The bioinformatics pipeline was analyzed using the Find, Rapidly, OTUs with Galaxy Solution system (FROGS). Common genera were determined to identify Community State Types (CSTs). The cervical microbiome profiles showed a dominance of lactobacilli in 56% (five out of nine) of samples. All three women with normal cervical cells and high-risk HPV infection were classified as CST IV, characterized by anaerobic bacteria associated with bacterial vaginitis, such as Gardnerella, Prevotella, Atopobium, and Sneathia. Among the two women with abnormal cervical cells and high-risk HPV infection, one was classified as CST III, and the other had an unclassified profile dominated by L. helveticus. Four women with normal cervical cells and no HPV infection exhibited various CSTs. Our study demonstrated the feasibility of the protocol in analyzing the cervical microbiome. However, further analysis with a larger number of longitudinal samples is necessary to determine the role of cervical microbiota in HPV persistence, clearance, or the development of precancerous lesions.
Collapse
Affiliation(s)
- Kanya Preechasuth
- Division of Clinical Microbiology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Lionel Brazier
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS UMR5290), Institut de Recherche Pour le Développement (IRD224), Université of Montpellier, 34394 Montpellier CEDEX 5, France; (L.B.); (N.N.-G.-H.)
| | - Woottichai Khamduang
- Division of Clinical Microbiology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sayamon Hongjaisee
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nantawan Wangsaeng
- AMS-PHPT Research Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nicole Ngo-Giang-Huong
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS UMR5290), Institut de Recherche Pour le Développement (IRD224), Université of Montpellier, 34394 Montpellier CEDEX 5, France; (L.B.); (N.N.-G.-H.)
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
3
|
Yi C, Chen J, She X. The emerging role of the gut virome in necrotizing enterocolitis. Heliyon 2024; 10:e30496. [PMID: 38711648 PMCID: PMC11070903 DOI: 10.1016/j.heliyon.2024.e30496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in neonates, particularly preterm infants. Many factors can lead to NEC, but microbial dysbiosis is one of the most important risk factors that can induce this disease. Given the major role of the gut virome in shaping bacterial homeostasis, virome research is a fledgling but rapidly evolving area in the field of microbiome that is increasingly connected to human diseases, including NEC. This review provides an overview of the development of the gut virome in newborns, discusses its emerging role in NEC, and explores promising therapeutic applications, including phage therapy and fecal virome transplantation.
Collapse
Affiliation(s)
- Cong Yi
- Department of Pediatrics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Jia Chen
- Department of Pediatrics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Xiang She
- Department of Pediatrics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| |
Collapse
|
4
|
Turunen J, Tejesvi MV, Paalanne N, Pokka T, Amatya SB, Mishra S, Kaisanlahti A, Reunanen J, Tapiainen T. Investigating prenatal and perinatal factors on meconium microbiota: a systematic review and cohort study. Pediatr Res 2024; 95:135-145. [PMID: 37591927 PMCID: PMC10798900 DOI: 10.1038/s41390-023-02783-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND The first-pass meconium has been suggested as a proxy for the fetal gut microbiota because it is formed in utero. This systematic review and cohort study investigated how pre- and perinatal factors influence the composition of the meconium microbiota. METHODS We performed the systematic review using Covidence by searching PubMed, Scopus, and Web of Science databases with the search terms "meconium microbiome" and "meconium microbiota". In the cohort study, we performed 16 S rRNA gene sequencing on 393 meconium samples and analyzed the sequencing data using QIIME2. RESULTS Our systematic review identified 69 studies exploring prenatal factors, immediate perinatal factors, and microbial composition in relation to subsequent health of infants but gave only limited comparative evidence regarding factors related to the composition of the meconium microbiota. The cohort study pointed to a low-biomass microbiota consisting of the phyla Firmicutes, Proteobacteria and Actinobacteriota and the genera Staphylococcus, Escherichia-Shigella and Lactobacillus, and indicated that immediate perinatal factors affected the composition of the meconium microbiota more than did prenatal factors. CONCLUSIONS This finding supports the idea that the meconium microbiota mostly starts developing during delivery. IMPACT It is unclear when the first-pass meconium microbiota develops, and what are the sources of the colonization. In this systematic review, we found 69 studies exploring prenatal factors, immediate perinatal factors, and microbial composition relative to subsequent health of infants, but there was no consensus on the factors affecting the meconium microbiota development. In this cohort study, immediate perinatal factors markedly affected the meconium microbiota development while prenatal factors had little effect on it. As the meconium microbiota composition was influenced by immediate perinatal factors, the present study supports the idea that the initial gut microbiota develops mainly during delivery.
Collapse
Affiliation(s)
- Jenni Turunen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.
- Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Mysore V Tejesvi
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | - Niko Paalanne
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Tytti Pokka
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Research Service Unit, Oulu University Hospital, Oulu, Finland
| | - Sajeen Bahadur Amatya
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Surbhi Mishra
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Anna Kaisanlahti
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Justus Reunanen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Terhi Tapiainen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
5
|
Ogunbosi BO, Kigbu A, Tongo OO, Adepoju AA, Orimadegun AE, Odaibo GN, Olaleye DO, Akinyinka OO. Emergence of Raoultella ornithinolytica as a significant intestinal microbiota in Nigerian Neonates. AFRICAN JOURNAL OF MEDICINE AND MEDICAL SCIENCES 2023; 52:247-253. [PMID: 40093860 PMCID: PMC11907646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background There are increasing reports of Raoultella ornithinolytica infection in humans. This study reports significant contribution of Raoultella ornithinolytica to neonatal gut microbiota. Methods Rectal swab samples were collected in 70 healthy neonates, within 6-12hours of birth, and days 3, 9, and 14 after birth. Colonization by R. ornithinolytica was evaluated against neonatal characteristics. Results Among the 70 neonates, R. ornithinolytica was the fourth most common bacteria isolated. R. ornithinolytica was part of gut microbiota at birth, and on Day 3, Day 9 and Day 14 after birth in 15%, 28.6%, 21.4% and 5.7% of neonates respectively. No factor was associated with R. ornithinolytica colonization, but a trend towards an increased likelihood of colonization among females, asphyxiated and neonates whose mothers had prolonged labour was observed. Conclusion R. ornithinolytica has emerged as an important part of gut microbiota among neonates in Nigeria, but its' role in neonatal dysbiosis and infection remains unclear.
Collapse
Affiliation(s)
- B O Ogunbosi
- Departments of Paediatrics, College of Medicine, University of Ibadan, Ibadan Nigeria
- Department of Paediatrics, University College Hospital, Ibadan, Nigeria
| | - A Kigbu
- Department of Paediatrics, University College Hospital, Ibadan, Nigeria
| | - O O Tongo
- Departments of Paediatrics, College of Medicine, University of Ibadan, Ibadan Nigeria
- Department of Paediatrics, University College Hospital, Ibadan, Nigeria
| | - A A Adepoju
- Departments of Paediatrics, College of Medicine, University of Ibadan, Ibadan Nigeria
- Department of Paediatrics, University College Hospital, Ibadan, Nigeria
| | - A E Orimadegun
- Department of Paediatrics, University College Hospital, Ibadan, Nigeria
- Institute of Child Health, College of Medicine, University of Ibadan, Ibadan Nigeria
| | - G N Odaibo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan Nigeria
| | - D O Olaleye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan Nigeria
| | - O O Akinyinka
- Departments of Paediatrics, College of Medicine, University of Ibadan, Ibadan Nigeria
- Department of Paediatrics, University College Hospital, Ibadan, Nigeria
| |
Collapse
|
6
|
Pheeha SM, Tamuzi JL, Chale-Matsau B, Manda S, Nyasulu PS. A Scoping Review Evaluating the Current State of Gut Microbiota Research in Africa. Microorganisms 2023; 11:2118. [PMID: 37630678 PMCID: PMC10458939 DOI: 10.3390/microorganisms11082118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The gut microbiota has emerged as a key human health and disease determinant. However, there is a significant knowledge gap regarding the composition, diversity, and function of the gut microbiota, specifically in the African population. This scoping review aims to examine the existing literature on gut microbiota research conducted in Africa, providing an overview of the current knowledge and identifying research gaps. A comprehensive search strategy was employed to identify relevant studies. Databases including MEDLINE (PubMed), African Index Medicus (AIM), CINAHL (EBSCOhost), Science Citation index (Web of Science), Embase (Ovid), Scopus (Elsevier), WHO International Clinical Trials Registry Platform (ICTRP), and Google Scholar were searched for relevant articles. Studies investigating the gut microbiota in African populations of all age groups were included. The initial screening included a total of 2136 articles, of which 154 were included in this scoping review. The current scoping review revealed a limited number of studies investigating diseases of public health significance in relation to the gut microbiota. Among these studies, HIV (14.3%), colorectal cancer (5.2%), and diabetes mellitus (3.9%) received the most attention. The top five countries that contributed to gut microbiota research were South Africa (16.2%), Malawi (10.4%), Egypt (9.7%), Kenya (7.1%), and Nigeria (6.5%). The high number (n = 66) of studies that did not study any specific disease in relation to the gut microbiota remains a gap that needs to be filled. This scoping review brings attention to the prevalent utilization of observational study types (38.3%) in the studies analysed and emphasizes the importance of conducting more experimental studies. Furthermore, the findings reflect the need for more disease-focused, comprehensive, and population-specific gut microbiota studies across diverse African regions and ethnic groups to better understand the factors shaping gut microbiota composition and its implications for health and disease. Such knowledge has the potential to inform targeted interventions and personalized approaches for improving health outcomes in African populations.
Collapse
Affiliation(s)
- Sara M. Pheeha
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Department of Chemical Pathology, Faculty of Medicine and Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- National Health Laboratory Service, Dr George Mukhari Academic Hospital, Pretoria 0208, South Africa
| | - Jacques L. Tamuzi
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
| | - Bettina Chale-Matsau
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- National Health Laboratory Service, Steve Biko Academic Hospital, Pretoria 0002, South Africa
| | - Samuel Manda
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter S. Nyasulu
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
7
|
Dutton CL, Maisha FM, Quinn EB, Morales KL, Moore JM, Mulligan CJ. Maternal Psychosocial Stress Is Associated with Reduced Diversity in the Early Infant Gut Microbiome. Microorganisms 2023; 11:microorganisms11040975. [PMID: 37110398 PMCID: PMC10142543 DOI: 10.3390/microorganisms11040975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The developing infant gut microbiome is highly sensitive to environmental exposures, enabling its evolution into an organ that supports the immune system, confers protection from infection, and facilitates optimal gut and central nervous system function. In this study, we focus on the impact of maternal psychosocial stress on the infant gut microbiome. Forty-seven mother-infant dyads were recruited at the HEAL Africa Hospital in Goma, Democratic Republic of Congo. Extensive medical, demographic, and psychosocial stress data were collected at birth, and infant stool samples were collected at six weeks, three months, and six months. A composite maternal psychosocial stress score was created, based on eight questionnaires to capture a diverse range of stress exposures. Full-length 16S rRNA gene sequences were generated. Infants of mothers with high composite stress scores showed lower levels of gut microbiome beta diversity at six weeks and three months, as well as higher levels of alpha diversity at six months compared to infants of low stress mothers. Longitudinal analyses showed that infants of high stress mothers had lower levels of health-promoting Lactobacillus gasseri and Bifidobacterium pseudocatenulatum at six weeks compared to infants of low stress mothers, but the differences largely disappeared by three to six months. Previous research has shown that L. gasseri can be used as a probiotic to reduce inflammation, stress, and fatigue, as well as to improve mental state, while B. pseudocatenulatum is important in modulating the gut-brain axis in early development and in preventing mood disorders. Our finding of reduced levels of these health-promoting bacteria in infants of high stress mothers suggests that the infant gut microbiome may help mediate the effect of maternal stress on infant health and development.
Collapse
Affiliation(s)
- Christopher L Dutton
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
- Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL 32611-8525, USA
| | - Felicien Masanga Maisha
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
- HEAL Africa Hospital, Rue Lyn Lusi No. 111, Goma BP 319, Democratic Republic of the Congo
| | - Edward B Quinn
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
| | - Katherine Liceth Morales
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
| | - Julie M Moore
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Room V3-111B, P.O. Box 110880, Gainesville, FL 32611-4111, USA
| | - Connie J Mulligan
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
| |
Collapse
|
8
|
Wilson A, Bogie B, Chaaban H, Burge K. The Nonbacterial Microbiome: Fungal and Viral Contributions to the Preterm Infant Gut in Health and Disease. Microorganisms 2023; 11:909. [PMID: 37110332 PMCID: PMC10144239 DOI: 10.3390/microorganisms11040909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
The intestinal microbiome is frequently implicated in necrotizing enterocolitis (NEC) pathogenesis. While no particular organism has been associated with NEC development, a general reduction in bacterial diversity and increase in pathobiont abundance has been noted preceding disease onset. However, nearly all evaluations of the preterm infant microbiome focus exclusively on the bacterial constituents, completely ignoring any fungi, protozoa, archaea, and viruses present. The abundance, diversity, and function of these nonbacterial microbes within the preterm intestinal ecosystem are largely unknown. Here, we review findings on the role of fungi and viruses, including bacteriophages, in preterm intestinal development and neonatal intestinal inflammation, with potential roles in NEC pathogenesis yet to be determined. In addition, we highlight the importance of host and environmental influences, interkingdom interactions, and the role of human milk in shaping fungal and viral abundance, diversity, and function within the preterm intestinal ecosystem.
Collapse
Affiliation(s)
| | | | - Hala Chaaban
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathryn Burge
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Early-life chemical exposome and gut microbiome development: African research perspectives within a global environmental health context. Trends Microbiol 2022; 30:1084-1100. [PMID: 35697586 DOI: 10.1016/j.tim.2022.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023]
Abstract
The gut microbiome of neonates, infants, and toddlers (NITs) is very dynamic, and only begins to stabilize towards the third year of life. Within this period, exposure to xenobiotics may perturb the gut environment, thereby driving or contributing to microbial dysbiosis, which may negatively impact health into adulthood. Despite exposure of NITs globally, but especially in Africa, to copious amounts and types of xenobiotics - such as mycotoxins, pesticide residues, and heavy metals - little is known about their influence on the early-life microbiome or their effects on acute or long-term health. Within the African context, the influence of fermented foods, herbal mixtures, and the delivery environment on the early-life microbiome are often neglected, despite being potentially important factors that influence the microbiome. Consequently, data on in-depth understanding of the microbiome-exposome interactions is lacking in African cohorts. Collecting and evaluating such data is important because exposome-induced gut dysbiosis could potentially favor disease progression.
Collapse
|
10
|
Effects of Growth Stage and Rearing Pattern on Pig Gut Microbiota. Curr Microbiol 2022; 79:136. [PMID: 35303185 DOI: 10.1007/s00284-022-02828-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Understanding the developmental period or the patterns of gut microbiota is important for nutritionists when designing a feed formula or adjusting a feeding strategy. The effects of growth stage or rearing pattern on pig gut microbiota have not been fully investigated. Herein, 39 fecal samples from pigs aged 3-9 months under two rearing patterns were collected to analyze the gut microbiome. Samples were clustered into three distinct groups, namely, early (3 months), middle (5 months), and late (7 and 9 months) stages, using principal coordinate analysis and analysis of similarities test. The rearing-pattern effects were very minimal, and no differences were observed in the alpha diversity [observed operational taxonomic units (OTUs) and Shannon index] of gut microbiota. From early and middle to late stage, Shannon index gradually decreased and OTUs gradually increased. Pigs at early stage were enriched with bacteria from family Prevotellaceae, including the genera Prevotella_9 and Prevotellaceae_NK3B31, whereas pigs at late stage were enriched with family Ruminococcaceae, including genera Ruminococcaceae_UCG-005 and Oscillospira. Pigs in the semi-free-grazing farm group were significantly enriched with bacteria from order Clostridiales. Growth stage better explained the changes in porcine gut microbiota than rearing patterns.
Collapse
|
11
|
Allali I, Abotsi RE, Tow LA, Thabane L, Zar HJ, Mulder NM, Nicol MP. Human microbiota research in Africa: a systematic review reveals gaps and priorities for future research. MICROBIOME 2021; 9:241. [PMID: 34911583 PMCID: PMC8672519 DOI: 10.1186/s40168-021-01195-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/14/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND The role of the human microbiome in health and disease is an emerging and important area of research; however, there is a concern that African populations are under-represented in human microbiome studies. We, therefore, conducted a systematic survey of African human microbiome studies to provide an overview and identify research gaps. Our secondary objectives were: (i) to determine the number of peer-reviewed publications; (ii) to identify the extent to which the researches focused on diseases identified by the World Health Organization [WHO] State of Health in the African Region Report as being the leading causes of morbidity and mortality in 2018; (iii) to describe the extent and pattern of collaborations between researchers in Africa and the rest of the world; and (iv) to identify leadership and funders of the studies. METHODOLOGY We systematically searched Medline via PubMed, Scopus, CINAHL, Academic Search Premier, Africa-Wide Information through EBSCOhost, and Web of Science from inception through to 1st April 2020. We included studies that characterized samples from African populations using next-generation sequencing approaches. Two reviewers independently conducted the literature search, title and abstract, and full-text screening, as well as data extraction. RESULTS We included 168 studies out of 5515 records retrieved. Most studies were published in PLoS One (13%; 22/168), and samples were collected from 33 of the 54 African countries. The country where most studies were conducted was South Africa (27/168), followed by Kenya (23/168) and Uganda (18/168). 26.8% (45/168) focused on diseases of significant public health concern in Africa. Collaboration between scientists from the United States of America and Africa was most common (96/168). The first and/or last authors of 79.8% of studies were not affiliated with institutions in Africa. Major funders were the United States of America National Institutes of Health (45.2%; 76/168), Bill and Melinda Gates Foundation (17.8%; 30/168), and the European Union (11.9%; 20/168). CONCLUSIONS There are significant gaps in microbiome research in Africa, especially those focusing on diseases of public health importance. There is a need for local leadership, capacity building, intra-continental collaboration, and national government investment in microbiome research within Africa. Video Abstract.
Collapse
Affiliation(s)
- Imane Allali
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Centre of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Regina E Abotsi
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Lemese Ah Tow
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lehana Thabane
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Biostatistics Unit, Father Sean O'Sullivan Research Centre, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, Ontario, Canada
- Centre for Evaluation of Medicine, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Centre for Evidence-based Health Care, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nicola M Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark P Nicol
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- School of Biomedical Sciences, University of Western Australia, M504, Perth, WA, 6009, Australia.
| |
Collapse
|
12
|
Zhang X, Liu L, Bai W, Han Y, Hou X. Evolution of Intestinal Microbiota of Asphyxiated Neonates Within 1 Week and Its Relationship With Neural Development at 6 Months. Front Pediatr 2021; 9:690339. [PMID: 34497782 PMCID: PMC8419515 DOI: 10.3389/fped.2021.690339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction: Asphyxia is an emergent condition in neonates that may influence the function of the nervous system. Research has shown that intestinal microbiota is very important for neurodevelopment. Studies regarding the association between gut microbiota and neurodevelopment outcome in asphyxiated newborns remain scarce. Objective: To study the microbial characteristics of asphyxiated neonates within 1 week of life and to investigate their relationship with neural development at 6 months. Methods: The feces produced on days 1, 3, and 5, and the clinical data of full-term neonates with asphyxia and without asphyxia, delivered from March 2019 to October 2020 at Peking University First Hospital, were collected. We used 16S ribosomal deoxyribonucleic acid amplicon sequencing to detect the intestinal microbiota of asphyxiated neonates and neonates in the control group. We followed up asphyxiated neonates for 6 months and used the Ages and Stages Questionnaires-3 (ASQ-3) to evaluate their development. Results: A total of 45 neonates were enrolled in the study group and 32 were enrolled in the control group. On day 1, the diversity and richness of the microflora of the study group were more than those of the control group. Non-metric multidimensional scaling analysis showed significant differences in the microbiota of the two groups on days 1, 3, and 5. At the phylum level, the main microflora of the two groups were not different. At the genus level, the study group had increased relative abundance of Clostridium_sensu_stricto_1, Lachnoclostridium, Fusicatenibacter, etc. on day 1. On day 3, the relative abundance of Clostridium_sensu_stricto_1, Fusicatenibacter, etc. was still greater than that of the control group, and the relative abundance of Staphylococcus was less than that of the control group. On day 5, the relative abundance of Clostridium_sensu_stricto_1 and Lachnoclostridium was still higher than that of the control group, and the relative abundance of Dubosiella in the study group was significantly increased. At the species level, on day 3, the relative abundance of Staphylococcus caprae in the study group was less than that in the control group. Linear discriminant analysis effect size showed that the microbiota of the study group mainly consisted of Lachnospiraceae and Clostridia on day 1 and Clostridia on day 3. In the control group, Staphylococcus was the dominant bacterium on day 3. Neonates in the study group were followed up for 6 months, and the communication score of ASQ-3 was negatively correlated with the relative abundance of Lachnospiraceae and Clostridia on day 1. Conclusion: The diversity and richness of the microbiota of asphyxiated neonates on the first day of life were significantly increased and mainly consisted of pathogenic flora. Lachnospiraceae and Clostridia found in neonates with asphyxia on day 1 of life may be related to neural development at 6 months.
Collapse
Affiliation(s)
| | | | | | - Ying Han
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xinlin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Coelho GDP, Ayres LFA, Barreto DS, Henriques BD, Prado MRMC, Passos CMD. Acquisition of microbiota according to the type of birth: an integrative review. Rev Lat Am Enfermagem 2021; 29:e3446. [PMID: 34287544 PMCID: PMC8294792 DOI: 10.1590/1518.8345.4466.3446] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/29/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE to analyze scientific evidence regarding the relationship between the type of birth and the microbiota acquired by newborns. METHOD this integrative review addresses the role of the type of delivery on newborns' microbial colonization. A search was conducted in the Medical Literature Analysis and Retrieval System Online/PubMed and Virtual Health Library databases using the descriptors provided by Medical Subject Headings (MeSH) and Health Science Descriptors (DeCS). RESULTS infants born vaginally presented a greater concentration of Bacteroides, Bifidobacteria, and Lactobacillus in the first days of life and more significant microbial variability in the following weeks. The microbiome of infants born via C-section is similar to the maternal skin and the hospital setting and less diverse, mainly composed of Staphylococcus, Streptococcus, and Clostridium. CONCLUSION the maternal vaginal microbiota provides newborns with a greater variety of colonizing microorganisms responsible for boosting and preparing the immune system. Vaginal birth is the ideal birth route, and C-sections should only be performed when there are medical indications.
Collapse
Affiliation(s)
| | | | | | - Bruno David Henriques
- Universidade Federal de Viçosa, Departamento de Medicina e Enfermagem, Viçosa, MG, Brasil
| | | | | |
Collapse
|
14
|
Princisval L, Rebelo F, Williams BL, Coimbra AC, Crovesy L, Ferreira AL, Kac G. Association Between the Mode of Delivery and Infant Gut Microbiota Composition Up to 6 Months of Age: A Systematic Literature Review Considering the Role of Breastfeeding. Nutr Rev 2021; 80:113-127. [PMID: 33837424 DOI: 10.1093/nutrit/nuab008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CONTEXT Cesarean section (CS), breastfeeding, and geographic location can influence the infant microbiota. OBJECTIVE In this systematic review, evidence of the association between mode of delivery and infant gut microbiota up to 6 months of age was evaluated, as was the role of breastfeeding in this association, according to PRISMA guidelines. DATA SOURCE The Pubmed, Web of Science, Scopus, Embase, Medical Database, and Open Grey databases were searched. DATA EXTRACTION A total of 31 observational studies with ≥2 infant stool collections up to the sixth month of age and a comparison of gut microbiota between CS and vaginal delivery (VD) were included. DATA ANALYSIS Infants born by CS had a lower abundance of Bifidobacterium and Bacteroides spp. at almost all points up to age 6 months. Populations of Lactobacillus, Bifidobacterium longum, Bifidobacterium catenulatum, and Escherichia coli were reduced in infants delivered by CS. Infants born by CS and exclusively breastfed had greater similarity with the microbiota of infants born by VD. CONCLUSIONS Species of Bifidobacterium and Bacteroides are potentially reduced in infants born by CS. Geographic location influenced bacterial colonization. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. 42017071285.
Collapse
Affiliation(s)
- Luciana Princisval
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Fernanda Rebelo
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Brent L Williams
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Anna Carolina Coimbra
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Louise Crovesy
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Ana Lorena Ferreira
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Gilberto Kac
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
15
|
Makhaola K, Moyo S, Kebaabetswe LP. Distribution and Genetic Variability of Sapoviruses in Africa. Viruses 2020; 12:v12050490. [PMID: 32349380 PMCID: PMC7291139 DOI: 10.3390/v12050490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, we describe the distribution and genetic diversity of sapoviruses detected among humans, animals and the environment in African countries. Databases were searched for studies conducted in African countries and published between Jan 2005 and Mar 2019. Only studies where RT- PCR was used for initial detection were included in the systematic review. We identified 27 studies from 14 African countries with 18 focused on human sapoviruses, two on animal sapoviruses and seven on sapoviruses observed in the environment. Samples. The overall estimated pooled prevalence of human sapovirus infections among symptomatic and asymptomatic individuals was similar at 5.0% (95% Confidence Interval (CI): 3.0–7.0) and 2.0% (95% CI: 1.0–3.0), respectively. In environmental samples sapovirus detection rates ranged from 0% to 90% while in animal studies it was 1.7% to 34.8%. Multiple causes of gastroenteritis, sensitivity of detection method used, diversity of sapovirus strains and rotavirus vaccine coverage rate are some of the factors that could have contributed to the wide range of sapovirus detection rates that were reported. The studies reported human genogroups GI, GII, and GIV, with genogroup GI being the most prevalent. Some potential novel strains were detected from animal samples. Most studies genotyped a small portion of either the capsid and/or polymerase region. However, this is a limitation as it does not allow for detection of recombinants that occur frequently in sapoviruses. More studies with harmonized genotyping protocols that cover longer ranges of the sapovirus genome are needed to provide more information on the genomic characterization of sapoviruses circulating in African countries. Further investigations on animal to human transmission for sapoviruses are needed as inter-species transmissions have been documented for other viruses.
Collapse
Affiliation(s)
- Kgomotso Makhaola
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology & Infectious Diseases, Harvard T.H Chan School of Public Health, Boston, MA 02115, USA
| | - Lemme P. Kebaabetswe
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
- Correspondence:
| |
Collapse
|
16
|
Bacterial colonization reprograms the neonatal gut metabolome. Nat Microbiol 2020; 5:838-847. [PMID: 32284564 PMCID: PMC8052915 DOI: 10.1038/s41564-020-0694-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
Abstract
Initial microbial colonization and later succession in the gut of human infants are linked to health and disease later in life. The timing of the appearance of the first gut microbiome, and the consequences for the early life metabolome, are just starting to be defined. Here, we evaluated the gut microbiome, proteome and metabolome in 88 African-American newborns using faecal samples collected in the first few days of life. Gut bacteria became detectable using molecular methods by 16 h after birth. Detailed analysis of the three most common species, Escherichia coli, Enterococcus faecalis and Bacteroides vulgatus, did not suggest a genomic signature for neonatal gut colonization. The appearance of bacteria was associated with reduced abundance of approximately 50 human proteins, decreased levels of free amino acids and an increase in products of bacterial fermentation, including acetate and succinate. Using flux balance modelling and in vitro experiments, we provide evidence that fermentation of amino acids provides a mechanism for the initial growth of E. coli, the most common early colonizer, under anaerobic conditions. These results provide a deep characterization of the first microbes in the human gut and show how the biochemical environment is altered by their appearance.
Collapse
|
17
|
Brewster R, Tamburini FB, Asiimwe E, Oduaran O, Hazelhurst S, Bhatt AS. Surveying Gut Microbiome Research in Africans: Toward Improved Diversity and Representation. Trends Microbiol 2019; 27:824-835. [PMID: 31178123 DOI: 10.1016/j.tim.2019.05.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022]
Abstract
Descriptive and translational investigations into the human gut microbiome (GM) are rapidly expanding; however, studies are largely restricted to industrialized populations in the USA and Europe. Little is known about microbial variability and its implications for health and disease in other parts of the world. Populations in Africa are particularly underrepresented. What limited research has been performed has focused on a few subject domains, including the impact of long-term lifestyle and dietary factors on GM ecology, its maturation during infancy, and the interrelationships between the microbiome, infectious disease, and undernutrition. Recently, international consortia have laid the groundwork for large-scale genomics and microbiome studies on the continent, with a particular interest in the epidemiologic transition to noncommunicable disease. Here, we survey the current landscape of GM scholarship in Africa and propose actionable recommendations to improve research capacity and output.
Collapse
Affiliation(s)
- Ryan Brewster
- School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Edgar Asiimwe
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Ovokeraye Oduaran
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa; School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa.
| | - Ami S Bhatt
- School of Medicine, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA; Department of Medicine (Hematology), Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Panelli S, Schneider L, Comandatore F, Bandi C, Zuccotti GV, D'Auria E. Is there life in the meconium? A challenging, burning question. Pharmacol Res 2018; 137:148-149. [PMID: 30296570 DOI: 10.1016/j.phrs.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Simona Panelli
- Pediatric Clinical Research Center "Invernizzi", University of Milano, Milano, Italy.
| | - Laura Schneider
- Department of Pediatrics, "Luigi Sacco" Hospital, University of Milan, Milan, Italy
| | - Francesco Comandatore
- Pediatric Clinical Research Center "Invernizzi", University of Milano, Milano, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Invernizzi", University of Milano, Milano, Italy
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, "Vittore Buzzi" Children's Hospital, University of Milan, Milan, Italy
| | - Enza D'Auria
- Department of Pediatrics, "Vittore Buzzi" Children's Hospital, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Altan E, Aiemjoy K, Phan TG, Deng X, Aragie S, Tadesse Z, Callahan KE, Keenan J, Delwart E. Enteric virome of Ethiopian children participating in a clean water intervention trial. PLoS One 2018; 13:e0202054. [PMID: 30114205 PMCID: PMC6095524 DOI: 10.1371/journal.pone.0202054] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/26/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The enteric viruses shed by different populations can be influenced by multiple factors including access to clean drinking water. We describe here the eukaryotic viral genomes in the feces of Ethiopian children participating in a clean water intervention trial. METHODOLOGY/PRINCIPAL FINDINGS Fecal samples from 269 children with a mean age of 2.7 years were collected from 14 villages in the Amhara region of Ethiopia, half of which received a new hand-dug water well. Feces from these villages were then analyzed in 29 sample pools using viral metagenomics. A total of 127 different viruses belonging to 3 RNA and 3 DNA viral families were detected. Picornaviridae family sequence reads were the most commonly found, originating from 14 enterovirus and 6 parechovirus genotypes plus multiple members of four other picornavirus genera (cosaviruses, saliviruses, kobuviruses, and hepatoviruses). Picornaviruses with nearly identical capsid VP1 were detected in different pools reflecting recent spread of these viral strains. Next in read frequencies and positive pools were sequences from the Caliciviridae family including noroviruses GI and GII and sapoviruses. DNA viruses from multiple genera of the Parvoviridae family were detected (bocaviruses 1-4, bufavirus 3, and dependoparvoviruses), together with four species of adenoviruses and common anelloviruses shedding. RNA in the order Picornavirales and CRESS-DNA viral genomes, possibly originating from intestinal parasites or dietary sources, were also characterized. No significant difference was observed between the number of mammalian viruses shed from children from villages with and without a new water well. CONCLUSIONS We describe an approach to estimate the efficacy of potentially virus transmission-reducing interventions and the first complete (DNA and RNA viruses) description of the enteric viromes of East African children. A wide diversity of human enteric viruses was found in both intervention and control groups. Mammalian enteric virome diversity was not reduced in children from villages with a new water well. This population-based sampling also provides a baseline of the enteric viruses present in Northern Ethiopia against which to compare future viromes.
Collapse
Affiliation(s)
- Eda Altan
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, United States of America
| | - Kristen Aiemjoy
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Tung G. Phan
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, United States of America
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, United States of America
| | | | | | | | - Jeremy Keenan
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States of America
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, United States of America
| |
Collapse
|
20
|
Korpela K, de Vos WM. Early life colonization of the human gut: microbes matter everywhere. Curr Opin Microbiol 2018; 44:70-78. [DOI: 10.1016/j.mib.2018.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022]
|